Product Preview mWSaver[®] Integrated Power Switcher with 800 V SJ MOSFET for Offline SMPS

NCP1118x integrates a current-mode PWM controller employing mWSaver technology with a highly robust 800 V MOSFET providing enhanced performance of flyback converters.

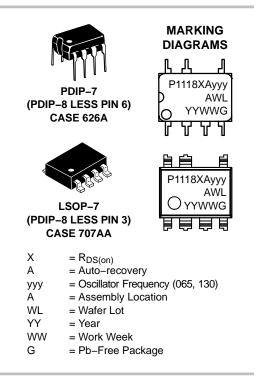
The mWSaver technology reduces switching frequency at light–load condition and avoid acoustic–noise problems and even enables the power supply to meet international power conservation requirements, such as Energy Star[®]. The standby power consumption can be under 25 mW for most power supply designs. Additionally, the NCP1118x integrates an internal high–voltage startup circuitry, frequency–hopping function and slope compensation.

Protections feature a feedback pin open-loop protection, line under-voltage protection (brownout protection) and overvoltage protection using an input-voltage sensing pin (VIN) operated with auto-recovery operation.

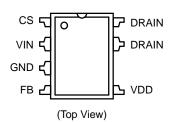
Features

- Integrated 800 V Super Junction MOSFET
- Build-in Start-up, Soft-Start, and Slope Compensation
- mWSaver Technology Provides Industry's Best-in-Class Standby Power
- Proprietary Asynchronous Frequency Hopping Technique to Reduce EMI
- Fixed PWM Frequency: 65/100/130 kHz
- Programmable Constant Power Limit for Entire Input–Voltage Range
- Brown–In/Out Protection with Hysteresis and Line Over–Voltage Protection to Detect Input Voltage through VIN Pin
- VDD Under-Voltage Lockout (UVLO)
- Current–Sense Short Protection (CSSP) and Abnormal Over–Current Protection (AOCP)
- Internal Thermal Shutdown (TSD) with Hysteresis
- Auto-Restart for All Protections include Feedback Open-Loop Protection (OLP), VDD Over-Voltage Protection (OVP)

Typical Applications


- Isolated Auxiliary Power Supplies
- White Good Applications

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.


ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information on page 11 of this data sheet.

Table 1. PIN FUNCTION DESCRIPTION

PIN # DIP 7, LSOP-7	Name	Description
1	CS	Current sense. The sensed voltage is used for peak-current-mode control and cycle-by-cycle current limiting.
2	VIN	Line–voltage detection. The line–voltage detection is used for brownout protection with hysteresis. Constant output power limit over universal AC input range is also achieved using this VIN pin. It is suggested to add a low–pass filter to filter out line ripple on the bulk capacitor. Pulling VIN HIGH also triggers auto–restart protection.
3	GND	Ground
4	FB	The signal from the external compensation circuit is fed into this pin. The PWM duty cycle is deter- mined in response to the signal on this pin and the currentsense signal on the SENSE pin.
5	VDD	Power supply. The internal protection circuit disables PWM output as long as V_{DD} exceeds the OVP trigger point.
6, 7	DRAIN	This pin is connected to internal high voltage startup circuit and the drain pin of an integrated MOSFET. Typically, this pin is directly connected to one of terminals of the transformer. At initial startup or restart mode, operating voltage is powered through this pin.

Table 2. PRODUCTS INFORMATION & INDICATIVE MAXIMUM OUTPUT POWER

				Output Power Table (W)			
		Switching		Adapter	Open	Frame	
Part Number	PKG	Frequency	Max. $R_{DS(on)}(\Omega)$	85 ~ 265 V _{AC}	85 ~ 265 V _{AC}	230 V _{AC}	
NCP11184A065PG			2.25	18	25	37	
NCP11185A065PG		65 kHz	1.3	22	30	45	
NCP11186A065PG	PDIP7	00 KHZ	0.85	26	35	52	
NCP11187A065PG			0.65	30	40	60	
NCP11184A100PG		100 kHz	2.25	18	25	37	
NCP11187A100PG			0.65	30	40	60	
NCP11184A130PG		120 141-	2.25	18	25	37	
NCP11185A130PG		130 kHz	1.3	22	30	45	
NCP11184A065LPG			2.25	18	25	37	
NCP11185A065LPG		65 kHz	1.3	22	30	45	
NCP11187A065LPG	LSOP-7		0.65	30	40	60	
NCP11184A100LPG		100 kHz	2.25	18	25	37	

