TinyLogic UHS Dual 2-Input NAND Gate with Schmitt Trigger Inputs

Description

The NC7WZ132 is a dual 2-Input NAND Gate from ON Semiconductor's Ultra High Speed Series of TinyLogic. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operating range. The inputs and output are high impedance when V_{CC} is 0 V . Inputs tolerate voltages up to 7 V independent of V_{CC} operating voltage. Schmitt trigger inputs achieve typically 1 V hysteresis between the positive-going and negative-going input threshold voltage at $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.

Features

- Space Saving US8 Surface Mount Package
- MicroPak ${ }^{\text {TM }}$ Leadless Package
- Ultra High Speed: $\mathrm{t}_{\mathrm{PD}} 3.1 \mathrm{~ns}$ Typ. into 50 pF at $5 \mathrm{~V}_{\mathrm{CC}}$
- High Output Drive: $\pm 24 \mathrm{~mA}$ at $3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Matches the Performance of LCX when Operated at $3.3 \mathrm{VV}_{\mathrm{CC}}$
- Power Down High Impedance Inputs / Output
- Overvoltage Tolerant Inputs Facilitate 5 V to 3 V Translation
- Proprietary Noise / EMI Reduction Circuitry Implemented
- Schmitt Trigger Inputs are Tolerant of Slow Changing Input Signals
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

$$
\text { ON Semiconductor }{ }^{\circledR}
$$

www.onsemi.com

T5, WZD2	$=$ Specific Device Code
KK	$=2-$ Digit Lot Run Traceability Code
XY	$=2-$ Digit Date Code Format
Z	$=$ Assembly Plant Code

Figure 1. Logic Symbol

Connection Diagram

Figure 2. Connection Diagram (Top View)

AAA represents Product Code Top Mark - see ordering code
NOTE: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Figure 3. Pin One Orientation Diagram
PIN DESCRIPTION

Pin Names	Description
A_{n}, B_{n}	Inputs
Y_{n}	Output

Figure 4. Pad Assignments for MicroPak (Top Thru View)

FUNCTION TABLE $(\mathrm{Y}=\overline{\mathrm{AB}})$

Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

$$
\mathrm{H}=\mathrm{HIGH} \text { Logic Level }
$$

L = LOW Logic Level

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Supply Voltage	-0.5	6.5	V
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage	-0.5	6.5	V
$\mathrm{~V}_{\text {OUT }}$	DC Output Voltage	-0.5	6.5	V
I_{IK}	DC Input Diode Current	$\mathrm{V}_{\text {IN }}<-0.5 \mathrm{~V}$	-	-50
I_{OK}	DC Output Diode Current	$\mathrm{V}_{\text {OUT }}<-0.5 \mathrm{~V}$	-	-50
$\mathrm{I}_{\text {OUT }}$	DC Output Current	-	mA	
$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$	DC $\mathrm{V}_{\text {CC }} /$ GND Current	-	mA	
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65	± 100	mA
$\mathrm{~T}_{\mathrm{J}}$	Junction Temperature under Bias	-	+150	${ }^{\circ} \mathrm{C}$
T_{L}	Junction Lead Temperature (Soldering, 10 Seconds)	-	150	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation @ $+85^{\circ} \mathrm{C}$	-	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Supply Voltage Operating	1.65	5.5	V
	Supply Voltage Data Retention	1.5	5.5	
$\mathrm{~V}_{\text {IN }}$	Input Voltage	0	5.5	V
$\mathrm{~V}_{\mathrm{OUT}}$	Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance	-	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. Unused inputs must be held HIGH or LOW. They may not float.

DC ELECTICAL CHARACTERISTICS

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
					Min	Typ	Max	Min	Max	
V_{P}	Positive Threshold Voltage	1.65			-	0.99	1.4	-	1.4	V
		2.3			-	1.39	1.8	-	1.8	
		3.0			-	1.77	2.2	-	2.2	
		4.5			-	2.49	3.1	-	3.1	
		5.5			-	2.96	3.6	-	3.6	
V_{N}	Negative Threshold Voltage	1.65			0.2	0.53	-	0.2	-	V
		2.3			0.4	0.78	-	0.4	-	
		3.0			0.6	1.02	-	0.6	-	
		4.5			1.0	1.48	-	1.0	-	
		5.5			1.2	1.76	-	1.2	-	
V_{H}	Hysteresis Voltage	1.65			0.15	0.46	0.9	0.15	0.9	V
		2.3			0.25	0.61	1.1	0.25	1.1	
		3.0			0.4	0.75	1.2	0.4	1.2	
		4.5			0.6	1.01	1.5	0.6	1.5	
		5.5			0.7	1.20	1.7	0.7	1.7	
V_{OH}	HIGH Level Output Voltage	1.65	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	1.55	1.65	-	1.55	-	V
		2.3			2.2	2.3	-	2.2	-	
		3.0			2.9	3.0	-	2.9	-	
		4.5			4.4	4.5	-	4.4	-	
		1.65		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	1.29	1.52	-	1.29	-	
		2.3		$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	1.9	2.15	-	1.9	-	
		3.0		$\mathrm{IOH}^{\text {a }}=-16 \mathrm{~mA}$	2.4	2.80	-	2.4	-	
		3.0		$\mathrm{IOH}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.3	2.68	-	2.3	-	
		4.5		$\mathrm{IOH}^{\text {a }}=-32 \mathrm{~mA}$	3.8	4.20	-	3.8	-	
V OL	LOW Level Output Voltage	1.65	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$	$\mathrm{IOL}=100 \mu \mathrm{~A}$	-	0.0	0.10	-	0.10	V
		2.3			-	0.0	0.10	-	0.10	
		3.0			-	0.0	0.10	-	0.10	
		4.5			-	0.0	0.10	-	0.10	
		1.65		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	-	0.08	0.24	-	0.24	
		2.3		$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	0.10	0.3	-	0.3	
		3.0		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	-	0.15	0.4	-	0.4	
		3.0		$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	-	0.22	0.55	-	0.55	
		4.5		$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$	-	0.22	0.55	-	0.55	
In	Input Leakage Current	1.65 to 5.5	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{GND}$		-	-	± 0.1	-	± 1	$\mu \mathrm{A}$
Ioff	Power Off Leakage Current	0.0	$\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		-	-	1	-	10	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	1.65 to 5.5	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{GND}$		-	-	1	-	10	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay (Figure 5, 7)	1.8 ± 0.15	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	-	7,1	13.0	-	13.5	ns
		2.5 ± 0.2		-	4.5	7.5	-	8.0	
		3.3 ± 0.3		-	3.4	5.0	-	5.5	
		5.0 ± 0.5		-	2.6	3.8	-	4.2	
		3.3 ± 0.3	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	4.0	5.8	-	6.3	ns
		5.0 ± 0.5		-	3.1	4.5	-	4.9	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	0		-	2.5	-	-	-	pF
$\mathrm{C}_{P D}$	Power Dissipation Capacitance (Figure 6)	3.3	(Note 2)	-	15	-	-	-	pF
		5.0		-	18	-	-	-	

2. $\mathrm{C}_{\text {PD }}$ is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (ICCD) at no output loading and operating at 50% duty cycle. (see Figure 6) $\mathrm{C}_{P D}$ is related to $\mathrm{I}_{\mathrm{CCD}}$ dynamic operating current by the expression: $I_{C C D}=\left(\mathrm{C}_{\mathrm{PD}}\right)\left(\mathrm{V}_{\mathrm{CC}}\right)\left(\mathrm{f}_{\mathrm{IN}}\right)+\left(\mathrm{I}_{\mathrm{CC}}\right.$ static).

AC Loading and Waveforms

C_{L} includes load and stray capacitance Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

Figure 5. AC Test Circuit

Input = AC Waveform; $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=1.8 \mathrm{~ns}$;
PRR $=10 \mathrm{MHz}$; Duty Cycle $=50 \%$.
Figure 6. ICCD Test Circuit

Figure 7. AC Waveforms

ORDERING INFORMATION

Order Number	Top Mark	Package	Shipping ${ }^{\dagger}$
NC7WZ132K8X	WZD2	8-Lead US8, JEDEC MO-187, Variation CA 3.1 mm Wide	3000 / Tape \& Reel
NC7WZ132L8X	T5	8-Lead MicroPak, 1.6 mm Wide	5000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
3. All packages are lead free per JEDEC: J-STD-020B standard.

RECOMMENDED
LAND PATTERN

NOTES:
A. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
(0.15)

DOCUMENT NUMBER:	98AON13591G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
STATUS:	ON SEMICONDUCTOR STANDARD		

[^0] to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

RECOMMENDED LAND PATTERN

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-187
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994.

SIDE VIEW

DOCUMENT NUMBER:	98AON13778G	Electronic versions are uncontrolled except when accessed diectly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
STATUS:	ON SEMICONDUCTOR STANDARD		

[^1]
Abstract

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

[^0]: ON Semiconductor and (UN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice

[^1]: ON Semiconductor and (UiN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

