Product Preview

1.8 V USB 3.1 Dual Channel **Linear Redriver**

Description

The NB7VPQ7021M is a 1.8 V dual channel linear redriver for USB 3.1 Gen 1 and Gen 2 applications that supports both 5 Gbps and 10 Gbps data rates. Signal integrity degrades from PCB traces, transmission cables, and inter-symbol interference (ISI). The NB7VPQ7021M compensates for these losses by engaging varying levels of equalization at the input receiver, and flat gain amplification on the output transmitter.

After power up, the NB7VPQ7021M periodically checks both of the TX output pairs for a receiver connection. When the receiver is detected on both channels the RX termination becomes enabled and the NB7VPQ7021M is set to perform the redriver function.

The NB7VPQ7021M comes in a small 3 x 3 mm UQFN16 package and is specified to operate across the entire industrial temperature range, -40°C to 85°C.

Features

- 1.8 V \pm 0.1 V Power Supply
- Device Supports USB 3.1 Gen 1 and USB 3.1 Gen 2 Data Rates
- Automatic Receiver Termination Detection
- Integrated Input and Output Termination
- Selectable Equalization and FlatGain
- Hot-Plug Capable
- ESD Protection ±4 kV HBM
- Operating Temperature Range: -40°C to 85°C
- Small 3 x 3 x 0.5 mm UQFN16 Package
- This is a Pb-Free Device

Typical Applications

- USB3.1 Type-C Signal Routing
- Mobile Phone and Tablet
- Computer and Laptop
- Docking Station and Dongle
- Active Cable, Back Planes
- Gaming Console, Smart T.V.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor®

www.onsemi.com

CASE 523AF

Α

MARKING DIAGRAM

NB7V 7021 ALYW=

= Assembly Location

= Wafer Lot ı Υ = Year

= Work Week W

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NB7VPQ7021MMUTXG	UQFN16 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

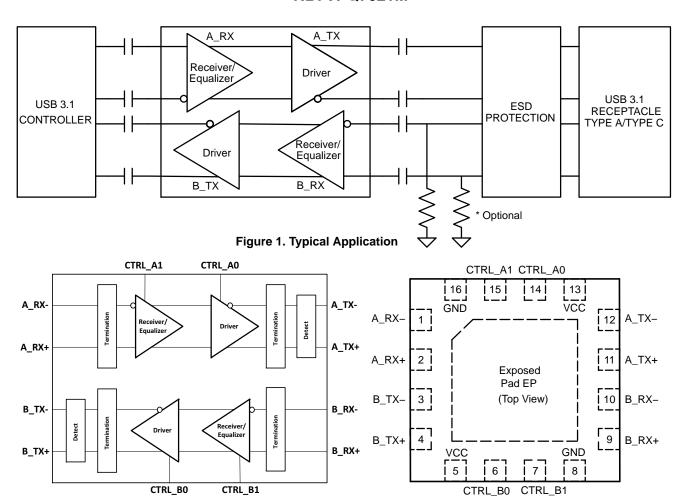


Figure 2. Logic Diagram of NB7VPQ7021M

Figure 3. UQFN Package Pin out

Table 1. PIN DESCRIPTION

Pin Number	Pin Name	Туре	Description			
1	A_RX-	DIFF IN	Channel A Differential input pair for 5 / 10 Gbps USB signals. Must be externally AC-coupled.			
2	A_RX+					
3	B_TX-	DIFF OUT	Channel B Differential output for 5 / 10 Gbps USB signals. Must be externally AC-coupled.			
4	B_TX+					
5, 13	VCC	Power	1.8 V power supply. VCC pins must be externally connected to power supply to guarantee proper operation.			
6	CTRL_B0	LVCMOS IN	Control pin "B0 and B1" for equalization and flat gain on Channel B. 4-state input with integrat-			
7	CTRL_B1		ed pull-up and pull-down resistors.			
8, 16	GND	GND	Reference Ground. GND pins must be externally connected to power supply to guarantee proper operation.			
9	B_RX+	DIFF IN	Channel B Differential input pair for 5 / 10 Gbps USB signals. Must be externally AC-coupled.			
10	B_RX-					
11	A_TX+	DIFF OUT	Channel A Differential output for 5 / 10 Gbps USB signals. Must be externally AC-coupled.			
12	A_TX-					
14	CTRL_A0	LVCMOS IN	Control pin "A0 and A1" for equalization and flat gain on Channel A. 4-state input with integrat-			
15	CTRL_A1		ed pull–up and pull–down resistors.			
EP	GND	GND	Exposed pad (EP). EP on the package bottom is thermally connected to the die for improved heat transfer out of the package. The pad is electrically connected to the GND. It is recommended to be soldered to GND on the PC Board.			

