TinyLogic UHS Universal Configurable Two-Input Logic Gates

Description

The NC7SZ57 and NC7SZ58 are universal configurable two-input logic gates. Each device is capable of being configured for 1 of 5 unique two-input logic functions. Any possible two-input combinatorial logic function can be implemented, as shown in the *Function Selection Table*. Device functionality is selected by how the device is wired at the board level. *Figures 4 through 13* illustrate how to connect the NC7SZ57 and NC7SZ58, respectively, for the desired logic function. All inputs have been implemented with hysteresis.

The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65 V to 5.5 V V_{CC} operating range. The input and output are high impedance when V_{CC} is 0 V. Inputs tolerate voltages up to 5.5 V independent of V_{CC} operating range.

Features

- Ultra High-Speed
- Capable of Implementing any Two-Input Logic Functions
- Typical Usage Replaces Two (2) TinyLogic Gate Devices
- Reduces Part Counts in Inventory
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Power Down High Impednce Input / Output
- Over-Voltage Tolerant Inputs Facilitate 5 V to 3 V Translation
- Proprietary Noise / EMI Reduction Circuitry Implemented
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

SIP6 1.45x1.0 CASE 127EB

UDFN6 1.0X1.0, 0.35P CASE 517DP

SC-88 (SC-70 6 Lead) 1.25x2 CASE 419AD-01

XX, XXX

= Specific Device Code

KK XY = 2-Digit Lot Run Traceability Code= 2-Digit Date Code Format

Z ----

= Assembly Plant Code
= Year Coding Scheme

I--T

= Plant Code Identifier= Die Run Code

= Die Run = Eight-W

= Eight-Week Datacoding Scheme

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 9 of this data sheet.

Pin Configurations

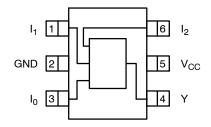


Figure 1. SC70 (Top View)

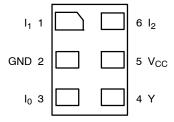
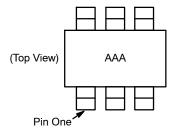



Figure 3. MicroPak™ (Top Through View)

NOTES:

- AAA represents product code top mark (see <u>Ordering Information</u>).
 Orientation of top mark determines pin one location.
 Reading the top mark left to right, pin one is the lower left pin.

Figure 2. Pin 1 Orientation

PIN DEFINITIONS

Pin # SC70	Pin # MicroPak	Name	Description
1	1	I ₁	Data Input
2	2	GND	Ground
3	3	I ₀	Data Input
4	4	Υ	Output
5	5	V _{CC}	Supply Voltage
6	6	l ₂	Data Input

FUNCTION TABLE

I	Inputs NC7SZ57 NC7SZ58		NC7SZ58	
l ₂	I ₁	I ₀	$Y = \overline{(I_0)} \cdot \overline{(I_2)} + (I_1) \cdot (I_2)$	$Y = (I_0) \cdot \overline{(I_2)} + \overline{(I_1)} \cdot (I_2)$
L	┙	L	H	L
L	┙	Η	L	Н
L	Ι	L	H	L
L	Н	Н	L	Н
Н	┙	L	L	Н
Н	┙	Η	L	Н
Н	Н	L	Н	L
Н	Н	Н	Н	L

H = HIGH Logic Level L = LOW Logic Level

FUNCTION SELECTION TABLE

2-Input Logic Function	Device Selection	Connection Configuration
2-Input AND	NC7SZ57	Figure 4
2-Input AND with Inverted Input	NC7SZ58	Figure 10, Figure 11
2-Input AND with Both Inputs Inverted	NC7SZ57	Figure 7
2-Input NAND	NC7SZ58	Figure 9
2-Input NAND with Inverted Input	NC7SZ57	Figure 5, Figure 6
2-Input NAND with Both Inputs Inverted	NC7SZ58	Figure 12
2-Input OR	NC7SZ58	Figure 12
2-Input OR with Inverted Input	NC7SZ57	Figure 5, Figure 6
2-Input OR with Both Inputs Inverted	NC7SZ58	Figure 9
2-Input NOR	NC7SZ57	Figure 7
2-Input NOR with Inverted Input	NC7SZ58	Figure 9, Figure 10
2-Input NOR with Both Inputs Inverted	NC7SZ57	Figure 4
2-Input XOR	NC7SZ58	Figure 13
2-Input XNOR	NC7SZ57	Figure 8

NC7SZ57 Logic Configurations

Figure 4 through Figure 8 show the logical functions that can be implemented using the NC7SZ57. The diagrams show the DeMorgan's equivalent logic duals for a given

two-input function. The logical implementation is next to the board-level physical implementation of how the pins of the function should be connected.