Table 3. QUICK SELECTION TABLE

Device	Max. R _{DS(ON)} [Ω]	Frequency [kHz]	Package
		65	PDIP-7, LSOP-7
NCP11184	2.25	100	PDIP-7, LSOP-7
		130	PDIP-7
NCP11185	1.3	65	PDIP-7, LSOP-7
NCF 11105	1.0	130	PDIP-7
NCP11186	0.85	65	PDIP-7
NCP11187	0.65	65	PDIP-7, LSOP-7
	0.05	100	PDIP-7

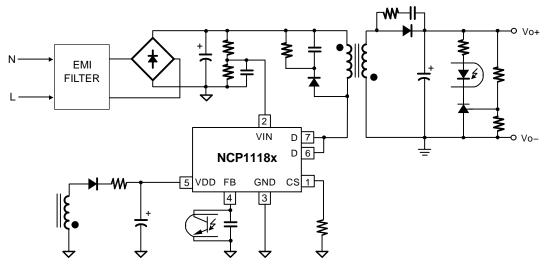


Figure 1. Typical Application, VIN Connects to Rectified Input Voltage

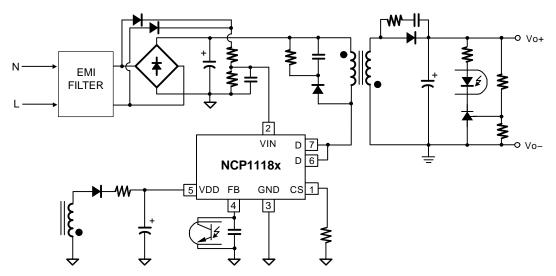


Figure 2. Typical Application, VIN Connects to AC–Side of Input Voltage

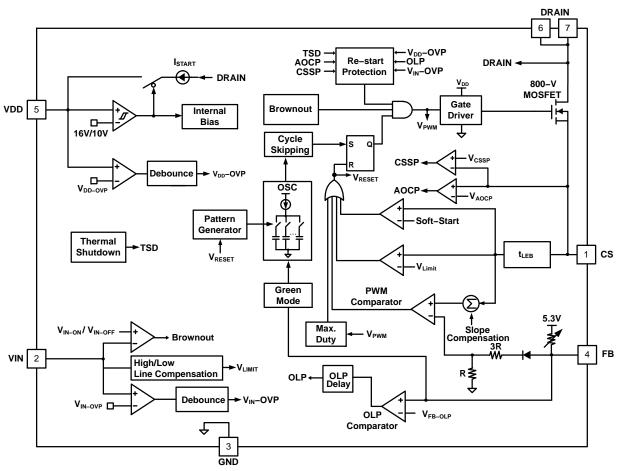


Figure 3. Simplified Internal Block Diagram

Rating	Symbol	Value	Unit
Junction-to-Ambience Thermal Impedance (Note 1) PDIP-7, LSOP-7, with 0.36 square inch, 2 oz. copper landing area PDIP-7, LSOP-7, with 1 square inch, 2 oz. copper landing area	$R_{ heta JA}$	TBD	°C/W
Junction-to-Lead Thermal Impedance (Note 2) PDIP-7, LSOP-7	$R_{ extsf{ heta}JL}$	TBD	°C/W

1. JEDEC recommended environment as noted in JESD51-2

2. Measured from pin #7 (DRAIN) since it is the surface that copper area for heat sink is connected.

Table 5. RECOMMENDED OPERATING RANGE

Rating	Symbol	Min	Max	Unit
Junction Temperature	TJ	-40	+125	°C
Maximum Working Drain Current (T _J = 100°C) NCP11184 NCP11185 NCP11186 NCP11187	ID		1.7 2.5 3.1 3.6	A

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 6. MAXIMUM RATINGS TABLE (Note 3)

Rating	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-0.3 to 30	V
FB-pin Input Voltage	V _{FB}	-0.3 to 5.5	V
CS-pin Input Voltage	V _{CS}	-0.3 to 5.5	V
VIN-pin Input Voltage	V _{VIN}	-0.5 to 5.5	V
DRAIN-pin Input Voltage	V _{DRAIN}	-0.3 to 800	V
Maximum Pulsed Drain Current (Notes 4, 5) NCP11184 NCP11185 NCP11186 NCP11187	IDM	6.0 10.8 15.9 21.3	A
Single Pulsed Avalanche Energy (Note 6) NCP11184 NCP11185 NCP11186 NCP11187	E _{AS}	21.6 48 114 204	mJ
Power Dissipation (PDIP-7, LSOP-7)	P _D	1.25	W
Operating Junction Temperature (Note 7)	TJ	-40 to +150	°C
Storage Temperature	T _{STG}	-40 to +150	°C
Lead Temperature, Wave Soldering or IT, 10 seconds	TL	260	°C
ESD Capability HBM, JESD22–A114 All Pins Except DRAIN Pin DRAIN Pin		5.5 (TBD) 2.0 (TBD)	kV
ESD Capability CDM, JESD22–C101		2.0 (TBD)	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.All voltage values, except differential voltages, are given with respect to the ground terminal.

Repetitive rating pulse width is limited by maximum junction temperature.
The real value of IDM will be updated with characterization result.

6. Test conditions: L = 51 mH.

7. Although this parameter guarantees IC operation, it does not guarantee all electrical characteristics.

Table 7. ELECTRICAL CHARACTERISTICS (T_J = -40° C to $+125^{\circ}$ C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
DRAIN AND MOSFET SECTION						
Power Switch and Start-up Breakdown Voltage	V_{GS} = 0 V, I _D = 1 mA, T _J = 25°C	BV _{DSS}	800			V
Power Switch and Start-up Off-State Leakage Current	CS and GND are shorted, $V_{DD} \ge V_{DD-OVP}$, $V_{DRAIN} = 800 V$ $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	I _{DSS}			TBD TBD	μΑ
Drain–Source On–State Resistance	$ \begin{array}{l} V_{DD} = 15 \ V, \ T_J = 25^\circ C \\ NCP11184, \ I_D = 0.3 \ A \\ NCP11185, \ I_D = 0.4 \ A \\ NCP11186, \ I_D = 0.5 \ A \\ NCP11187, \ I_D = 0.6 \ A \end{array} $	R _{DS(on)}		1.87 1.05 0.71 0.53	2.25 1.3 0.85 0.65	Ω
Rise Time (Note 8)	V_{DS} = 400 V, V_{DD} = 15 V, 10 → 90% NCP11184 NCP11185 NCP11186 NCP11187	tr		TBD TBD TBD TBD TBD		ns
Fall Time (Note 8)	$\begin{array}{l} V_{DS} = 400 \; V, \; V_{DD} = 15 \; V, \; 90 \rightarrow 10\% \\ & \text{NCP11184} \\ & \text{NCP11185} \\ & \text{NCP11186} \\ & \text{NCP11187} \end{array}$	t _f		TBD TBD TBD TBD TBD		ns
VDD SECTION						
Start Threshold Voltage		V _{DD-ON}		16		V
Protection Mode		V _{DD-OFF}		9.6		V
Normal Mode		V _{UVLO}		7.8		V
Operating Supply Current	V _{DD} = 15 V, V _{FB} = 3 V 65 kHz Version 100 kHz Version 130 kHz Version	I _{DD-OP}			TBD TBD TBD	mA
Operating Supply Current without switching	V _{DD} = 15 V, V _{FB} = 0 V	I _{DD-OP2}			TBD	μΑ
Threshold Voltage on V _{DD} for HV JFET Turn–On after Protection Mode		V _{DD-OLP}		7.4		V
Internal Sink Current after Protection Mode	V _{DD-OLP} + 0.1 V	I _{DD-OLP}		90		μΑ
Threshold Voltage to release from Latch Protection	Latch version	V _{DD-LH}		6.9		V
Additional Sink Current after Latch– Mode Protection	Latch version, V_{DD} = 7 V	I _{DD-LH}		30		μΑ
V _{DD} Over–Voltage Protection		V _{DD-OLP}		26		V
V _{DD} Over–Voltage Protection Debounce Counting Number	65–kHz version 100/130–kHz version	N _{VDDOVP}		6 12		pulse
V _{DD} Level for I _{START1} to I _{START2} Transition		V _{DD-INHIB}		2.1		V
Startup Current Flowing out of V _{DD} Pin	$V_{DRAIN} = > 40 V, V_{DD} = 0 V$	I _{START1}		0.5		mA
Startup Current Flowing out of V_{DD} Pin	$V_{DRAIN} = > 40 V,$ $V_{DD} = V_{DD-ON} - 0.5 V$	I _{START2}		4.5		mA
Threshold Voltage to Force Z _{FB} Reset	V _{FB} < V _{FB-ZDC} , V _{DD} falling	V _{DD-ZFB}		10		V