DEVICE CONFIGURATION

Table 2. CONTROL PIN EFFECTS (Typical Values)

	CHANNEL A				CHAN	NEL B
Settings	CTRL_A0	CTRL_A1	EQ	FG	CTRL_B1	CTRL_B0
1		L	3 dB	–1.5 dB	L	
2] .	R	6 dB	–1.5 dB	R	1 .
3	L	F	9 dB	–1.5 dB	F	<u>L</u>
4	1	Н	12 dB	–1.5 dB	Н	1
5		L	15 dB	−1.5 dB	L	
6		R	6 dB	0 dB	R	
7	R	F	9 dB	0 dB	F	R
8	1	Н	12 dB	0 dB	Н	1
9		L	15 dB	0 dB	L	
10	F	R	18 dB	0 dB	R	F
11] [F	3 dB	0 dB	F] [
12	1	Н	3 dB	+1.5 dB	Н	1
13		L	6 dB	+1.5 dB	L	
14	1	R	9 dB	+1.5 dB	R	1
15	Н	F	12 dB	+1.5 dB	F	Н
16		Н	15 dB	+1.5 dB	Н	

NOTE: L = Low, R = Ext Resistor, F = Float, H = High. Default - All Control Pins Float

Table 3. ATTRIBUTES

	Parameter		
ESD Protection	Human Body Model	Human Body Model Charged Device Model	> 4 kV > 1.5 kV
Moisture Sensitivity, Indefinite Time Out of Dry pack (Note 1)			Level 1
Flammability Rating		Oxygen Index: 28 to 34	UL 94 V-O @ 0.125 in
Meets or exceeds	JEDEC Spec EIA/JESD78 IC Latchup Test		

^{1.} For additional information, see Application Note AND8003/D.

Table 4. ABSOLUTE MAXIMUM RATINGS Over operating free-air temperature range (unless otherwise noted)

Parameter	Description	Min	Max	Unit
Supply Voltage (Note 2)	V _{CC}	-0.5	+2.5	V
Voltage range at any input or output terminal	Differential I/O	-0.5	1.89	V
	LVCMOS inputs	-0.3	V _{CC} + 0.3	V
Storage Temperature Range, T _{SG}		-65	150	°C
Maximum Junction Temperature, T _J			125	°C
Operating Ambient Temperature Range, T _A		-40	85	°C
Junction-to-Ambient Thermal Resistance @ 500 lfm, 8 _{JA} (Note 3)			34	°C/W
Wave Solder, Pb–Free, T _{SOL}			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. All voltage values are with respect to the GND terminals.

3. JEDEC standard multilayer board – 2S2P (2 signal, 2 power).

Table 5. RECOMMENDED OPERATING CONDITIONS Over operating free-air temperature range (unless otherwise noted)

Parameter	Description	Min	Nom	Max	Unit
V _{CC}	Main power supply	1.70	1.80	1.90	V
T _A	Operating free–air temperature	-40		+85	°C
C _{AC}	External AC Coupling Capacitor	75	100	265	nF

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 6. POWER SUPPLY CHARACTERISTICS

	Parameter	Test Conditions		Typ (Note 4)	Max	Unit
Icc	Active	Link in U0 with Super Speed Plus data transmission		140		mA
	U2/U3	Link in U2 or U3 power saving state		2.5		mA
	No USB Connection	No connection state, termination disabled		500		μΑ

^{4.} TYP values use $V_{CC} = 1.8 \text{ V}$, TA = 25°C .

Table 7. LVCMOS CONTROL PIN CHARACTERISTICS 4-State LVCMOS Inputs (CTRL_A0, CTRL_A1, CTRL_B0, CTRL_B1)

	Parameter	Test Conditions	Min	Тур	Max	Unit
V_{IL}	DC Input Setting "L"	Input pin connected to GND		GND		V
V _{IR}	DC Input Setting "R"	A specified resistor must be applied between pin and GND		0.33*V _{CC}		V
V _{IF}	DC Input Setting "F"	Input pin is left floating		0.66*V _{CC}		V
V _{IH}	DC Input Setting "H"	Input pin connected to V _{CC}		V _{CC}		V
R _{PU}	Internal pull-up resistance			100		ΚΩ
R _{PD}	Internal pull-down resistance			200		ΚΩ
I _{IH}	High-level input current	V _{IN} = 1.9 V			+20	μΑ
I _{IL}	Low-level input current	V _{IN} = GND, V _{CC} = 1.9 V	-20			μΑ
R _{ext}	External Resistor for input setting "R"			68		ΚΩ

^{5.} Floating refers to a pin left in an open state, with no external connections

Table 8. RECEIVER AC/DC CHARACTERISTICS Over operating free-air temperature range (unless otherwise noted)

	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{RX-DIFF-pp}	Input differential voltage swing	AC-coupled, peak-to-peak	100		1200	mV_{PP}
V _{RX-CM}	Common–mode voltage bias in the receiver (DC)			V _{CC}		V
Z _{RX-DIFF}	Differential input impedance (DC)	Present after an USB device is detected on TX+/TX-	80	100	120	Ω
Z _{RX-CM}	Common-mode input impedance (DC)	Present after an USB device is detected on TX+/TX-	20	25	30	Ω
Z _{RX-HIGH-IMP}	Common-mode input impedance with termination disabled (DC)	Present when no USB device is detected on TX+	25	190		kΩ
V _{TH-LFPS-pp}	Low Frequency Periodic Signaling (LF-PS) Detect Threshold	Output voltage is considered squelched below this threshold voltage	100	200	300	mV _{PP}

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 9. TRANSMITTER AC/DC CHARACTERISTICS Over operating free-air temperature range (unless otherwise noted)

	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{sw_100M}	-1 dB compression point Output swing at 100 MHz			1200		mV_{PPd}
V _{sw_5G}	-1 dB compression point Output swing at 5 GHz			900		mV_{PPd}
C _{TX}	TX input capacitance to GND	At 2.5 GHz		1.25		pF
Z _{TX-DIFF}	Differential output impedance (DC)	Present after an USB device is detected on TX+/TX-	80	100	120	Ω
Z _{TX-CM}	Common-mode output imped- ance (DC)	Present after an USB device is detected on TX+/TX-	20		30	Ω
I _{TX-SC}	TX short circuit current	TX+ or TX- shorted to GND		60		mA
V _{TX-CM}	Common–mode voltage bias in the transmitter (DC)			Vcc – 0.675	Vcc	V
V _{TX} -CM-ACpp	AC common-mode peak-to-peak volt- age swing in active mode	Within U0 and within LFPS			100	mV _{PP}
V _{TX-IDLE-DIFF-ACpp}	Differential voltage swing during electrical idle	Tested with a high-pass filter	0		10	mV _{PP}
V _{TX-RXDET}	Voltage change to allow receiver detect	Positive voltage to sense receiver termination			600	mV
t _R , t _F	Output rise, fall time	20% – 80% of differential voltage measured 1 inch from the output pin		40		ps
t _{RF-MM}	Output rise, Fall time mismatch	20% – 80% of differential voltage measured 1 inch from the output pin			5	ps
^t diff–LH ^{, t} diff–HL	Differential propagation delay	Propagation delay between 50% level at input and output		150		ps
tidleEntry, tidleExit	Idle entry and exit times			10	_	ns

Table 10. TIMING AND JITTER CHARACTERISTICS

	Parameter	Test Conditions	Min	Тур	Max	Unit
TIMING						
t _{READY}	Time from power applied until RX termination is enabled	Apply 0 V to V _{CC} , connect USB termination to TX+, apply 1.8 V to V _{CC} , and measure when Z _{RX-DIFF} is enabled		110		ms
JITTER FOR 5 G	bps					
T _{JTX-EYE}	Total jitter (Notes 6, 7)	CTRL Pins are float		0.5		UI (Note 8)
D _{JTX}	Deterministic jitter (Note 7)]		0.25		UI
R _{JTX}	Random jitter (Note 7)			0.1		UI
JITTER FOR 10	Gbps					
T _{JTX-EYE}	Total jitter (Notes 6, 7)	CTRL Pins are float		0.5		UI (Note 8)
D _{JTX}	Deterministic jitter (Note 7)			0.25		UI
R_{JTX}	Random jitter (Note 7)]		0.1		UI

^{6.} Includes RJ at 10⁻¹².

Measured at the ends of reference channel with a K28.5 pattern, VID = 1000 mVpp.
 5 Gbps, UI = 200 ps for 10 Gbps, UI = 100 ps

PARAMETER MEASUREMENT DIAGRAMS

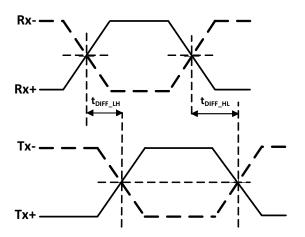


Figure 4. Propagation Delay

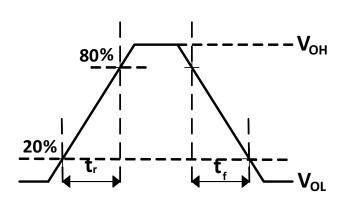
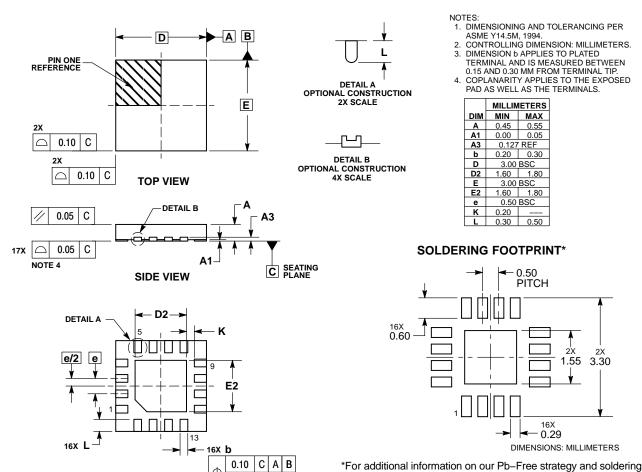



Figure 5. Output Rise and Fall Times

PACKAGE DIMENSIONS

UQFN16 3x3, 0.5P CASE 523AF ISSUE B

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold O

0.05 C

BOTTOM VIEW

NOTE 3

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Phone: 81–3–5817–1050