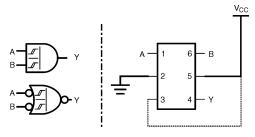


Figure 4. 2-Input AND Gate

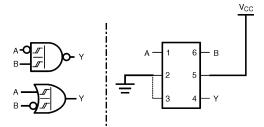


Figure 5. 2-Input NAND with Inverted A Input

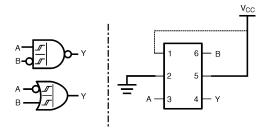


Figure 6. 2-Input NAND with Inverted B Input

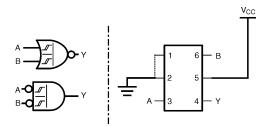


Figure 7. 2-Input NOR Gate

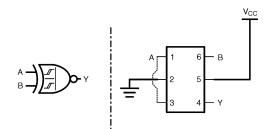


Figure 8. 2-Input XNOR Gate

NC7SZ58 Logic Configurations

Figure 9 through Figure 13 show the logical functions that can be implemented using the NC7SZ58. The diagrams show the DeMorgan's equivalent logic duals for a given

two-input function. The logical implementation is next to the board-level physical implementation of how the pins of the function should be connected.

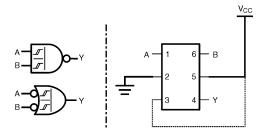


Figure 9. 2-Input NAND Gate

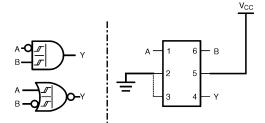


Figure 10. 2-Input AND with Inverted A Input

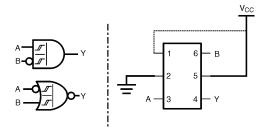


Figure 11. 2-Input AND with Inverted B Input

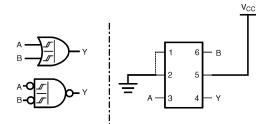


Figure 12. 2-Input OR Gate

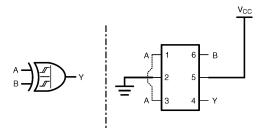


Figure 13. 2-Input XOR Gate

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min	Max	Unit
V _{CC}	Supply Voltage		-0.5	6.5	V
V _{IN}	DC Input Voltage		-0.5	6.5	V
V _{OUT}	DC Output Voltage		-0.5	6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < 0.5 V	-	-50	mA
l _{ok}	DC Output Diode Current	V _{OUT} < -0.5 V	-	-50	mA
l _{out}	DC Output Source / Sink Current	DC Output Source / Sink Current			mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current		-	±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Maximum Junction Temperature unde	er Bias	-	+150	°C
T_L	Lead Temperature, Soldering, 10 Sec	onds	-	+260	°C
P_{D}	Power Dissipation at +85°C	SC70-6	-	190	mW
		MicroPak-6	-	327	
		MicroPak2™-6	-	327	
ESD	Human Body Model, JEDEC: JESD22	-	4000	V	
	Charge Device Model, JEDEC: JESD	22-C101	-	2000	

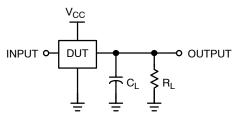
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply Voltage Operating		1.65	5.5	V
	Supply Voltage Data Retention		1.5	5.5	
V _{IN}	Input Voltage		0	5.5	V
V _{OUT}	Output Voltage		0	V _{CC}	V
T _A	Operating Temperature		-40	+85	°C
$\theta_{\sf JA}$	Thermal Resistance	SC70-6	-	659	°C/W
		MicroPak-6	-	382	
		MicroPak2-6	-	382	°C/W