8. Tested on a Flyback power converter. Result of just one golden sample.
9. Guaranteed by design.

Table 7. ELECTRICAL CHARACTERISTICS (T_J = -40° C to $+125^{\circ}$ C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OSCILLATOR SECTION						
Switching Frequency	V _{FB} = 4.5 V (V _{FB-OLP}) 65-kHz Version 100-kHz Version 130-kHz Version	fosc		65 100 130		kHz
Frequency Modulation Range	V _{FB} = 4.5 V (V _{FB-OLP}) 65–kHz Version 100–kHz Version 130–kHz Version	f _M		±5.2 ±8.0 ±10.4		kHz
Hopping Period		t _{HOP}		12.5		ms
Green–Mode Entry Frequency	V _{FB} = 3 V (V _{FB-OLP}) 65–kHz Version 100–kHz Version 130–kHz Version	fosc-N		58.5 90 117		kHz
Green–Mode Ending Frequency	V _{FB} = 2.4 V (V _{FB-OLP}) 65–kHz Version 100–kHz Version 130–kHz Version	fosc-g		25.6 28 29		kHz
Entering–Burst Frequency	$V_{FB} = V_{FB-ZDC}$	f _{OSC-ZDC}		23		kHz
Frequency Variation vs. V _{DD} Devia- tion	$V_{DD} = 11 V \text{ to } 22 V$	f _{DV}			5	%
Frequency Variation vs. Temperature Deviation (Note 9)	$T_A = T_J = -40$ to $125^{\circ}C$	fdt			5	%
VIN SECTION						
PWM Turn-On (Brown-in) Threshold Voltage		V _{IN-ON}		0.9		V
PWM Turn–Off (Brownout) Threshold Voltage	Default Option	V _{IN-OFF}		0.70 0.80		V
Brown-out Timer	V _{FB} = V _{FB-OPEN} 65–kHz Version 100–kHz Version	t _{D-VINOFF}		62.5 81.25		ms
Threshold Voltage of V _{IN} Over–Voltage Protection	Default Option A	V _{IN-OVP}		3.85 4.15		V
Hysteresis for Recovery Level of V _{INOVP} Comparator	Default Option A	V _{IN-OVPHYS}		0.2 0.5		V
Debounce Time of V _{IN} Over–Voltage Protection	65–kHz version 100/130–kHz version	t _{VINOVP}		6 12		pulse
CURRENT SENSE SECTION						
Threshold Voltage for Current Limit	$V_{IN} = 1 V$ $V_{IN} = 3 V$	V _{LIMIT}		0.83 0.70		V
Current Limit Delay Time		t _{CLD}		100		ns
Leading-Edge Blanking Time	Soft Start (100/130-kHz version) Steady State	t _{LEB}		150 300		ns
Threshold of Abnormal Over–Current Protection	Enable after t _{SS}	V _{AOCP}		1.25		V
Debounce time for pulse of AOCP to be Counted		t _{ON-AOCP}		110		ns
Delay Time of Abnormal Over–Cur- rent Protection	Counting GATE Pulses	N _{AOCP}		3		Pulses
Treshold Voltage for CSSP	V _{IN} = 1 V V _{IN} = 3 V	V _{CSSP}		90 180		mV

Tested on a Flyback power converter. Result of just one golden sample.
Guaranteed by design.

Table 7. ELECTRICAL CHARACTERISTICS (T_J = -40° C to $+125^{\circ}$ C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
CURRENT SENSE SECTION	-				-	
Minimum On-time of PWM Signal to Trigger CSSP	65–kHz version 100–kHz version 130–kHz version	t _{on-cssp}		4.6 3.0 2.3		μs
Delay Time of CSSP when CSSP Condition is met	Counting GATE Pulses	N _{CSSP}		4		Pulses
Period During Soft–Start Time	V _{FB} = V _{FB-OPEN} 65/130–kHz Version 100–kHz Version	t _{SS}		5.5 7.15		ms
Maximum Duty Cycle		D _{MAX}		80		%
Slope Compensation (Note 9)	Normalized to CS Signal 65–kHz Version 100–kHz Version 130–kHz Version	S _E		30 46 60		mV/μs

FEEDBACK INPUT SECTION

Internal FB Voltage Attenuation		A _V	1/4.0	-
Input Impedance	$V_{FB} = 4 V$	Z _{FB}	15.25	kΩ
Input Impedance in Burst Mode	$V_{FB} < V_{FB-ZDC}, V_{DD} > V_{DD-ZFB}$	Z _{FB-ZDC}	75	kΩ
Time Duration of Switching from Z_{FBZDC} to Z_{FB}		t _{ZFB}	6.4	ms
The Maximum Clamp of FB Voltage	FB Pin Open	V _{FB-OPEN}	5.1	V
FB Open–Loop Protection Triggering Level		V _{FB-OLP}	4.5	V
Delay Time of FB Pin Open–loop Pro- tection	V _{FB} = V _{FB-OPEN} 65/130–kHz Version 100–kHz Version	t _{D-OLP}	62.5 81.25	ms
Green–Mode Entry FB Voltage		V _{FB–N}	3.0	V
Green–Mode Ending FB Voltage		V _{FB-G}	2.4	V
FB Threshold Voltage for Zero–Duty Recovery		V _{FB-ZDCR}	1.8	V
FB Threshold Voltage for Zero–Duty		V _{FB-ZDC}	1.6	V
ZDC Hysteresis	V _{FB-ZDCR} - V _{FB-ZDC}	V _{FB-ZDCHYS}	0.2	V

THERMAL SHUT DOWN SECTION

Protection Junction Temperature (Note 9)	T _{TSD}	128		°C
Hysteresis of Restarting Junction Temperature	T _{TSD-HYS}		50	°C

Tested on a Flyback power converter. Result of just one golden sample.
Guaranteed by design.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Functional Descriptions

Startup & Soft-Start

At startup, an internal high–voltage current source connecting the DRAIN pin supplies internal bias and charges the external capacitor connected to the V_{DD} pin. When V_{DD} is lower than $V_{DD-INHIB}$, the charging is a smaller I_{START1}. When V_{DD} exceeds $V_{DD-INHIB}$, charging current becomes a larger I_{START2}. The lower charging current is designed to reduce power dissipation when V_{DD} is shorted to GND.

When V_{DD} level reaches V_{DD-ON} , the internal startup current source deactivates. At this moment, only the V_{DD} capacitor supplies an operating current to NCP1118X before the auxiliary winding of the main transformer provides the operating current. Moreover, the IC includes a function of soft–start to minimize the inrush current at startup. The built–in soft–start circuit significantly reduces the startup current spike and output voltage overshoot.

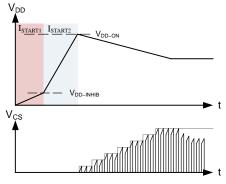
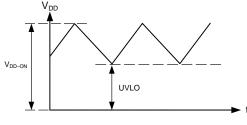



Figure 4. Startup and Soft Start

Under-Voltage Lockout (UVLO)

The turn-on and turn-off thresholds are fixed internally at 16 V and 7.8 V in normal mode as shown in Figure 5. During startup, the hold-up capacitor must be charged to 16 V through the internal high-voltage current source to enable the IC. The hold-up capacitor continues to supply V_{DD} before the energy can be delivered from auxiliary winding of the main transformer. V_{DD} must not drop below 7.8 V during startup. This large UVLO hysteresis window helps reducing size of the hold-up capacitor.

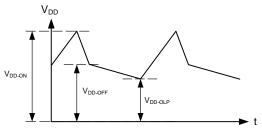

Normal Mode

Figure 5. V_{DD} Behavior at Normal Mode

Auto Restart Operation

NCP1118x offers auto restart operation for the protections like feedback open-loop protection (OLP), V_{DD}

over–voltage protection (V_{DD} OVP), and over–temperature protection (OTP). Once one of the protections is trigger, the IC stops operation immediately and V_{DD} starts to decrease. When V_{DD} decreased to V_{DD-OFF}, biaing current drawn from V_{DD} pin is reduced to I_{DD-OLP}, which stretches delay time for restart. When V_{DD} decreases to V_{DD-OLP}, the internal high–voltage startup circuit charges V_{DD} again to re–initiate operation.

Protection Mode

Figure 6. V_{DD} Behavior at Protection Mode

Operating Current

Operating current of NCP1118x is below 2 mA, and it is even lower in burst-mode operation. The low operating current enables better efficiency and reduces the requirement of V_{DD} hold-up capacitance.

Green–Mode Operation

The proprietary green–mode function provides reduced switching frequency in light–load and no–load conditions. V_{FB} , which is derived from the voltage feedback loop, is taken as a reference signal for green–mode operation. Once V_{FB} is decreased, switching frequency is also decreased to the minimum green–mode frequency V_{FB-ZDC} .

Current Sensing / PWM Current Limiting

Peak–current–mode control is utilized to regulate output voltage and provide pulse–by–pulse current limiting. The switching current is detected using the current–sensing resistor connecting at CS pin. The PWM duty cycle is determined by comparing this current sense signal V_{CS} with the feedback voltage V_{FB} . When V_{CS} reaches around $V_{COMP} = (V_{FB}-0.6)/4$, the PWM comparator generates a signal of the switch turns–off immediately.

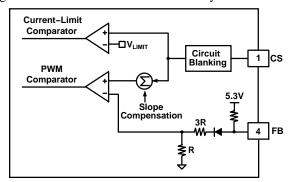


Figure 7. Current Limit & PWM Comparator

A current–limit comparator is used to set highest peak current through the power switch. For constant output power limit over universal input–voltage range, the peak–current threshold is adjusted by the voltage of V_{IN} pin. V_{IN} pin is connected to the rectified AC input line voltage through the resistive divider. The threshold voltage decreases as V_{IN} increases. Different V_{LIMIT} compensates the different maximum output power due to propagation delay.

Figure 8 shows V_{Limit} variation depending on V_{IN}.

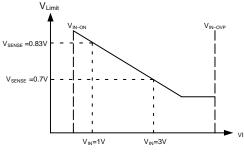
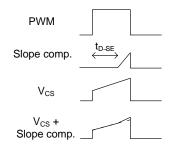


Figure 8. V_{IN} vs. V_{CS}


Leading-Edge Blanking (LEB)

Whenever the integrated MOSFET is turned on, a leading edge current occurs on the sense resistor. To avoid premature termination of the gate turn–on signal, a leading–edge blanking time is employed. During this blanking period, the current–limit comparator is disabled and the gate turn–on signal is maintained.

Slope Compensation

NCP1118x has built–in slope compensation to prevent sub–harmonic oscillator and improve stability. A sawtooth signal is generated when PWM pulse width exceeds t_{D-SE} . Initial voltage of the sawtooth waveform is 0.7 V. A weighted sum is then performs on current–sense signal and the sawtooth signal with weighting of 5/6 and 1/6 for each signal.

Slope of the sawtooth signal is 0.149 V/µs for 65–kHz version and 0.298 V/µs for 130–kHz version. The delay time t_{D-SE} is 6 µs for 65–kHz version and 3 µs for 130–kHz version, which is around 40% of duty cycle when operating at rated frequency.

Figure 9. Slope Compensation

V_{DD} Over–Voltage Protection

 V_{DD} over-voltage protection prevents damage due to abnormal conditions. Once the V_{DD} voltage is over the

over–voltage protection voltage (V_{DD-OVP}), and lasts for $t_{D-VDDOVP}$ the PWM will be disabled. When the V_{DD} voltage drops below the V_{DD-OLP} the internal startup circuit turns on, and V_{DD} is charged to V_{DD-ON} to restart IC.

Burst Mode and Feedback Impedance Switching

NCP1118X actively varies FB-pin impedance (Z_{FB}) in burst mode to reduce no-load power consumption. This technique can further reduce operating current of the controller when FB-pin voltage drops below V_{FB-ZDC}.

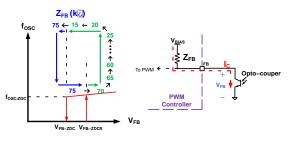
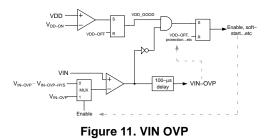


Figure 10. Z_{FB} Switching


Brownout Protection

Since the V_{IN} pin is connected through a resistive divider to the rectified AC input line voltage, it can also be used for brownout protection. If V_{IN} is less than 0.7 V, the PWM output is shut off. When V_{IN} reaches over 0.9 V, the PWM output is turned on again. The hysteresis window for ON/OFF is around 0.2 V. The brownout voltage setting is determined by the potential divider formed with R_{Upper} and R_{Lower}. Equations to calculate the resistors are shown below:

$$V_{\text{IN}} = \frac{R_{\text{Lower}}}{R_{\text{Lower}} + R_{\text{Upper}}} \times V_{\text{AC}} \cdot \sqrt{2} \qquad (\text{eq. 1})$$

Input-Voltage Over-Voltage Protection

VIN pin is also used to realize over-voltage protection for AC input. More, while VIN voltage has been higher than V_{IN-OVP} when V_{DD} reaches V_{DD-ON} by HV start-up, switching operation will not be initiated.

Abnormal Over–Current Protection (AOCP)

When conditions like shorted output, shorted secondary-side rectifier, and shorted transformer are met, an extremely high current can flow through power switch during leading-edge blanking time. Even though NCP1118x has over-load protection, it may not survive from such a severe current stress for the delay time of

over–load protection. AOCP is designed to protect NCP1118x from this kind of fault. If current–sensing signal exceeds AOCP threshold level for three consecutive switching periods, switching operation will be shut down to protect the power switch.

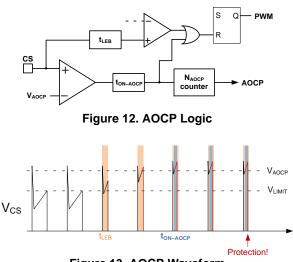


Figure 13. AOCP Waveform

Current–Sense Short Protection

When CS pin is shorted to GND pin due to soldering defect, current-sense signal is not properly obtained. It causes current-mode PWM being not able to operate as designed. In this situation, PWM on-time will be large while current-sense gets no signal. Drain current will be out of control.

To protect power switch from this condition, NCP1118x shuts down by current–sense short protection (CSSP) when current–sense signal is kept low while PWM on–time is large enough. Treshold voltage of judging CSSP condition varies with VIN–pin voltage.

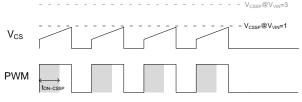


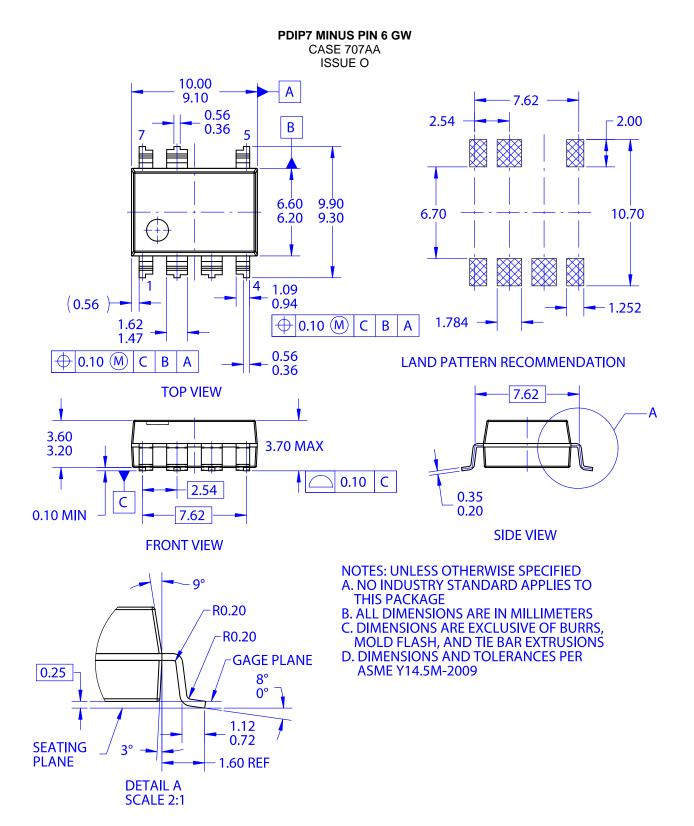
Figure 14. CSSP Waveform

Thermal Shutdown

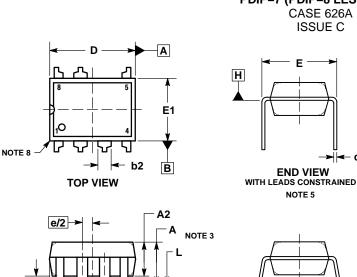
Thermal shutdown limits total power dissipation on chip. When the junction temperature exceeds T_{TSD} , the thermal sensor signals the shutdown logic and turns off most of the internal circuitry. The chip will resume operation if junction temperature drops below T_{TSD} - T_{TSD} - H_{YS} . Thermal shutdown is designed to protect the NCP1118X in the event of a fault condition. For continual operation, the controller should not exceed the absolute maximum junction temperature of $T_J = +125^{\circ}C$.

Over-Load Protection and Limited Power Control

The FB voltage is saturated HIGH when the power supply output voltage drops below its nominal value and shunt regulator (ex. KA431) does not draw current through the opto-coupler. This occurs when the output feedback loop is open or output is short circuited. If the FB voltage is higher than a built-in threshold V_{FB-OLP} for longer than t_{D-OLR} PWM output is turned off. As PWM output is turned off, V_{DD} begins decreasing since no more energy is delivered from the auxiliary winding.


As the protection is triggered, V_{DD} enters into auto-restart UVLO mode, which extends the time it take to restart operation. This prevents the power supply from overheating at the overload conditions.

Device	R _{DS(ON)} (Ω)	f _{OSC} (kHz)	Package	Shipping [†]
NCP11184A065PG	2.25	65	PDIP-7 (Pb-Free)	
NCP11185A065PG	1.3	65		
NCP11186A065PG	0.85	65		
NCP11187A065PG	0.65	65		
NCP11184A100PG	2.25	100		50 Units / Rail
NCP11187A100PG	0.65	100		
NCP11184A130PG	2.25	130		
NCP11185A130PG	1.3	130		
NCP11184A065LPG	2.25	65	LSOP-7 (Pb-Free)	
NCP11185A065LPG	1.3	65		
NCP11187A065LPG	0.65	65		50 Units / Rail
NCP11184A100LPG	2.25	100		


ORDERING INFORMATION

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

SEATING PLANE

 \oplus 0.010 \otimes C A \otimes B \otimes

С

8X b

PDIP-7 (PDIP-8 LESS PIN 6) CASE 626A **ISSUE C**

eB

END VIEW

NOTE 6

NOTES

м

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: INCHES. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-2 3.
- 4
- AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH. 5
- DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
- 6 LEADS UNCONSTRAINED. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE 7
- LEADS, WHERE THE LEADS EXIT THE BODY PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE 8. ORNERS

CORNERS).						
	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α		0.210		5.33		
A1	0.015		0.38			
A2	0.115	0.195	2.92	4.95		
q	0.014	0.022	0.35	0.56		
b2	0.060 TYP		1.52 TYP			
c	0.008	0.014	0.20	0.36		
D	0.355	0.400	9.02	10.16		
D1	0.005		0.13			
Е	0.300	0.325	7.62	8.26		
E1	0.240	0.280	6.10	7.11		
е	0.100 BSC		2.54 BSC			
eB		0.430		10.92		
-	0 115	0 150	2 92	3.81		

10°

10°

mWSaver is a registered trademark of Semiconductor Components Industries, LLC. Energy Star is a registered trademark of the U.S. Environmental Protection Agency

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

D1

е

SIDE VIEW

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative