Wide Input Voltage Synchronous Buck Converter

The NCP3102C is a high efficiency, 10 A DC-DC buck converter designed to operate from a 5 V to 13.2 V supply. The device is capable of producing an output voltage as low as 0.8 V. The NCP3102C can continuously output 10 A through MOSFET switches driven by an internally set 275 kHz oscillator. The 40-pin device provides an optimal level of integration to reduce size and cost of the power supply. The NCP3102C also incorporates an externally compensated error amplifier and transconductance а capacitor programmable soft-start function. Protection features include programmable short circuit protection and under voltage lockout (UVLO). The NCP3102C is available in a 40-pin QFN package.

Features

- Input Voltage Range from 4.5 V to 13.2 V
- 275 kHz internal oscillator
- Greater than 90% max efficiency
- Boost pin operates to 30 V
- Voltage mode PWM control
- 0.8 V + 1 % Internal reference voltage
- Adjustable output voltage
- Capacitor programmable soft-start
- 85% Max duty cycle
- Input under voltage lockout
- Resistor programmable current limit
- This is a Pb-Free device

Applications

- Servers / Networking
- DSP & FPGA power supply
- DC-DC regulator modules

Figure 2. Typical Application Diagram

ON Semiconductor

http://onsemi.com

PACKAGE AND MARKING INFORMATION

NCP3102 AWLYYWW

A = Assembly Location WL= Wafer Lot YY= Year WW = Work Week G= Pb-Free Device

(Top view)

ORDERING INFORMATIOIN See detailed ordering and shipping information in the package

		GIND BG Rset								
Figure 3. Detailed Block Diagram										
PIN FUNCTION DESCRIPTION										
Pin No.	Symbol	Description								
1-4, 36-40	PWRPHS	Power phase node (PWRPHS). Drain of the low side power MOSFET.								
5 -12	PWRGND	Power ground. High current return for the low-side power MOSFET.								
		Connect PGND with large copper areas to the input and output supply								
		returns, and negative terminals of the input and output capacitors.								
13	VCC	Supply rail for the internal circuitry. Operating supply range is 4.5 V to								
		13.2 V. Decouple with a 1 μ F capacitor to GND. Ensure that this								
		decoupling capacitor is placed near the IC.								
14,15,19, 20,23	AGND	IC ground reference. All control circuits are referenced to this pin.								
16	FB	The inverting input pin to the error amplifier. Use this pin in conjunction								
		with the COMP pin to compensate the voltage-control feedback loop.								
		Connect this pin to the output resistor divider (if used) or directly to Vout.								
17	COMP/DIS	Compensation or disable pin. The output of the error amplifier (EA) and								
		the non-inverting input of the PWM comparator. Use this pin in								
		conjunction with the FB pin to compensate the voltage-control feedback								
		loop. The compensation capacitor also acts as a soft start capacitor. Pull								
- 10		the pin below 400mV to disable controller.								
18	NC	Not Connected. These pins can be connected to AGND or not connected								
21	TGOUT	Output high side MOSFET driver.								
22	CPHS	The controller phase sensing for short circuit protection.								
24	BST	Supply rail for the floating top gate driver. To form a boost circuit, use an								
		external diode to bring the desired input voltage to this pin (cathode								
		connected to BST pin).								
		Connect a capacitor (C_{BST}) between this pin and the BPHS pin.								
25	BPHS	Drive signal to boost the input voltage for the high side driver. Should be								
		conned to the boost capacitor and the boost diode								
26-34	PWRVCC	Input supply pin for the high side MOSFET. Connect VCCPWR to the								
		VCC pin.								
35	BG	The current limit set pin. The current limit can be set be placing a 5 k Ω -								
		$30k\Omega$ resistor to AGND which sets a 5 A and 30 A current limit								
		accordingly								

Table 2: MAXIMUM RATINGS

Rating	Symbol	Min Max		Unit
Main Supply Voltage Input	V _{CC}	-0.3 15		V
Main Supply Voltage Input	PWRVCC	-0.3	30	V
Bootstrap Supply Voltage vs Ground	VBST	-0.3	35	V
Bootstrap Supply Voltage vs Ground (spikes < = 50 ns)	VBST spike	-5.0	40	V
Bootstrap Pin Voltage vs V _{PWRPHS}	VBST-PHS	-0.3	15	V
High Side Switch Max DC Current	I PHS	0	12	A
V _{PWRPHS} Pin Voltage	V _{PWRPHS}	-0.7	30	V
V _{PWRPHS} Pin Voltage (spikes < 50ns)	V _{PWRPHSSP}	-5	40	V
CPHASE Pin Voltage	V _{CPHS}	-0.7	30	V
CPHASE Pin Voltage (spikes < 50ns)	V _{CPHSTR}	-5	40	V
Current limit set and Bottom Gate	V _{BG}	-0.3	VCC < VSG < 15	V
Current limit set and Bottom Gate (spikes < 200ns)	V _{BGSP}	-2.0	VCC < VSGSP < 15	V
Top Gate vs Ground	V _{TG}	-0.3	30	V
Top Gate vs Phase	V _{TG}	-0.3	VCC < VTG < 15	V
Top Gate vs Phase (spikes < 200ns)	V _{TGSP}	-2.0	VCC < VTGSP < 15	V
FB Pin Voltage	VFB	-0.3	VCC < VFB < 5.5	V
COMP/DISABLE	VCOMP/DIS	-0.3	VCC < VCOMP/DIS < 5.5	V
Rating	Symbol	Symbol		Unit
Thermal Resistance, Junction-to-Ambient (Note2) (Note3)	R _{θJA}	35		°C /W
Thermal Resistance, Junction-to-Case	R _{θJC}	55		°C /W
Storage Temperature Range	T _{sta}	-55 to 150		°C
Junction Operating Temperature	TJ	-40 to 150		°C
Lead Temperature Soldering (10 sec): Reflow (SMD styles only) Pb-Free	RF		°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. The maximum package power dissipation limit must not be exceeded.

2. The value of θ JA is measured with the device mounted on 1 in² FR-4 board with 1 oz. copper, in a still air environment with T_A = 25°C. The value in any given application depends on the user's specific board design.

3. The value of θ JA is measured with the device mounted on minimum footprint, in a still air environment with T_A = 25°C. The value in any given application depends on the user's specific board design.

4. 60-180 seconds minimum above 237°C.

Characteristic	Conditions	Min	Тур	Max	Unit				
Input Voltage Range	V _{IN} -GND	4.5		13.2	V				
Boost Voltage Range	VBST – GND	4.5		26.5	V				
Supply Current									
Quiescent Supply Current	VFB = $0.85V$, No Switching, $V_{IN} = 13.2V$	3	-	5	mA				
Quiescent Supply Current	VFB = $0.85V$, No Switching, $V_{IN} = 5.0V$		3.2		mA				
V _{CC} Supply Current	VFB = $0.75V$, Switching, $V_{IN} = 13.2V$		26	32	mA				
V _{CC} Supply Current	VFB = 0.75V, Switching, $V_{IN} = 5V$		11.1	13.1	mA				
Boost Quiescent Current	VFB = $0.85V$, No Switching, $V_{IN} = 13.2V$	0.1	-	1.0	mA				
Shutdown Supply Current	$VFB = 0V$, No Switching, $V_{IN} = 13.2V$	-	4.0	-	mA				
Under Voltage Lockout									
VIN UVLO Threshold	VIN Rising Edge	3.5	-	4.1	V				
VIN UVLO Hysteresis	-	-	340	-	mV				
Switching Regulator									
VFB Feedback Voltage,	0°C < TJ < 70°C, 4.5 V < VCC < 13.2 V	0.792	0.800	0.808					
Control Loop in Regulation	$-40^{\circ}C < TJ < 125^{\circ}C, 4.5 < VCC < 13.2 V$	0.784	0.800	0.816	V				
Oscillator Fraguenay	0°C < TJ < 70°C, 4.5 V < VCC < 13.2 V	250	275	300	kHz				
Oscillator Frequency	$-40^{\circ}C < TJ < 125^{\circ}C, 4.5 < VCC < 13.2 V$	223	275	337					
Ramp-Amplitude Voltage		1	1.1	1.2	V				
Minimum Duty Cycle		-	8.8	-	%				
Maximum Duty Cycle		83	85	88	%				
TG Falling to BG Rising Delay	VCC = 12 V, TG < 2.0 V, BG > 2.0 V		46	55	ns				
BG Falling to TG Rising Delay	VCC = 12 V, BG < 2.0 V, TG > 2.0 V		41	49	ns				
PWM Compensation	1		1		1				
Transconductance		3.2	-	3.6	mmho				
Open Loop DC Gain	CO = 1 nF (Note 5)	55	70	-	DB				
Output Source Current	VFB < 0.8 V	88	139	193	πА				
Output Sink Current	VFB > 0.8 V	80	130	175	pti i				
Input Bias Current		-	0.160	1.0	μA				
Enable									
Enable Threshold (Falling)		0.37	0.4	.43	V				
Soft-Start			r						
Delay to Soft-Start		5	-	14	ms				
SS Source Current	$V_{FB} < 0.8 V$	6	10.5	15	μΑ				
Switch Over Threshold	$V_{FB} = 0.8 V$	-	100	-	% of Vref				
Over-Current Protection									
OCSET Current Source	Sourced from ISET pin, before SS	-	10	-	μΑ				
OC Threshold	$RBG = 5 k\Omega$		50		mV				
OC Switch–Over Threshold	(Note 5)	-	700	-	mV				
Fixed OC Threshold		-	96	-	mV				
PWM Output Stage									
High-Side Switch On-Resistance	$V_{\rm IN} = 12V I_{\rm D} = 1A$		8		mΩ				
Low-Side Switch On-Resistance	$V_{IN} = 12V I_D = 1A$		8		mΩ				

Table 3: ELECTRICAL CHARACTERISTICS (-40°C < T_J < 125°C; V_{IN} =12 V, BST – V_{SW} =12 V, BST = 12 V, V_{SW} = 24 V, for min/max values unless otherwise noted).

Note:

5. Guaranteed by design

PACKAGE DIMENSIONS

QFN40 6x6, 0.5P CASE 485AK-01

 MILLIMETERS

 MIN
 MAX

 A
 0.80
 1.00

 A1
 -- 0.05

 A3
 0.20 REF
 0.08

 D
 6.00 BSC
 0.24.5

 D3
 3.10
 3.30

 D4
 1.70
 1.90

 D5
 0.85
 1.05

 E
 1.80
 2.00

 E3
 1.43
 1.63

 E4
 2.15
 2.35

 e
 0.50 BSC
 8

 E4
 2.15
 2.35

 e
 0.50 BSC

 G2
 2.10
 2.30

 G3
 2.30
 2.50

 K
 0.20
 --

 L
 0.30
 0.50