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

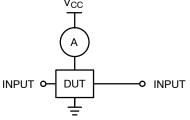
DC ELECTICAL CHARACTERISTICS


					Т Т	A = +25°	С	$T_A = -40$	to +85°C	
Symbol	Parameter	V _{CC} (V)	Cor	nditions	Min	Тур	Max	Min	Max	Unit
V _P	Positive Threshold	1.65			_	0.99	1.40	-	1.40	V
	Voltage	2.30	1		-	1.39	1.80	-	1.80	
		3.00			-	1.77	2.20	-	2.20	1
		4.50			-	2.49	3.10	-	3.10	1
		5.50			-	2.95	3.60	-	3.60	1
V _N	Negative Threshold	1.65			0.20	0.50	-	0.20	-	V
	Voltage	2.30			0.40	0.75	-	0.40	-	1
		3.00			0.60	0.99	-	0.60	-	1
		4.50			1.00	1.43	=	1.00	-	1
		5.50			1.20	1.70	=	1.20	-	1
V _H	Hysteresis Voltage	1.65			0.15	0.48	0.90	0.15	0.90	V
		2.30			0.25	0.64	1.10	0.25	1.10	Ī
		3.00			0.40	0.78	1.20	0.40	1.20	1
		4.50			0.60	1.06	1.50	0.60	1.50	1
		5.50			0.70	1.25	1.70	0.70	1.70	1
V _{OH} HIGH L Voltage	HIGH Level Output	1.65	V _{IN} = V _{IH} o	or V _{IL}	1.55	1.65	=	1.55	-	٧
	Voltage	2.30	$I_{OH} = -100$	0 μΑ	2.20	2.30	=	2.20	-	1
		3.00			2.90	3.00	-	2.90	_	1
		4.50			4.40	4.50	-	4.40	-	1
		1.65	$V_{IN} = V_{IH}$	I _{OH} = -4 mA	1.29	1.52	=	1.29	-	1
		2.30	or V _{IL}	I _{OH} = -8 mA	1.90	2.15	=	1.90	-	1
		3.00		I _{OH} = -16 mA	2.40	2.80	-	2.40	-	
		3.00		I _{OH} = -24 mA	2.30	2.68	-	2.30	-	
		4.50		I _{OH} = -32 mA	3.80	4.20	-	3.80	-	
V_{OL}	LOW Level Output	1.65	$V_{IN} = V_{IH} c$	or V _{IL}	-	-	0.10	-	0.10	٧
	Voltage	2.30	l _{OL} = 100 μ	ιA	-	-	0.10	-	0.10	1
		3.00			-	-	0.10	-	0.10	1
		4.50			-	-	0.10	-	0.10	1
		1.65	$V_{IN} = V_{IH}$	I _{OL} = 4 mA	-	0.08	0.24	-	0.24	
		2.30	or V _{IL}	I _{OL} = 8 mA	_	0.10	0.30	-	0.30	
		3.00		I _{OL} = 16 mA	-	0.15	0.40	-	0.40	
		3.00	1	I _{OL} = 24 mA	-	0.22	0.55	-	0.55	
		4.50		I _{OL} = 32 mA	-	0.22	0.55	-	0.55	
I _{IN}	Input Leakage Current	1.65 to 5.50	V _{IN} = 5.5 \	/, GND	-	-	±0.1	-	±1.0	μΑ
I _{OFF}	Power Off Leakage Current	0	V _{IN} or V _{OL}	_{JT} = 5.5 V	-	-	1	_	10	μΑ
I _{CC}	Quiescent Supply Current	1.65 to 5.5	V _{IN} = 5.5 \	/, GND	-	-	1	-	10	μΑ

AC ELECTRICAL CHARACTERISTICS

					Γ _A = +25°C	;	T _A = -40	to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
	Propagation Delay I _n to Y	1.8 ±0.15	C _L = 15 pF,	-	8.0	14.0	-	14.5	ns
	(Figure 14, 16)	2.5 ±0.2	$R_L = 1 M\Omega$	-	4.9	8.0	-	8.5	
		3.3 ±0.3	1	-	3.7	5.3	-	5.7	
		5.0 ±0.5		_	2.8	4.3	-	4.6	
		3.3 ±0.3	C _L = 50 pF,	_	4.2	6.0	-	6.5	ns
		5.0 ±0.5	$R_L = 500 \Omega$	_	3.4	4.9	-	5.3	
C _{IN}	Input Capacitance	0		_	2	-	-	-	pF
C _{PD}	Power Dissipation Capacitance	3.3	(Note 4)	-	14	-	-	_	pF
	(Figure 15)	5.0		-	17	-	-	_	

^{4.} C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 12) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static).


AC Loading and Waveforms

NOTE:

- 5. C_L includes load and stray capacitance.
- 6. Input PRR = 1.0 MHz, $t_W = 500$ ns.

Figure 14. AC Test Circuit

NOTE:

- 7. Input = AC Waveforms.
- 8. PRR = Variable; Duty Cycle = 50%.

Figure 15. I_{CCD} Test Circuit

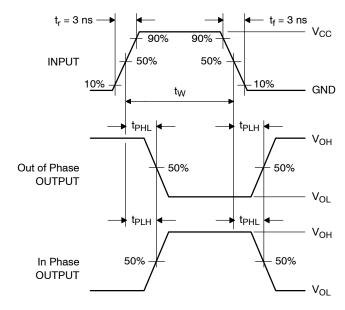
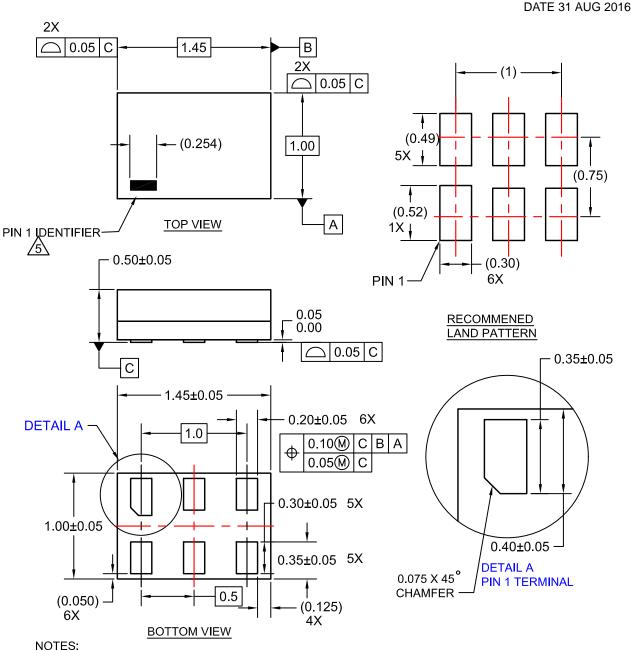


Figure 16. AC Waveforms


ORDERING INFORMATION

Device	Top Mark	Package	Shipping [†]
NC7SZ57P6X	Z57	6-Lead SC70, EIAJ SC-88a, 1.25 mm Wide	3000 / Tape & Reel
NC7SZ57L6X	KK 6-Lead Micropak, 1.0 mm Wide		5000 / Tape & Reel
NC7SZ57FHX	Z57FHX KK 6-Lead, MicroPak2, 1x1 mm Body, .:		5000 / Tape & Reel
NC7SZ58P6X	Z58	6-Lead SC70, EIAJ SC-88a, 1.25 mm Wide	3000 / Tape & Reel
NC7SZ58L6X	C7SZ58L6X LL 6-Lead Micropak, 1.0 mm Wide		5000 / Tape & Reel
NC7SZ58FHX	LL	6-Lead, MicroPak2 , 1x1 mm Body, .35 mm Pitch	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MicroPak and MicroPak2 are trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

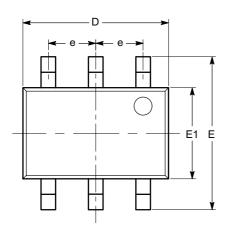
- 1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-2009
- /4\PIN ONE IDENTIFIER IS 2X LENGTH OF ANY
 - OTHER LINE IN THE MARK CODE LAYOUT.

DOCUMENT NUMBER:	98AON13590G	Electronic versions are uncontrolled e	•
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repoversions are uncontrolled except when	,
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	SIP6 1.45X1.0	PA	AGE 1 OF 2

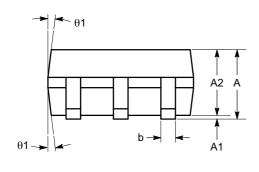
N	Semiconductor®	ON

DOCUMENT NUMBER: 98AON13590G

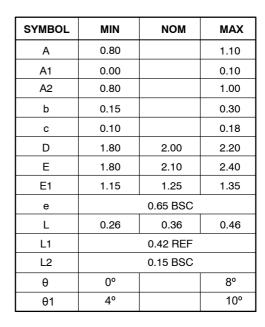
PAGE 2 OF 2

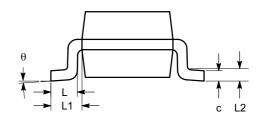

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION FROM FAIRCHILD MAC06A TO ON SEMICONDUCTOR. REQ. BY B. MARQUIS.	31 AUG 2016

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.


Case Outline Number:

SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD-01 ISSUE A


DATE 07 JUL 2010



TOP VIEW

SIDE VIEW

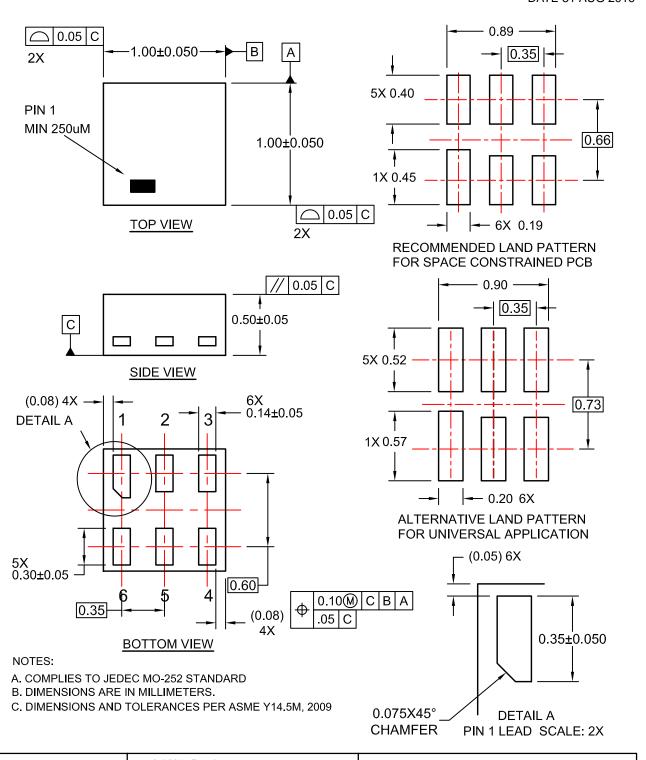
END VIEW

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-203.

DOCUMENT NUMBER:	98AON34266E	Electronic versions are uncontroll	'		
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except			
REFERENCE:		"CONTROLLED COPY" in red.			
DESCRIPTION:	SC-88 (SC-70 6 LEAD), 1.25X2		PAGE 1 OF 2		

DOCUMENT NUMBER: 98AON34266E


PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION FROM POD #SC706-023-02 TO ON SEMICONDUCTOR. REQ. BY B. BERGMAN.	19 DEC 2008
Α	ADDED SC-88 TO DESCRIPTION AND TITLE. REQ. BY D. TRUHITTE.	07 JUL 2010

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

UDFN6 1.0X1.0, 0.35P CASE 517DP ISSUE O

DATE 31 AUG 2016

DESCRIPTION:	UDFN6 1.0X1.0, 0.35P		PAGE 1 OF 2	
NEW STANDARD:		"CONTROLLED COPY" in red.		
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	' '	
DOCUMENT NUMBER:	98AON13593G	Electronic versions are uncontrolle	'	

DOCUME	ΞNΤ	NUM	BER:
98AON13	3593	G	

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION FROM FAIRCHILD MGF06A TO ON SEMICONDUCTOR. REQ. BY B. MARQUIS.	31 AUG 2016

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application to use of any product or circuit, and specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death. associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative