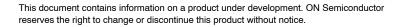
Product Preview Octal High-Side Driver

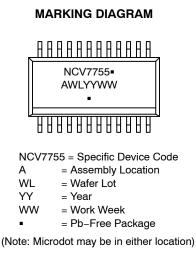

The NCV7755 is an automotive grade integrated driver with eight high-side switches. The device provides drive capability up to 700 mA per channel and is protected for overload and overtemperature conditions. All the channels have integrated output clamps for switching inductive loads, multiple start pulses for bulbs, and an internal pwm generator for LEDs. The output control and diagnostic reporting is via SPI. Additionally, Inx pins can be programmed to be logic controlled.

A dedicated limp-home mode pin (LHI) enables 2 high-side drivers for operational control via two logic input pins.

The NCV7755 is available in a SSOP-24 exposed pad package for optimal thermal performance.

Features

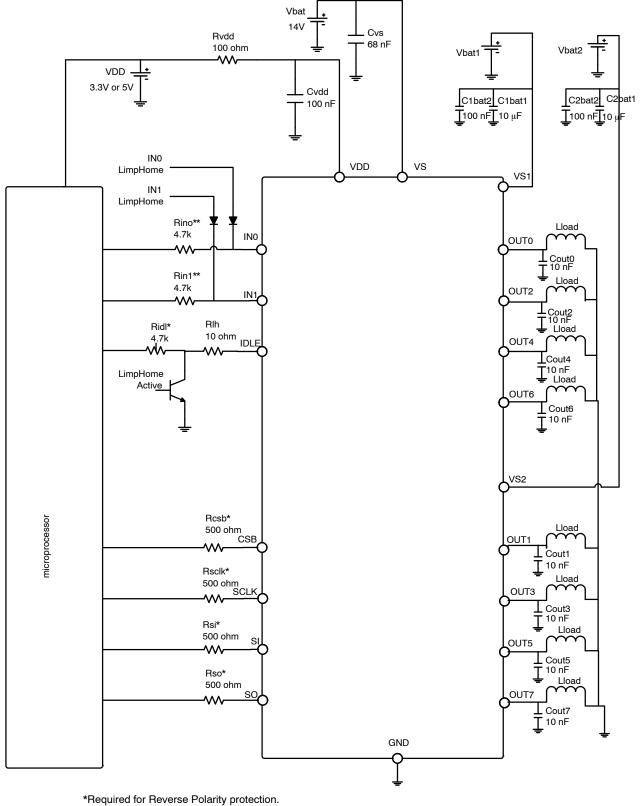
- 8 High–Side Channels
 - For Relays (Flyback Clamps)
 - Bulbs (Multiple Pulse in-rush Scheme)
 - LEDs (Internal PWM Generator)
- 220 mA Current Drive
 - RDSon 1.8 Ω (Typ), 2.2 Ω (Max)
 - Paralleling of Two Output Pair is Allowed
- SPI Control (16 Bit)
 - Frame Error Detection (16 Bits + 8*n Bits)
 - Daisy Chain Capable
- Two Input Pins with Mapping for PWM Operation
- Low Quiescent Current in Sleep Mode
- Limp Home Mode with Auto-retry
- Supports Cranking Voltage of 3 V Minimum on VS
- 3.3 V & 5 V Compatible Digital Input Supply Range
- Fault Reporting
 - Openload (OFF or ON)
 - Overload
 - Overtemperature
 - Power Supply Fail (VS Undervoltage)
 - Output Short to GND and Battery
- Reverse Polarity Protection
- Loss of Ground Protection
- Power-on Reset (VDD)
- SSOP-24 with an Exposed Pad
- NCV Prefix for Automotive
 - Site and Change Control
 - ◆ AEC-Q100 Qualified



ON Semiconductor®

www.onsemi.com

SSOP24 NB EP CASE 940AP



ORDERING INFORMATION

Device	Package	Shipping
NCV7755DQR2G	SSOP24–EP (Pb–Free)	2500 Units/Rail

Application

- Automotive Body Control Unit
- Automotive Engine Control Unit
- Relay Drive
- Bulb Drive
- LED Drive

**Required for Reverse Polarity and Loss of Ground protection.

Figure 1. Application Diagram

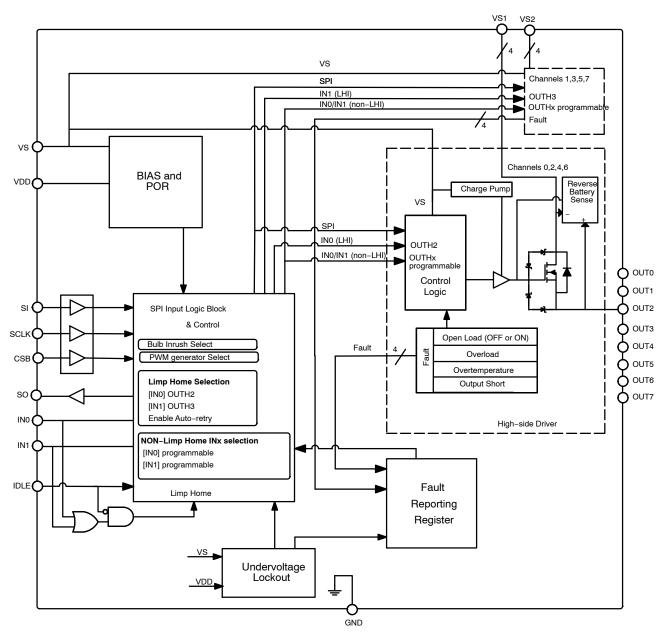


Figure 2. Block Diagram

PACKAGE PIN DESCRIPTION

SSOP-24 EPAD	Symbol	Description
1	CSB	SPI Chip Select "Bar" (120 k Ω pull–up resistor to VDD)
2	SCLK	SPI Clock (120 kΩ pull–down resistor)
3	SI	SPI Serial Data Input (120 k Ω pull-down resistor)
4	SO	SPI Serial Data Output. Tri-state when CSB is high
5	GND	Ground
6	OUT0	High-side driver output. Requires an external pull-down component for operation
7	NC	No connection. Internally not bonded
8	OUT2	High-side driver output. Requires an external pull-down component for operation
9	VS1	Power supply input for High-side drivers channels 0, 2, 4, and 6
10	OUT4	High-side driver output. Requires an external pull-down component for operation
11	OUT6	High-side driver output. Requires an external pull-down component for operation
12	NC	No connection. Internally not bonded
13	NC	No connection. Internally not bonded
14	OUT7	High-side driver output. Requires an external pull-down component for operation
15	OUT5	High-side driver output. Requires an external pull-down component for operation
16	VS2	Power supply input for High-side drivers channels 1, 3, 5, and 7
17	OUT3	High-side driver output. Requires an external pull-down component for operation
18	NC	No connection. Internally not bonded
19	OUT1	High-side driver output. Requires an external pull-down component for operation
20	VS	Power supply input for output power switches gate control
21	IDLE*	High activates low lq ldle mode (120 kΩ pull–down resistor) Low with IN0 = IN1 = low puts device in sleep mode Low with Inx = high puts device in limp home mode Low puts all SPI registers in reset
22	IN1*	Input pin 1. Controls channel 3 (default) in Limp Home Mode (with IDLE = low). (120 k Ω pull-down resistor)
23	IN0*	Input pin 0. Controls channel 2 (default) in Limp Home Mode (with IDLE = low). (120 k Ω pull-down resistor)
24	VDD	Digital power supply input for SPI and support interface to VS
EPAD	Exposed Pad	Connect to GND for best thermal performance or leave unconnected. Internally, the EPAD is isolated from the GND signal

*Ground if not used for best EMI performance. Alternatively keep open and internal pull-down will hold the input low through a 120 k Ω pull down resistor.

MAXIMUM RATINGS

Rating	Symbol	Min	Мах	Unit
Battery supply input voltage (VS) DC	VsMax	-0.3	28	v
Battery supply input voltage (VS1, VS2) DC input supply voltage with short circuit Positive Transient input supply voltage, Note 1	VsdcscMax VsacMax	0 -	28 42	V V
Logic Supply Input Voltage (VDD) DC	VddMax	-0.3	5.5	V
Output Voltage (OUTx)	VoutMax	-25	VSx+0.3	V
Output Current (OUTx) Specified is the maximum overload detection threshold.	loutMax	2.3	2.3	А
Digital I/O pin voltage (IDLE, IN0, IN1, CSB, SCLK, SI,) (SO)	VioMax ViosoMax	-0.3 -0.3	5.5 VDD+0.3V	V V
Digital I/O input current (IDLE, IN0, IN1, CSB, SCLK, SI, SO)	lioMax	-10.0	2.0	mA
Clamping Energy Maximum (single pulse) (Tj = 25°C, lout = 440 mA) (Tj = 150°C, lout = 400 mA) Repetitive (multiple pulse)	VclpDc25Max VclpDc150Max VclpAcMax	- - -	50 25 Note 2	mJ mJ mJ
Operating Junction Temperature Range	Tj	-40	150	°C
Storage Temperature Range	Tstr	-65	150	°C
AECQ100-02 ESD Capability, Human body model (100 pF, 1.5 kΩ) (VS, OUTx pins) Human body model (100 pF, 1.5 kΩ) (all other pins)	Vesd4k Vesd2k	-4000 -2000	4000 2000	V
AECQ10x-12 Short Circuit Reliability Characterization	AECQ10x	Grade A	_	

1. Ton = 400 ms; ton/toff = 10%, 100 pulse limit.

2. 2 M pulses (triangular), VS = 15 V, 63 Ω , 390 mH, T_A = 25°C.

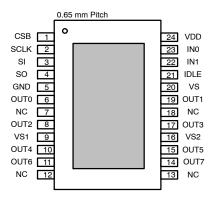


Figure 3. Pin-out

PACKAGE

Moisture Sensitivity Level	MSL	2		
Lead Temperature Soldering: SMD style only, Reflow (Note 3) Lead – Free Part 60 – 150 sec above 217°C, 40 sec max at peak	Treflow		265 peak	°C
Package Thermal Resistance SSOP-24 EPAD Junction-to-Ambient (Note 4) Junction-to-Ambient Junction-to-pin (exposed pad)	R _{θJA} R _{θJA} R _{θJP}		TBD TBD TBD	°C/W °C/W °C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 3. For additional information, see or download ON Semiconductor's Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

and Application Note AND8083/D.

4. Per Jedec JESD51-2, -5, -7 at natural convection on FR4 2s2p board (76.2 mm x 114.3 mm x 1.5 mm) with 2 inner copper layers (2 x 70 μm Cu, 2 x 35 µm Cu).

RECOMMENDED OPERATING CONDITIONS

		Val		
Rating	Symbol	Min	Max	Unit
Digital Supply Input Voltage (VDD)	VDDMax	3.00	5.5	V
Battery Supply Input Voltage (VS, VS1, VS2)	VSMax	7.0	18*	V
DC Output Current (OUTx)	louMax		330	mA
Junction Temperature	TJ	-40	150	°C

*Extended operation up to 28 V with parameter shift.

ELECTRICAL CHARACTERISTICS (-40°C v T_J v 150°C, 3.0 V < VDD < 5.5 V, 7 V < VS = VS1 = VS2 < 18 V,

IDLE = high unless otherwise specified)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
VS CURRENTS						
Operating Current (VS) Active Mode	Set to Active Mode via SPI HWCR.ACT (bit 7) = 1					
	IDLE = CSB = VDD SCLK=0V No Open Circuit Diag Current					
Channels Off	7 V < VS < 18 V, IN0 = IN1 = 0 VS < VDD-1 V, IN0 = IN1 = 0	VSactOFF1 VSactOFF2	-	-	7.7 5.0	mA mA
Channels On	7 V < VS < 18 V, IN0 = IN1 = VDD VS < VDD-1 V, IN0 = IN1 = VDD	VSactON1 VSactON2		_ 2.3	8.7 5.0	mA mA
Operating Current (VS) Idle Mode	IDLE = CSB = VDD IN0 = IN1 = SCLK = 0 V All Channels Off					
	7 V < VS < 18 V VS < VDD-1 V	VSidl1 VSidl2	-	-	2.2 0.3	mA mA
Operating Current (VS) Sleep Mode	CSB = VDD IDLE = IN0 = IN1 = 0 V					
	$T_J = 85^{\circ}C$ $T_J = 150^{\circ}C$	VSslp85 VSslp150		0.1 0.1	3 20	μA μA

ELECTRICAL CHARACTERISTICS (continued)(-40° C v T_J v 150°C, 3.0 V < VDD < 5.5 V, 7 V < VS = VS1 = VS2 < 18 V, IDLE = high unless otherwise specified)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
VDD CURRENTS						
Operating Current (VDD) Active Mode	Set to Active Mode via SPI HWCR.ACT (bit 7) = 1					
	IDLE = CSB = VDD SCLK = 0 V					
	No Open Circuit DIAG current					
Channels Off	7 V < VS < 18 V, IN0 = IN1 = 0	VDDactOFF1	-	-	0.3	mA
Channels On	VS < VDD-1 V, IN0 = IN1 = 0 7 V < VS <18 V, IN0 = IN1 = VDD	VDDactOFF2 VDDactON1	-	-	2.7 0.3	mA mA
	VS < VDD-1 V, IN0 = IN1 = VDD	VDDacctON2	-	-	0.3 3.5	mA
Operating Current (VDD) Idle Mode	IDLE = CSB = VDD, IN0 = IN1 = SCLK = 0 V					
	All Channels Off					
	7 V < VS < 18 V	VDDidl1	-	-	0.3	mA
	VS < VDD-1 V	VDDidl2	-	-	2.2	mA
Operating Current (VDD) Sleep Mode	CSB = VDD IDLE = IN0 = IN1 = 0 V					
	$T_{\rm J} = 85^{\circ}{\rm C}$	VDDslp85	-	0.1	2.5	μA
	T _J = 150°C	VDDslp150	-	-	10	μA
TOTAL CURRENTS						
Total Sleep Current	CSB=VDD					
(VS + VDD)	IDLE=IN0=IN1=0V Tj=85°C	Slp85	_	_	5	μA
	Tj=150°C	Slp150	-	-	30	μA
Total Idle Mode	IDLE=CSB=VDD					
Current Consumption (VS + VDD)	IN0=IN1=SCLK=0V All Channels Off	VSVDDidl	-	-	2.5	mA
Total Active Mode						
Current Consumption						
(VS + VDD)	Set to Active Mode via SPI HWCR.ACT (bit 7) = 1					
	IDLE = CSB = VDD, SCLK = 0 V					
Channels Off	All outputs off	VSVDDactOFF	_	-	8	mA
Channels On	All outputs on	VSVDDactON	-	-	9	mA
VS OPERATING RANGE						
VS Undervoltage Shutdown	VS falling	VSUVLO	1.5	2.7	3.0	V
ondervollage Shutdown	OUTx = ON RL = 50 Ω					
VS		VSUVLOhys	_	1	_	V
Undervoltage Shutdown Hysteresis						
VS	VS rising	VSmin	_	-	4.0	V
Minimum Operating Voltage	OUTx = ON RL = 50 Ω					
	TIL - 50 52					

VDD OPERATING RANGE

VDD					
Lower Operating Voltage	VDDLOP	3.0	-	4.5	V

ELECTRICAL CHARACTERISTICS (continued)($-40^{\circ}C \vee T_{J} \vee 150^{\circ}C$, $3.0 \vee VDD < 5.5 \vee 7 \vee VS = VS1 = VS2 < 18 \vee 100 \times 10$

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
VDD OPERATING RANGE						
VDD Undervoltage Shutdown	VDD falling SI = SCLK = CSB = 0 V SO from low to high impedance	VDDUVLO	1.0	2.7	3.0	V
THERMAL PERFORMANCE						<u> </u>
Thermal Shutdown	Note 11	TSD	150	175	200	°C
Thermal Hysteresis	Note 11	TSDhys	10	25	-	°C
OUTPUT DRIVER						4
Output Transistor RDSon	IOUT = 220 mA T _J = 25°C T _J = 150°C	Rdson25 Rdson150		1.0 1.8	_ 2.2	Ω
Reverse Polarity ON Resistance	Vsx = −16 V IOUT = 220 mA Tj = 25°C Tj = 150°C	Revpol25 Revpol150		1.0 1.8		Ω
Overload Detection Current 1 st threshold (OVL0) 2 nd threshold (OVL1)		ILovI0 ILovI1	1.30 0.70	1.80 1.05	2.30 1.30	A A
Overload Shutdown Delay Time	Active Mode including Bulb Inrush Mode Individual channel operation BIM.OUTn = HWCR.PAR = 0 _B	tOVLO	4	7	11	μs
Output Leakage	VS = VDD = 0 V VOUT = 0 V VDS = 28 V Tj = 85°C Tj = 150°C	Leak85 Leak150		0.01 0.1	0.5 5.0	μΑ μΑ
Output Current During Loss of Ground	RL = 50 Ω VS = VS1 = VS2	LOG	-2.0	-	-	mA
Dropout Voltage	RL = 50 Ω VS = VS1 = VS2	Drop	-	_	1	V
Output Drain/Source Clamp	IL = 20 mA VS = VS1 = VS2 = 36 V	clampDS	42	46	54	V
Output Source/GND Clamp	IL = 20 mA VS = VS1 = VS2 = 7 V	clampSG	-25	-	-16	V
MODE DELAY TIMES						
Sleep to Idle Delay	IDLE pin going high (50%) To TER+INST resister = 8680 _H	Slp2idl	-	200	400	μs
Sleep to Limp Home Delay	Inx going high To VDS = 10%VS	Slp2lh	-	300	600	μs
Idle to Sleep Delay	IDLE pin going low (50%) To Standard Diagnostics clearing = 0000 _H	ldl2slp	-	100	200	μs
Idle to Active Delay	Inx going high to MODE = 10_B From CSB going high To MODE = 10_B	ldl2actINx Idl2actCSB		100 100	200 200	μs μs

ELECTRICAL CHARACTERISTICS (continued) (-40° C v T _J v 150°C, 3.0 V < VDD < 5.5 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < VS = VS1 = VS2 < 18 V, 7 V < 18 V,	,
IDLE = high unless otherwise specified)	

MODE DELAY TIMES Inx going low To Standard Diagnostics clearing = 0000µ Lh2sip - 200 400 µs Limp Home to Sleep Delay IDLE going high To MODE = 10g Lh2sip - 50 100 µs Active to Idle Delay Inx going to to MODE = 11g Act2ldINX - 50 100 µs Active to Idle Delay To TGE 1.11g Act2ldINX - 50 100 µs Active to Limp Home Delay IDLE going tow To TER 1.118T - 50 100 µs Active to Sleep Delay IDLE going flow To Standard Diagnostics clearing = 0000₁ Relad = 10K to GND Act2lh - 50 100 µs Active to Sleep Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω 1 4 8 µs Active Mode Inx to 10% VOUT toNactiNx10 1 4 8 µs Limp Home Mode Inx to 10% VOUT toNactiNx10 1 6 12 µs Limp Home Mode Inx to 10% VOUT toNactiNx10 1 6 12 µs	Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Limp Home to Sleep Delay To Standard Diagnostics clearing = 0000µ Lin2alp 200 400 μs Limp Home to Active Delay IDCE going High To MODE = 06 Lin2act 50 100 μs Active to Idle Delay Imx going low to MODE = 11 _B To MODE = 10 _B Act2idICSB 100 200 μs Active to Linp Home Delay IDE going low To Standard Diagnostics clearing = 0000µ Act2idICSB 50 100 μs Active to Sleep Delay IDE going low To Standard Diagnostics clearing = 0000µ Act2sip 50 100 μs Active to Sleep Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω 50 100 μs Active to Sleep Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω 50 100 μs Active to Sleep Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω	MODE DELAY TIMES	-	•				
Limp Home to Sleep Delay To Standard Diagnostics clearing = 0000µ Lin2alp 200 400 μs Limp Home to Active Delay IDCE going High To MODE = 06 Lin2act 50 100 μs Active to Idle Delay Imx going low to MODE = 11 _B To MODE = 10 _B Act2idICSB 100 200 μs Active to Linp Home Delay IDE going low To Standard Diagnostics clearing = 0000µ Act2idICSB 50 100 μs Active to Sleep Delay IDE going low To Standard Diagnostics clearing = 0000µ Act2sip 50 100 μs Active to Sleep Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω 50 100 μs Active to Sleep Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω 50 100 μs Active to Sleep Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω		Inx going low	1	i	1	i	
claim claim <t< td=""><td>Limp Home to Sleep Delay</td><td></td><td>Lh2slp</td><td>-</td><td>200</td><td>400</td><td>μS</td></t<>	Limp Home to Sleep Delay		Lh2slp	-	200	400	μS
Limp Home to Active Delay To MODE=10g Inv poing by To MODE = 11g To MODE = 11g Linz active Active Inv point MODE = 11g To MODE = 11g Act2idIINx - 50 100 200 µs Active to Limp Home Delay From CSB going high To MODE = 11g Act2idICSB - 100 200 µs Active to Limp Home Delay To TER + INST registers Act2idICSB - 50 100 µs Active to Limp Home Delay To TER + INST registers Act2in - 50 100 µs Active to Sleep Delay To Standard Diagnostics clearing = 0000µ Redained Diagnostics Act2sip - 50 100 µs Active Mode Inx to 10% VOUT tONactINx10 1 4 8 µs Limp Home Mode Inx to 10% VOUT to Nih10 1 4 8 µs Turn Orl Taelay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω - - - - Active Mode Inx to 0% VOUT to Nih10 1 4 8 µs Turn Orl Taelay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>		_					
In MOLE-10g Active MODE = 11g Active Ide Ide Delay Ins. going flow to MODE = 11g Active Ide Ide Delay Ins. Going Flow To MODE = 11g Active Ide Ide Delay Ins. Going Flow To TER HINST In	Linn Llama ta Astiva Dalavi	IDLE going high	LhOast		50	100	
Active to Idle Delay From CSB going high To MODE = 11g Act2/dICSB - 100 200 μs Active to Limp Home Delay TO TER + INST registre- getsres Act2/dICSB - 50 100 μs Active to Limp Home Delay TO ER + INST registre- getsres Act2/h - 50 100 μs Active to Sleep Delay IDLE going low To Standard Diagnostics clearing = 0000 _H Rioad = 10K to GND Act2slp - 50 100 μs Active to Sleep Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω Act2slp - 50 100 μs Active Mode Inx to 10% VOUT tONactINx10 1 4 8 μs Limp Home Mode Inx to 10% VOUT tONHol0 1 4 8 μs Limp Home Mode Inx to 10% VOUT tOFFactINx00 1 6 12 μs Limp Home Mode Inx to 90% VOUT tOFFactINx00 1 6 12 μs Limp Home Mode Inx to 90% VOUT tOFFactINx00 1 6 12	Limp Home to Active Delay	To MODE=10 _B	Ln2act	-	50	100	μs
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Inx going low to MODE = 11_B	Act2idIINx		100	200	μs
IDLE going low To TER + INST register- 8683 ₄ (IN0 = VDD, IN1 = VDD)or 8683 ₄ (IN0 = CND, IN1 = CND) Act2lh - 50 100 µs Active to Sleep Delay IDLE going low To Standard Diagnostics clearing = 0000 ₄ Riode = 10K to GND Act2slp - 50 100 µs Active to Sleep Delay IDLE going low To Standard Diagnostics clearing = 0000 ₄ Riode = 10K to GND Act2slp - 50 100 µs Active Mode Inx to 10% VOUT toNactINx10 1 4 8 µs Limp Home Mode Inx to 10% VOUT toNactCSB10 1 4 8 µs Limp Home Mode Inx to 10% VOUT toNh10 1 4 8 µs Limp Home Mode Inx to 90% VOUT toFFactINs00 1 6 12 µs Limp Home Mode Inx to 90% VOUT toFFactINs00 1 6 12 µs Limp Home Mode Inx to 90% VOUT toFFactINs00 1 6 12 µs	Active to Idle Delay			-			
Active to Limp Home Delay To TER + INST register- 8683, (IN0 = VDD, IN1 = VDD)or 8681, (IN0 = CMD, IN1 = CMD)or 8681, (IN0 = CMD, IN1 = C		5	Act2idICSB		100	200	μs
Active to Limp Home Delay register- 8883 ₁ (IN0 = VDD, IN1 = VDD) 8883 ₁ (IN0 = VDD, IN1 = GND) Act2lh 50 100 μs Active to Sleep Delay IDLE going low To Standard Diagnostics clearing = 0000 ₁ Rilad = 10K to GND Act2sip 50 100 μs OUTPUT TIMING SPECIFICATION Turn On Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω Act2sip 50 100 μs Active Mode Inx to 10% VOUT CSB rising edge to 10% VOUT IONFactINx10 1 4 8 μs Limp Home Mode Inx to 10% VOUT toNFactINx10 1 6 12 μs Active Mode Inx to 10% VOUT toNFactINx10 1 6 12 μs Limp Home Mode Inx to 90% VOUT toNFactCSB90 1 6 12 μs Limp Home Mode Inx to 90% VOUT toNFactCSB90 1 6 12 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω IfMatchACT -10 0 10 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 5							
Active to Limp Home Delay se83, ((N0 = VDD, IN1 = VDD))or 8682, ((N0 = GND, IN1 = VDD))or 8682, ((N0 = GND, IN1 = GND) Act21 - 50 100 μs Active to Sleep Delay IDLE going low To Standard Diagnostics clearing = 0000, Rodal = 10K to GND Act2sip - 50 100 μs OUTPUT TIMING SPECIFICATION Turn On Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω Act2sip - 50 100 μs Active Mode Inx to 10% VOUT to NactCSB10 1 4 8 μs Limp Home Mode Inx to 10% VOUT toNactCSB10 1 6 12 μs Active Mode Inx to 10% VOUT toNactCSB10 1 6 12 μs Limp Home Mode Inx to 10% VOUT toFFactINx90 1 6 12 μs Limp Home Mode Inx to 90% VOUT toFFactINx90 1 6 12 μs Limp Home Mode Inx to 90% VOUT toFFactINx90 1 6 12 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct							
Active No. Beesa, (INO = VDU, INI = VDD) or 8681, (INO = OKD, INI = VDD) or 8681, (INO = OKD, INI = VDD) or 8681, (INO = OKD, INI = OKD) or IDLE going flow To Standard Diagnostics clearing = 0000, Ribad = 10K to GND Actizsip - 50 100 µs Active to Sleep Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω clearing = 0000, Ribad = 10K to GND Actizsip - 50 100 µs Active Mode Inx to 10% VOUT iONactfNx10 1 4 8 µs Limp Home Mode Inx to 10% VOUT tONInt ONInt0 1 4 8 µs Turn Off Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω Inx to 90% VOUT tOFFactINx90 1 6 12 µs Limp Home Mode Inx to 90% VOUT tOFFactINx90 1 6 12 µs Limp Home Mode Inx to 90% VOUT tOFFactINx90 1 6 12 µs Limp Home Mode Inx to 90% VOUT tOFFactINx90 1 6 12 µs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω IfMatchACT -10 0 10 µs <t< td=""><td>Active to Limp Home Delay</td><td>0</td><td>Act2lh</td><td>-</td><td>50</td><td>100</td><td>μS</td></t<>	Active to Limp Home Delay	0	Act2lh	-	50	100	μS
e883 ¹ µ(Mo VDD, IN1 = GND) Image of the transmission of transmis anametry of transmission of transmission of transmi							
Active to Sleep Delay IDLE going low To Standard Diagnostics clearing = 0000 ₁ Rioad = 10K to GND Act2sip - 50 100 μs OUTPUT TIMING SPECIFICATION Turn On Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω 1 4 8 μs Active Mode Inx to 10% VOUT tONactINx10 1 4 8 μs Limp Home Mode Inx to 10% VOUT tONactINx10 1 4 8 μs Turn Off Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω 1 6 12 μs Limp Home Mode Inx to 10% VOUT tOFFactINx90 1 6 12 μs Limp Home Mode Inx to 90% VOUT tOFFactINx90 1 6 12 μs Limp Home Mode Inx to 90% VOUT tOFFactINx90 1 6 12 μs Turn On / Turn Off Matching Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT tHiseAct -10 0 10 μs Fail Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct 2.8 5.25 7.7							
Active to Sleep Delay To Standard Diagnostics Clearing = 0000H Riad = 10K to GND Act2slp 50 100 μs OUTPUT TIMING SPECIFICATION Turn On Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω Interpretein Note of Note One One One One One One One One One On							
Active to Sleep Delay clearing = 0000 _H Ricad = 10K to GND Act2Sip - 50 100 μs OUTPUT TIMING SPECIFICATION Turn On Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω 1 4 8 μs Active Mode Inx to 10% VOUT CSB rising edge to 10% VOUT tONactINx10 1 4 8 μs Limp Home Mode Inx to 10% VOUT tONActCSB10 1 4 8 μs Active Mode Inx to 10% VOUT tONIh10 1 4 8 μs Turn Off Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω 1 6 12 μs Active Mode Inx to 90% VOUT tOFFactINx90 1 6 12 μs Limp Home Mode Inx to 90% VOUT tOFFactINx90 1 6 12 μs String edge to 90% VOUT toFFactINx90 1 6 12 μs Turn On / Turn Off Matching Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct 2.8 5.25 7.7 μs Fail Time Active Mode <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Riaad = 10K to GND Image Image Image Image OUTPUT TIMING SPECIFICATION VS = VS1 = VS2 = 13.5 V, RL = 50 Ω Image Imagee Image Imagee Image	Active to Sleep Delay	-	Act2slp	-	50	100	μs
OUTPUT TIMING SPECIFICATION Turn On Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω Active Mode Inx to 10% VOUT tONactINx10 1 4 8 µs Limp Home Mode Inx to 10% VOUT tONactICSB10 1 4 8 µs Limp Home Mode Inx to 10% VOUT tONl10 1 4 8 µs Turn Off Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tOFFactINs90 1 6 12 µs Active Mode Inx to 90% VOUT tOFFactINs90 1 6 12 µs Limp Home Mode Inx to 90% VOUT tOFFactINs90 1 6 12 µs Turn On / Turn Off Matching Active Mode Inx to 90% VOUT tOFFactIN90 1 6 12 µs Turn On / Turn Off Matching Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT -10 0 10 µs Filse Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct 2.8 5.25 7.7 µs Limp Home Mode <							
Turn On Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tONactCSB10 1 4 8 μs Active Mode Inx to 10% VOUT CSB rising edge to 10% VOUT tONactCSB10 1 4 8 μs Limp Home Mode Inx to 10% VOUT tONactCSB10 1 4 8 μs Turn Off Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tOFFactCSB90 1 6 12 μs Active Mode Inx to 90% VOUT tOFFactCSB90 1 6 12 μs Limp Home Mode Inx to 90% VOUT tOFFactCSB90 1 6 12 μs Turn On / Turn Off Matching Active Mode Inx to 90% VOUT tOFFactCSB90 1 6 12 μs Fail Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT tMatchLH -10 0 10 μs Fail Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiselh 2.8 5.25 7.7 μs Fail Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiselh 2.8 5.25		Hidad - Tore to GND					
Active Mode Inx to 10% VOUT CSB rising edge to 10% VOUT tONactINx10 tONactCSB10 1 4 8 μs Limp Home Mode Inx to 10% VOUT iONIh10 1 4 8 μs Turn Off Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
CSB rising edge to 10% VOUT tONactCSB10 1 4 8 μs Limp Home Mode Inx to 10% VOUT toNIh10 1 4 8 μs Turn Off Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω In 6 12 μs Active Mode Inx to 90% VOUT tOFFactINx90 1 6 12 μs Limp Home Mode Inx to 90% VOUT tOFFactINs00 1 6 12 μs Turn On / Turn Off Matching Active Mode Inx to 90% VOUT tOFFactINs00 1 6 12 μs Turn On / Turn Off Matching Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT -10 0 10 μs Fail Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct 2.8 5.25 7.7 μs Fail Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFailAct 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFailAct 2.8 5.25 7.7 μs <t< td=""><td>Turn On Delay</td><td>$VS = VS1 = VS2 = 13.5 V, RL = 50 \Omega$</td><td></td><td></td><td></td><td></td><td></td></t<>	Turn On Delay	$VS = VS1 = VS2 = 13.5 V, RL = 50 \Omega$					
CSB rising edge to 10% VOUT tONactCSB10 1 4 8 μs Limp Home Mode Inx to 10% VOUT toNIh10 1 4 8 μs Turn Off Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω In 6 12 μs Active Mode Inx to 90% VOUT tOFFactINx90 1 6 12 μs Limp Home Mode Inx to 90% VOUT tOFFactINs00 1 6 12 μs Turn On / Turn Off Matching Active Mode Inx to 90% VOUT tOFFactINs00 1 6 12 μs Turn On / Turn Off Matching Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT -10 0 10 μs Fail Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct 2.8 5.25 7.7 μs Fail Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFailAct 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFailAct 2.8 5.25 7.7 μs <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td></t<>						0	
Limp Home Mode Inx to 10% VOUT tONIh10 1 4 8 μs Turn Off Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω Image: VS = VS1 = VS2 = 13.5 V, RL = 50 Ω	Active Mode						
Turn Off Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tOFFactINx90 1 6 12 μs Active Mode Inx to 90% VOUT tOFFactINx90 1 6 12 μs Limp Home Mode Inx to 90% VOUT tOFFactISB90 1 6 12 μs Turn On / Turn Off Matching Active Mode Inx to 90% VOUT tOFFactISB90 1 6 12 μs Rise Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT -10 0 10 μs Rise Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct 2.8 5.25 7.7 μs Fall Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseInh 2.8 5.25 7.7 μs Fall Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Jimp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallNh 2.8		CSB rising edge to 10% VOUT	TUNACIUSBIU	I	4	8	μs
Turn Off Delay VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tOFFactINx90 1 6 12 μs Active Mode Inx to 90% VOUT tOFFactINx90 1 6 12 μs Limp Home Mode Inx to 90% VOUT tOFFactISB90 1 6 12 μs Turn On / Turn Off Matching Active Mode Inx to 90% VOUT tOFFactISB90 1 6 12 μs Rise Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT -10 0 10 μs Rise Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct 2.8 5.25 7.7 μs Fall Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseInh 2.8 5.25 7.7 μs Fall Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Jimp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallNh 2.8	Limp Home Mode	Inx to 10% VOUT	tONIh10	1	4	8	115
Active Mode Inx to 90% VOUT CSB rising edge to 90% VOUT tOFFactINx90 tOFFactCSB90 1 6 12 μs Limp Home Mode Inx to 90% VOUT tOFFactCSB90 1 6 12 μs Turn On / Turn Off Matching Active Mode Inx to 90% VOUT tOFFactINx90 1 6 12 μs Turn On / Turn Off Matching Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT -10 0 10 μs Rise Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct 2.8 5.25 7.7 μs Fall Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Fall Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL =				•		-	μο
CSB rising edge to 90% VOUT tOFFactCSB90 1 6 12 μs Limp Home Mode Inx to 90% VOUT tOFFactIh90 1 6 12 μs Turn On / Turn Off Matching Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT -10 0 10 μs Rise Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT -10 0 10 μs File Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct tRiseIh 2.8 5.25 7.7 μs Fall Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct tRiseIh 2.8 5.25 7.7 μs Fall Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct tRiseIh 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct tRiseIh 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct tRSTIh0 2.8 5.25 7.7 μs Limp Home Mode 0 timp Home Mode 0 tRSTIh1	,						
Limp Home Mode Inx to 90% VOUT to FFacth90 1 6 12 μs Turn On / Turn Off Matching Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT -10 0 10 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT -10 0 10 μs Rise Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct 2.8 5.25 7.7 μs Fall Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFalleAct 2.8 5.25 7.7 μs Fall Time Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Imp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 4.0 5.2 ms Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRST	Active Mode	Inx to 90% VOUT	tOFFactINx90	1	6	12	μs
Turn Or / Turn Off Matching Active Mode Limp Home ModeVS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT tMatchLH-10010 μ sRise Time Active Mode Limp Home ModeVS = VS1 = VS2 = 13.5 V, RL = 50 Ω 30% to 70% VStRiseAct tRiseAct 30% to 70% VS2.85.257.7 μ s μ sFall Time Active Mode Limp Home ModeVS = VS1 = VS2 = 13.5 V, RL = 50 Ω 30% to 70% VStRiseAct tRiseInt2.85.257.7 μ s μ sFall Time Active Mode Limp Home ModeVS = VS1 = VS2 = 13.5 V, RL = 50 Ω To% to 30% VStFallAct tFallIh2.85.257.7 μ s μ sLIMP HOME TIMINGTo% to 30% VStFallAct tRSTIh12.85.257.7 μ s μ sLimp Home Auto-Retry Times Limp Home Mode 0 Limp Home Mode 1 Limp Home Mode 3tRSTIh22.84052 μ smsBULB INRUSH TIMINGtRSTIh2 timp Home Mode 3tRSTIh22.84052 μ smsBulb Inrush ModeOverload Current Switch Threshold Delay TimetRSTbim40 μ s		CSB rising edge to 90% VOUT	tOFFactCSB90	1	6	12	μs
Turn Or / Turn Off Matching Active Mode Limp Home ModeVS = VS1 = VS2 = 13.5 V, RL = 50 Ω tMatchACT tMatchLH-10010 μ sRise Time Active Mode Limp Home ModeVS = VS1 = VS2 = 13.5 V, RL = 50 Ω 30% to 70% VStRiseAct tRiseAct 30% to 70% VS2.85.257.7 μ s μ sFall Time Active Mode Limp Home ModeVS = VS1 = VS2 = 13.5 V, RL = 50 Ω 30% to 70% VStRiseAct tRiseInt2.85.257.7 μ s μ sFall Time Active Mode Limp Home ModeVS = VS1 = VS2 = 13.5 V, RL = 50 Ω To% to 30% VStFallAct tFallIh2.85.257.7 μ s μ sLIMP HOME TIMINGTo% to 30% VStFallAct tRSTIh12.85.257.7 μ s μ sLimp Home Auto-Retry Times Limp Home Mode 0 Limp Home Mode 1 Limp Home Mode 3tRSTIh22.84052 μ smsBULB INRUSH TIMINGtRSTIh2 timp Home Mode 3tRSTIh22.84052 μ smsBulb Inrush ModeOverload Current Switch Threshold Delay TimetRSTbim40 μ s							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Limp Home Mode		tOFFactlh90	1	6	12	μs
Active Mode tMatchACT -10 0 10 μs Limp Home Mode -10 0 10 μs Rise Time VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct 2.8 5.25 7.7 μs Active Mode 30% to 70% VS tRiseAct 2.8 5.25 7.7 μs Fall Time VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tRiseAct 2.8 5.25 7.7 μs Fall Time VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode<0	Turn On / Turn Off Matching						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Active Mode	RL = 50.52	tMatchACT	-10	0	10	μs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Limp Home Mode		tMatchLH	-10	0	10	μs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rise Time						
Limp Home Mode 30% to 70% VS tRiselh 2.8 5.25 7.7 μs Fall Time Active Mode Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode 70% to 30% VS tFallPhote 2.8 5.25 7.7 μs LIMP HOME TIMING 70% to 30% VS trall h 2.8 5.25 7.7 μs Limp Home Auto-Retry Times trall h 2.8 7.7 10 13 ms Limp Home Mode 0 tRSTIh0 7 10 13 ms ms Limp Home Mode 1 14 20 26 ms ms ms Limp Home Mode 3 10 134 ms ms ms ms Bulb Inrush Mode 100 104 ms ms ms ms Overload Current Switch Threshold Delay Time trovLIN 110 185 260 μs		VS = VS1 = VS2 = 13.5 V, RL = 50 Ω	tRiseAct	28	5 25	77	us
Fall Time Active Mode Limp Home Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct tFallh 2.8 5.25 7.7 μs LIMP HOME TIMING 70% to 30% VS VS VS VS 7.7 μs LIMP HOME TIMING 1 2.8 5.25 7.7 μs Limp Home Auto-Retry Times tRSTlh0 7 10 13 ms Limp Home Mode 0 tRSTlh1 14 20 26 ms Limp Home Mode 1 tRSTlh2 28 40 52 ms Limp Home Mode 2 trans tRSTlh2 28 40 52 ms Limp Home Mode 3 0 104 ms ms ms ms Bulb Inrush Mode 0 tRSTlh3 56 80 104 ms Overload Current Switch Threshold Delay Time trovel Internet trovel Internet trovel Internet 40 μs		30% to 70% VS					
Active Mode VS = VS1 = VS2 = 13.5 V, RL = 50 Ω tFallAct 2.8 5.25 7.7 μs Limp Home Mode 70% to 30% VS tFallIh 2.8 5.25 7.7 μs LIMP HOME TIMING μs Limp Home Auto-Retry Times	•						pre
Limp Home Mode 70% to 30% VS tFallh 2.8 5.25 7.7 μs LIMP HOME TIMING		VS = VS1 = VS2 = 13.5 V, RL = 50 Ω	tFallAct	2.8	5.25	7.7	μs
Limp Home Auto-Retry Timestmp Home Mode 0tmp Home Mode 0tmp Home Mode 0tmp Home Mode 0tmp Home Mode 1tmp Home Mode 1tmp Home Mode 2tmp Home Mode 2tmp Home Mode 3tmp Home Mode 3 <thtmp< td=""><td>Limp Home Mode</td><td>70% to 30% VS</td><td>tFallIh</td><td>2.8</td><td>5.25</td><td>7.7</td><td></td></thtmp<>	Limp Home Mode	70% to 30% VS	tFallIh	2.8	5.25	7.7	
Limp Home Auto-Retry Timestmp Home Mode 0tmp Home Mode 0tmp Home Mode 0tmp Home Mode 0tmp Home Mode 1tmp Home Mode 1tmp Home Mode 2tmp Home Mode 2tmp Home Mode 3tmp Home Mode 3 <thtmp< td=""><td>LIMP HOME TIMING</td><td>-</td><td>•</td><td></td><td></td><td></td><td>· · · ·</td></thtmp<>	LIMP HOME TIMING	-	•				· · · ·
Limp Home Mode 0 tRSTlh0 7 10 13 ms Limp Home Mode 1 tRSTlh1 14 20 26 ms Limp Home Mode 2 tRSTlh2 28 40 52 ms Limp Home Mode 3 tRSTlh3 56 80 104 ms BULB INRUSH TIMING tRSTlh3 56 80 104 ms Restart Time Bulb Inrush Mode tRSTbim - - 40 µs Overload Current Switch Threshold Delay Time toVLIN 110 185 260 µs					1		
Limp Home Mode 1tRSTlh1142026msLimp Home Mode 2tRSTlh2284052msLimp Home Mode 3tRSTlh35680104msBULB INRUSH TIMINGRestart Time Bulb Inrush ModetRSTbim-40µsOverload Current Switch Threshold Delay TimetoVLIN110185260µs			tRSTlh0	7	10	13	ms
Limp Home Mode 2 Limp Home Mode 3tenstenstenstenstenstenstensBULB INRUSH TIMINGEstart Time Bulb Inrush ModetenstenstenstenstenstensOverload Current Switch Threshold Delay TimeCompanytenstenstenstenstenstensReset Time Delay TimetenstenstenstenstenstenstenstensReset TimetenstenstenstenstenstenstenstensOverload Current Switch Threshold Delay TimetenstenstenstenstenstensReset Timetenstenstenstenstenstenstenstens	•						
Limp Home Mode 3tRSTIh35680104msBULB INRUSH TIMINGRestart Time Bulb Inrush Mode							
BULB INRUSH TIMING Restart Time Bulb Inrush Mode tRSTbim - - 40 μs Overload Current Switch Threshold Delay Time tOVLIN 110 185 260 μs	•						
Restart Time Bulb Inrush Mode tRSTbim - - 40 μs Overload Current Switch Threshold Delay Time tOVLIN 110 185 260 μs Reset Time	BULB INRUSH TIMING	•	-	-	-	-	
Bulb Inrush Mode tRSTbim - 40 μs Overload Current Switch Threshold Delay Time tOVLIN 110 185 260 μs Reset Time					1		
Overload Current Switch Threshold Delay Time tOVLIN 110 185 260 μs Reset Time			tRSTbim	_	_	40	us
Delay Time tOVLIN 110 185 260 μs Reset Time μs							·
Reset Time			tOVLIN	110	185	260	μs
	Reset Time						
Bulb Inrush Mode tBIM – 40 – ms	Bulb Inrush Mode		tBIM	-	40	-	ms

ELECTRICAL CHARACTERISTICS (continued) $(-40^{\circ}C v T_J v 150^{\circ}C, 3.0 V < VDD < 5.5 V, 7 V < VS = VS1 = VS2 < 18 V, 150^{\circ}C v T_J v 150^{\circ}C, 3.0 V < VDD < 5.5 V, 7 V < VS = VS1 = VS2 < 18 V, 150^{\circ}C v T_J v 150^{\circ}C v 150^{\circ$ IDLE = high unless otherwise specified)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit		
PWM GENERATOR								
Internal Frequency	HWCR_PWM.ADJ = 1000 _B	fINT	75	102	125	kHz		
Internal Frequency Variation between		fVAR	-15	_	15	%		
Generator 0 and Generator 1								
Internal Frequency Synchronization Time (Note 5)	HWCR_PWM.ADJ = 1000 _B	tSYNC	-	5	10	μs		
OPEN LOAD OUTPUT STATUS MON	IITOR							
Output Status Monitor		OpenT	_	-	20	μs		
Comparator Settling Time Output Status Monitor								
Threshold Voltage		OpenV	3.0	3.3	3.6	V		
Output Status Monitor								
Diagnostic Source Current		Openl	25	50	100	μA		
Open Load equivalent resistance		OpenR	30	-	300	kΩ		
OPEN LOAD AT ON	•							
Open Load ON								
Wait for Diagnostic		tDIAGwait	6	15	35	μs		
(Note 6)								
Open Load ON								
Waiting Time		tMUXopnON	40	58	76	μs		
before mux activation (Note 7)								
Open Load ON		tSETopnON	_	20	40	μs		
Settling Time (Note 8)		to E tophony		20	-10	μο		
Open Load ON		tSWTopnON	_	10	20	μs		
Channel Switching Time(Note 9)		torriophon		10	20	۳۵		
Open Load ON		lopnON	1	6	10	mA		
Threshold Current								

5. Basis in timing requirements for

i) Reset Overload Current Thresholds.

ii) Auto-retry timing reset in limp home mode.

iii) Open Load at ON multiplex operation (but not direct channel diagnostic).

Time required to wait before programming for Open Load ON Diagnostic Control.
 Delay from PWM generator going high to fault recognized in DIAG_OLON.OUT.

8. Delay from Open Load ON Diagnostic Control (with system fault) bit set to fault recognized in DIAG_OLON.OUT.

9. Delay time between Open Load at ON event and to fault recognized in DIAG_OLON.OUT.

DIGITAL INTERFACE CHARACTERISTICS

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Digital Input Threshold (IDLE, IN0, IN1, CSB, SCLK, SI)		VthIn	0.8	1.4	2.0	V
Digital Input Hysteresis (IDLE, IN0, IN1, CSB, SCLK, SI)		Vhysln	50	175	300	mV
Input Pull-down Resistance (IDLE, IN0, IN1, SI, SCLK)	IDLE = IN0 = IN1 = SI = SCLK = VDD	Rpdx	50	120	190	kΩ
Input Pull-up Resistance (CSB)	CSB = 0 V	RpdCSBx	50	120	190	kΩ
CSB Leakage to VDD	CSB = 5 V, VDD = 0 V	IlkgCSBV _{DD}	-	-	100	μΑ
OUTPUT CHARACTERISTICS						
SO – Output High	l(out) = 1.5 mA	VsoH	VDD- 0.4	-	VDD	V
			T			

DIGITAL INTERFACE CHARACTERISTICS (continued)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
SPI TIMING (VDD = 4.5 V or VS	= 7 V)					
SCLK Frequency		Fclk	-	-	5	MHz
SCLK Clock Period		TpClk	200	-	-	ns
SCLK High Time		TCLKH	85	-	-	ns
SCLK Low Time		TCLKL	85	-	-	ns
SCLK Setup Time To CSB going low	Falling SCLK to falling CSB	TCLKSU1	85	-	_	ns
SCLK Setup Time To CSB going high	Falling SCLK to rising CSB	TCLKSU2	85	-	_	ns
SI Setup Time		TISU	50	-	-	ns
SI Hold Time		TIHT	50	-	-	ns
CSB Setup Time		TCSBSU1	100	-	-	ns
CSB Setup Time		TCSBSU2	100	-	-	μs
CSB High Time	(Note 10)	TCSBHT	5.0	-	-	ns
SO enable after CSB falling edge		TSOCSBF	-	-	200	ns
SO disable After CSB rising edge		TSOCSBR	-	-	200	ns
SO Rise Time	Cload = 40 pF (Note 11)	TSOrise	-	10	25	ns
SO Fall Time	Cload = 40 pF (Note 11)	TSOfall	-	10	25	ns
SO Valid Time	Cload 40 pF (Note 11) SCLK rising 80% to SO 50%	TSOV	-	50	100	ns
IDLE High Valid Time	VDD = 5 V IDLE rising 50% To OUTx turning off 50%	TenL	10	-	-	μs
IDLE Low to SPI Valid		TenHspiV	-	-	100	μs

10. This is the minimum time the user must wait between SPI commands.

11. Not production tested.

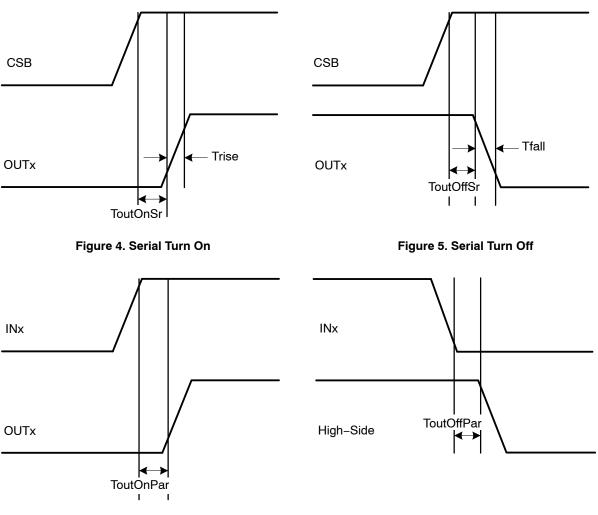


Figure 7. Inx Control Turn Off

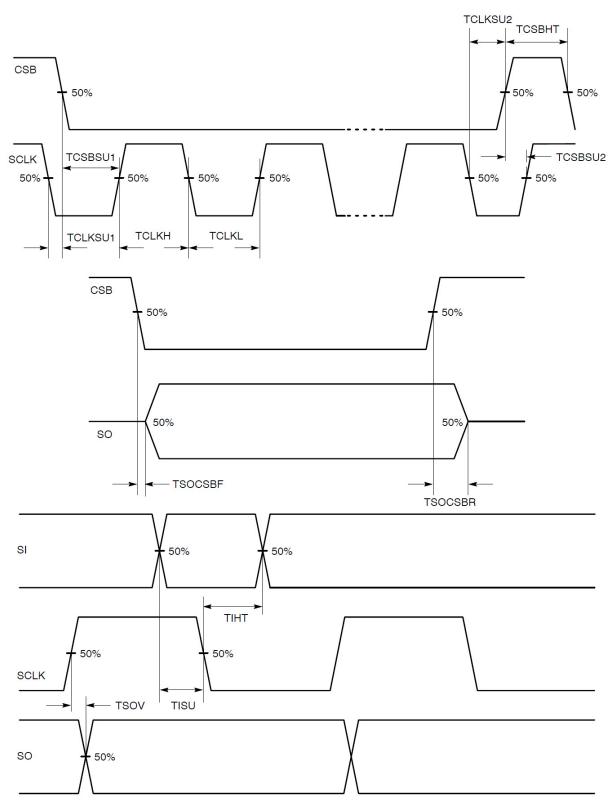


Figure 8. Serial Peripheral Interface Detailed Timing

TYPICAL PERFORMANCE GRAPHS

DETAILED OPERATING DESCRIPTION

General Overview

The NCV7755 is comprised of eight DMOS high-side power drivers. There are two connection pins (VS1, VS2) for the drain of each output driver with 4 common drivers per pin. Communication to the device is through a 16-bit SPI port for output control, programming, and fault reporting. The device also features a limp home mode with an IDLE control pin for limp home entry and two input control pins (IN0 & IN1) for output engagement.

Output loads can be varied from inductive loads, bulb loads, or LED loads. Special features for each load type include output clamps, in-rush design considerations, and two on-chip PWM generators.

The NCV7755 allows independent mapping of the INx pins to the outputs and mapping of the two PWM generators to the outputs.

The device is capable of running down to 3 V for automotive cranking events.

Power Supply

There are four power supply input requirements. The descriptions of their internal connections are listed below.

- VS Analog Supply Input Battery input for all internal analog circuitry. The maximum current drain is 8.7 mA over temperature
- VS1 Output Driver Drain connection for OUT0, OUT2, OUT4, OUT6. The maximum current is internally limited by the maximum overload detection threshold of 2.3 A
- VS2 Output Driver Drain connection for OUT1, OUT3, OUT5, OUT7. The maximum current is

internally limited by the maximum overload detection threshold of 2.3 A

• VDD – Digital Supply Input – Internal logic supply input. Runs from 3.3 V input or 5 V input. The maximum current drain is 3.5 mA over temperature

It's important to note the maximum combined current drain of both VS and VDD is specified at 9 mA with the channels on.

Sleep mode current for VS is 3 μ A at 85°C and the maximum combination of VS+VDD is 5 μ A at 85°C.

The exposed pad connection should be connected to ground with as large a pc board metal connection as possible for best thermal performance and EMC considerations. However this is not a ground connection for IC ground currents.

Load Dump – During a peak transient event such as automotive load dump the outputs maintain their operation up to the maximum rating for Transient input supply voltage of 42 V as programmed via SPI or the input control pins INO and IN1.

Cranking Conditions – Automotive cranking conditions can cause the battery (aka VS) to dip to low levels. In order to maintain circuit operation down to the lowest possible levels the battery connection is OR'd with the logic supply voltage (VDD). Diodes D1 and D2 provide the OR'd condition into the voltage regulator. The reduction or removal of current into D1 from VS will cause the current into D2 from VDD to increase to keep the voltage regulator alive. Additional current can also come from SO.

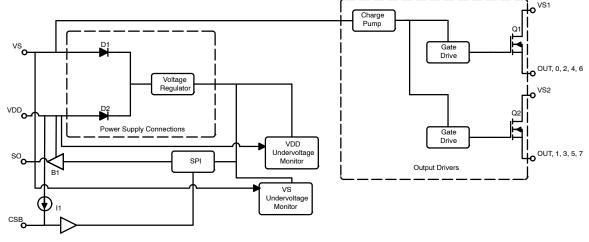


Figure 9.

Power-Up/Power-Down Control

VDD and VS each has their own Power–On reset monitors which serve to hold off proper operation until sufficient voltage is present to control the output device. The device powers up with sufficient voltage on either or both VDD or VS, and INx or IDLE pin are high. The Standard Diagnostic Register reports both VS Undervoltage (Monitor) and VDD Lower Operating Range (Monitor).

SPI communication is present with sufficient voltage on VDD. An undervoltage on VDD resets all the registers to their default values and no SPI communication is available, although memory of Overvoltage / Overtemperature conditions is maintained in ERR of the Standard Diagnostics Register and can be retrieved when VDD is present. If VS is present with VDD undervoltage, Limp Home mode control is present.

Sufficient voltage on VS allows for output turn-on. During cranking conditions as VS dips, the diode OR'd circuit described in the previous section allows for the IC to maintain current into the logic solely from VDD. All channels which are on keep their state during cranking unless commanded to turn off. Channel turn-on may not be possible during cranking.

VDD Low Operation Voltage – VDD is monitored and its status is reported in the Diagnostic Register as bit 13 (LOPVDD). The default value is set to a "1" during power up and is continuously monitored for the electrical parameter VDD Lower Operating Voltage (between 3.0 V and 4.5 V). The LOPVDD bit can only be reset by reading the Standard Diagnostic Register.

Field	State	Description
UVRVS	1	There was an undervoltage condition on VS
LOPVDD	1	VDD was previously below 4.5 V
MODE	11	Idle Mode (2 bits)
TER	1	Previous transmission failed
OLON	0	No open load ON detected
OLOFF	0	No open load OFF detected
ERR	0	No Failure detected

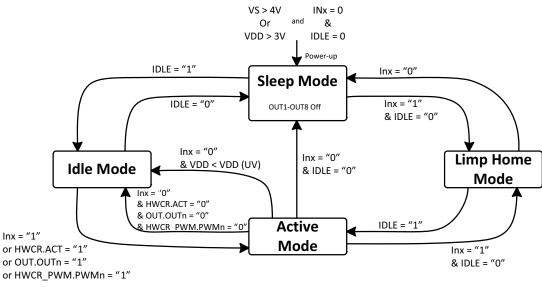
INST REGISTER (This is the 1st Register Read back after a Logic Reset)

Field	State	Description
INST	TER = 1 INx = 0	Previous transmission failed. Input pins are set low

DEFAULT LISTING AFTER LOGIC RESET

Field	Description	
OUT	Output is off	
BIM	Output latches off with overload	
MAPINO	IN0 is mapped to OUT2	
MAPIN1	IN1 is mapped to OUT3	
INST	Previous transmission failed. Input pins are set low	
DIAG_IOL	Diagnostic current is not enabled	
DIAG_OSM	Voutx is less than the Output Monitor Threshold	
DIAG_OLON	Normal operation	
DIAG_OLONEN	Open Load ON not active	
HWCR	Normal operation, no reset command, no parallel combinations	
HWCR_OCL	Normal operation, no latch clear	
HWCR_PWM	PWM generator 1 not active. PWM generator 0 not active	
PWM_CR0	Base Frequency Internal clock divided by 1024	
PWM_CR1	Base Frequency Internal clock divided by 1024	
PWM_OUT	The selected output is not driven by a PWM generator	
PWM_MAP	The selected output is connected to PWM Generator 0	

Table 1. DEVICE CAPABILITY AS A FUNCTION OF VS AND VDD


	VDD < VDDUVLO	VDD = VDDLOP	VDD > VDDLOP
	VDDUVLO =	VDDLOP =	VDDLOP =
	VDD Undervoltage Shutdown	VDD Lower Operating Voltage	VDD Lower Operating Voltage
VS < 3.0 V (Undervoltage Shutdown max specification VUVLO = 3 V)	Channels – Cannot be controlled	Channels – Cannot be controlled	Channels – Cannot be controlled
	SPI registers – Reset	SPI registers – Available	SPI registers – Available
	SPI communication –	SPI communication – Possible	SPI communication – Possible
	Not available	(fsclk = 1 MHz)	(fsclk = 5 MHz)
	Limp Home Mode –	Limp Home Mode –	Limp Home Mode –
	Not available	Available (channels are off)	Available (channels are off)
3.0 V < VS < VSmin VSmin = (Minimum Operating Voltage)	Channels – Cannot be controlled by SPI	Channels – Can be controlled by SPI (Rdson deviations possible).	Channels – Can be controlled by SPI (Rdson deviations possible).
	SPI registers – Reset	SPI registers – Available	SPI registers – Available
	SPI communication –	SPI communication – Possible	SPI communication – Possible
	Not available	(fsclk = 1 MHz)	(fsclk = 5 MHz)
	Limp Home Mode – Available	Limp Home Mode – Available	Limp Home Mode – Available
	(Rdson deviations possible)	(Rdson deviations possible)	(Rdson deviations possible)
VS > VSmin VSmin = (Minimum Operating Voltage)	Channels – Cannot be controlled by SPI	Channels – Can be controlled by SPI (Rdson deviations possible).	Channels – Can be controlled by SPI (Rdson deviations possible).
	SPI registers – Reset	SPI registers – Available	SPI registers – Available
	SPI communication –	SPI communication – Possible	SPI communication – Possible
	Not available	(fsclk = 5 MHz)	(fsclk = 5 MHz)
	Limp Home Mode – Available	Limp Home Mode – Available	Limp Home Mode – Available
	(Rdson deviations possible	(Rdson deviations possible	(Rdson deviations possible
	with VS < 7 V)	with VS < 7 V)	with VS < 7 V)

Modes of Operation

There are 4 modes of operation. Each is presented in the state diagram below.

1. Sleep Mode

- 2. Idle Mode
- 3. Active Mode
- 4. Limp Home Mode

TABLE 2. DEVICE FUNCTION VERSUS VS AND VDD VOLTAGES

Operation Mode	Function	VS Undervoltage VDD <vdduv< th=""><th>VS Undervoltage VDD > VDDuv</th><th>VS no Undervoltage VDD<vdduv< th=""><th>VS no Undervoltage VDD > VDDuv</th></vdduv<></th></vdduv<>	VS Undervoltage VDD > VDDuv	VS no Undervoltage VDD <vdduv< th=""><th>VS no Undervoltage VDD > VDDuv</th></vdduv<>	VS no Undervoltage VDD > VDDuv
Sleep	Channels			Channels not available	
	SPI Communication			no SPI communicatior SPI Register Reset	1
	SPI Registers	lable st			
Idle	Channels	t avai nunice Rese	Not available	Not available	Not available
	SPI Communication	Channels not available no SPI communication SPI Register Reset	0	Not available	0
	SPI Registers	Cha no S SPI	0	reset	0
Active	Channels		Not available	(INx pins only)	0
	SPI Communication		0	Not available	0
	SPI Registers		0	reset	0
Limp Home	Channels		Not available	(INx pins only)	(INx pins only)
	SPI Communication]	오 (read only)	Not available	(read only)
	SPI Registers		🕑 (read only)	reset	 (read only)

Power-up

The power–up condition for the NCV7755 is an OR'd condition between the VS battery input and the VDD logic input. Either of the supplies exceeding their minimum operative voltage (4.0 V max for VS) or (3.0 V for VDD) will initiate the internal power–on sequence. In addition to these low voltage attributes, the device will maintain its state with battery voltages down to 3 V such as during cranking. For SPI <u>communication</u>, the digital power supply must also be maintained at 3 V.

Sleep Mode

The NCV7755 enters sleep mode when pins IDLE and IN0 and IN1 are all low. All outputs are off and all SPI registers are reset. Operating current is at a minimum (3 μ A max at 85°C).

Idle Mode

The device enters Idle Mode when the IDLE pin is brought high with IN0 and IN1 low. All channels are off and Open Load Diagnostic Current is off. The internal regulator powers on and SPI registers and communication become active with a proper logic supply voltage (VDD). Overload / Overtemperature bits are not cleared when entering Idle mode from active mode for safety reasons.

Active Mode

The normal operational mode for the device is Active Mode. The high-side drivers can be activated, loads can be driven, device output status can be retrieved, and device attributes can be programmed. The device enters active mode with any of the following commands.

- 5. IDLE is high and IN0 or IN1 is set to a one
- 6. IDLE is high and the Hardware Configuration Register (HWCR.ACT) is set to a 1_B via a SPI command
- IDLE is high and the Power Output Control Register (OUT.OUTn) is set to a 1_B for one or more of the outputs via a SPI command
- 8. IDLE is high and a PWM Configuration Register (HWCR.PWM.PWMn) is set active via a SPI command

Any transition into Active Mode institutes a communication link between IN0, IN1 and OUT2, OUT3.

DIGITAL MODE CHART

MODE	IDLE	INO	IN1
Sleep	0	0	0
IDLE	1	0	0
Active*	1	1 and	/or 1
Limp Home	0	1 and	/or 1

*Additionally, Active Mode can be entered via SPI control.

Hardware Configuration Register – HWCR.ACT = 1	
Power Output Control Register – OUT.OUT = 1	
PWM Configuration Register – HWCR_PWM.PWMn = 1	

Limp Home Mode

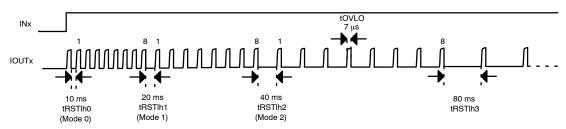
Only Channel 2 and 3 are controlled (via IN0 and IN1) during Limp Home Mode. The device enters Limp Home Mode when the IDLE pin is low and IN0 and/or IN1 are high. When IN0 is high, channel 2 turns on. When IN1 is high, channel 3 turns on. These two input control pins and corresponding channels are also active after a power up condition.

SPI communication is active (with VDD>VDDUVLO) in read–only mode only and reports Overload and Overtemperature faults, and will also continue to monitor for Output Status Monitor conditions (on all channels), but Open Load Diagnostic Current is inactive (on all channels).

When entering Limp Home Mode, the Undervoltage Monitor (UVRVS) and Lower Operating Range Monitor (LOPVDD) bits are set to 1_B while the Open Load ON (OLON) State and Open Load OFF (OLOFF) State are set to 0_B . The Transmission Error bit (TER) is set to "1" for the

first SPI command which is sent back with the INST register returned with the first SPI command, and will act normally afterwards.

Limp Home mode requires only VS and VSx for operation. VDD is not required.


The NCV7755 incorporates an auto-retry function for highly capacitive loads in Limp Home Mode. In normal operation (Active Mode), the device can compensate for capacitive loads (in case of Overload, Short Circuit or Overtemperature) with the external microprocessor drive control time, but when in Limp Home Mode this is not possible. Attempted tries to turn on an output with a constant input high control when exposed to Overload (OVL0*), Short Circuit or Overtemperature will occur with the following characteristics.

- 10 ms (8 retries)
- 20 ms (8 retries)

- 40 ms (8 retries)
- 80 ms (continuously)

It is important to note the 8 counts do not include the initial turn–on attempt of the device.

A reset to the initial 8 retries at 10 ms can be realized with a low on the input of 2 times the Internal Frequency Synchronization Time (typically $2 \times 5 \mu s$).

*OVL0 – This is the higher current threshold used in Active Mode.

Figure 11.

Output Control

The 8 outputs can be controlled via 4 ways which are listed below.

- 1. Output Control via SPI. Commands to turn a device on are input through the SPI interface.
- 2. Output Control via IN0 and/or IN1. To activate this, a SPI command must be sent to map the control to either IN0 (MAPIN0) or IN1 (MAPIN1).
- 3. Limp Home Mode A low on IDLE will allow control of OUT2 (IN0) and OUT3 (IN1).
- 4. PWM Control A SPI command can connect any of the outputs to either of 2 PWM generators whose properties for frequency and duty cycle are programmable.

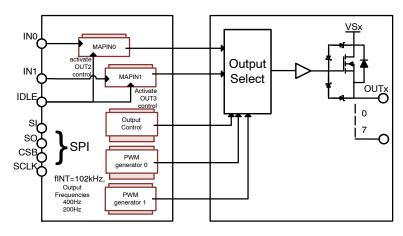


Figure 12.

OUTPUTS

The 8 outputs of the NCV7755 are designed to work with multiple types of loads with the capability of paralleling two paired channels.

Resistive Loads

Resistive loads are primarily concerned with output current, switching delays, and slew rates. The NCV7755 has two overload thresholds. The 1st overload threshold is 1.3 A (min) and has an overload current switch threshold delay time of 110 μ s (min). Once this delay time has been exceeded, the overload threshold reduces to 0.7 A (min). Turn–on delay time is 8 us (max) and turn–off delay time is 12 μ s (max). Turn–on and turn–off slew rates are both 2.8 μ s (min).

A time longer than 2 x Internal Frequency Synchronization Time for OUT, OUTn will set back to the 1^{st} overload threshold.

Relays

Relay loads are supported using an internal inductive clamp on output driver to protect the driver. The negative transients seen when turning off an inductive load are internally limited on the output drivers with a clamp voltage maximum of 25 V. Paired output drivers are permissible with the use of the paired channel synchronization handling of overload and overtemperature conditions.

Bulbs

The NCV7755 is designed to drive 2 W lamps or 5 W lamps (using two channels in parallel) with its Bulb In-rush feature. Incandescent bulb in-rush characteristics are exhibited as a high current event due to the bulb filament initial low resistance. As the bulb heats up the resistance goes up. Initial high currents could trigger an overload condition latching off the output. Setting a bit in the Bulb In-Rush Mode register (BIM) allows the device to latch off (and report ERRn during that time [tRSTbim]) and automatically restart after the Bulb Inrush Mode Restart Time of 40 µs (max). Overtemperature conditions can also trigger a latch off event and auto-restart. The auto-restart helps to increase the bulb resistance putting the overload threshold out of range. Bulb In-rush Mode continues until the bulb is illuminated (not in overload) or the Bulb In-rush Mode reset time is reached (typically 40 ms). Dual Overload Detection Current thresholds continue to be valid in Bulb Inrush Mode.

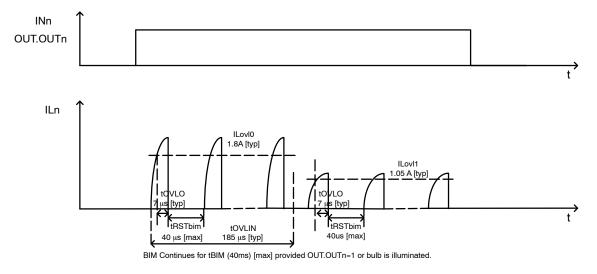
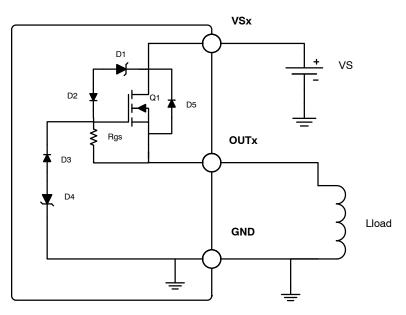



Figure 13.

Output Clamping

Internal protection is provided for the output drivers for the maximum drain to source voltage and the absolute maximum voltage from the output to negative voltages which occurs on OUTx when inductive loads are turned off. Protection for Q1 drain to source is provided by D1, D2, and Rgs.

Protection for negative clamp voltages is provided by Rgs, D3, and D4.

Outputs in Parallel

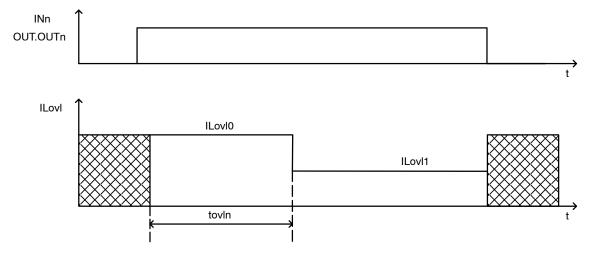
The NCV7755 was designed for operation with the capability to parallel some of the outputs for increased current handling for an individual load. This is not recommended for most other integrated circuits due to the asynchronous turn-off of paralleled outputs causing undo stress to the last channel on. The channels in the list below

are allowed to run in parallel by programming the Hardware Configuration Register (HWCR.PAR) which can deactivate the slow to respond channel during an overload or overtemperature event.

Please note during Limp Home Mode only Channel 2 and Channel 3 are active. There is no provision for parallel outputs during Limp Home Mode.

Parallel Combination		
Channel Number	Channel Number	HWCR.PAR Bit address
0	2	0
1	3	1
4	6	2
5	7	3

Fault Detection


Overload

Two overload current thresholds (ILovl0 & ILovl1) triggered by a turn-on event support the designer in driving highly capacitive loads. A higher initial current threshold (ILovl0) ignores potential in-rush events caused by high capacitance. The 2nd level supports maintenance of lower IC

temperature levels during any shorted events while still providing proper operation.

This multi-level threshold strategy is implemented whenever the driver is active on. When operating in Bulb–Inrush mode (BIM), the auto–restart feature will also be active.

Overload detection conditions are latched off and require a SPI command to reactivate the effected output.

Open Load

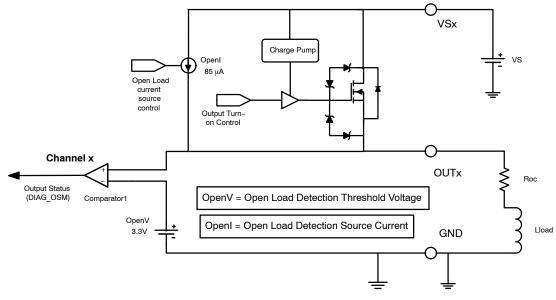
Open Load diagnostics are active for an open load in the on state or open load in the off state.

On State – Open load at on is detected if the output current is less than 6 mA (typ) and 10 mA over the temperature range.

Off State – Utilizes an internal current source for detection and is reported as a state condition in the Output Status Monitor. The output with a load present in the off state should be low. If the OpenI current source pulls OUTX high when enabled by DIAG_IOL.OUTn, an open circuit condition is present. *Thermal Shutdown* – Individual thermal sensors are provided for each channel. A breach of the thermal shutdown threshold will latch the channel off and set the diagnostic bit ERRn for the channel. Clearing the error bit is done by setting the corresponding HWCR_OCL.OUTn bit to "1". HWCR_OCL.OUTn is cleared after the error bit is cleared and the channel will accept commands to turn on.

During Bulb–Inrush Mode, the output is "latched" off when the thermal threshold is breached, and the auto–restart feature is activated.

FAULT REPORTING


ERRn, Overload & Overtemperature

Short to Ground – Overload conditions or Overtemperature conditions latch off the affected channel and the diagnostic bit ERRn is set. Reactivation must be via the SPI commands in normal operation using HWCR_OCL.OUTn. The logic inputs will not reset the latch. Limp Home Mode however utilizes an output restart time.

After a breach of the ILovl0 or Ilovl1 level the channel is latched off and an error diagnostic bit is set (ERRn). Clearing the error bit is done by setting the corresponding HWCR_OCL.OUTn bit to "1". HWCR_OCL.OUTn is cleared after the error bit is cleared and the channel will accept commands to turn on.

Short to Battery – An output shorted to battery will be detected with the Open Load output off circuitry. When the device is off, the expectation is for the load to hold the output pin low. If a short to battery exists, the pin will be pulled high and an open circuit will be reported.

- <u>OverLoad</u> Reference the Fault Detection section
- Open Load Reference the Fault Detection section
- <u>Thermal Shutdown</u> Reference the Fault Detection section

Open Load at OFF

Open load detection is often a system requirement for reporting a malfunction to the host controller. Board level deviations such as dendrites between traces can effect this measurement. A dendrite between the output pin and ground will reference a voltage into the Output Status Voltage Threshold Monitor from the Output Status Monitor diagnostic Source Current during an open load off diagnostic event (with an open load) from the dendrite impedance.

An impedance range is established with the extremes of the threshold voltage (OpenV) and the current source (OpenI) to eliminate false opens or failure to report an open.

Open Load Impedance =
$$\frac{\text{OpenV}}{\text{OpenI}}$$
 Impedance min = $\frac{3.0 \text{ V}}{100 \ \mu\text{A}}$ = 30 k Ω Impedance max = $\frac{3.6 \text{ V}}{25 \ \mu\text{A}}$ = 144 k Ω

Open Loads will be detected between the 30 k and 144 k range.

Acceptable loads will be $< 30 \text{ k}\Omega$.

Acceptable impedances between printed circuit board traces will be > 144 k Ω .

In normal operation, when OpenI is active, the current is low and should not be high enough to trip an open circuit flag. OUTx should be held close to ground via Roc + Lload. If Roc + Lload are missing, OpenI will pull OUTx above the OpenV threshold and signal an open load.

Open Load at ON

Open Load at ON is controlled by the DIAG_OLONEN.MUX bits in the DIAG_OLONEN register. The default setting after reset is not active. DIAG_OLON.OUTn is set and mirrored into the Standard Diagnostic (bit OLON) if the output current is less than the Open Load ON Threshold Current. This is synonymous to an under load condition.

DIAG_OLONEN.MUX can be commanded on for a direct channel diagnostic or a diagnostic loop.

When operating in a direct channel mode, a detected open load will set the corresponding DIAG_OLON.OUTn bit and reset all the other bits in the DIAG_OLON register. Bits are updated upon register reading.

For operation in a diagnostic loop, DIAG_OLEN.MUX should be programmed with the value 1010_B . All channels are checked for Open Load at ON when operating in this mode. DIAG_OLON.OUTn is updated upon completion of each channel diagnostic. Value 1111_B (default) is set back in DIAG_OLONEN after the last channel is evaluated.

Direct Channel Diagnostic

For Direct Channel Diagnostic, the device requires:

- 1. Time for the Internal Frequency Sync (10 µs [max])
- Time for the output to turn on (tDIAGwait) (35 μs [max]).
 - Open Load Monitor is now active.
- Programming time for Open Load ON Diagnostic Control (DIAG_OLONEN.mux). (Time not specified here as this involves external control times)
- 4. Once step #3 is performed some Settling Time (tSETopnON) is required for the Open Load at ON Monitor (DIAG_OLON.OUT) to be available (40 µs [max]

Once available, an Open Load at ON corresponding to a channel in the Open Load at ON Diagnostic Control Register (DIAG_OLONEN.MUX) will be reported upon request. Only one channel is available at a time. All other channels will report "0".

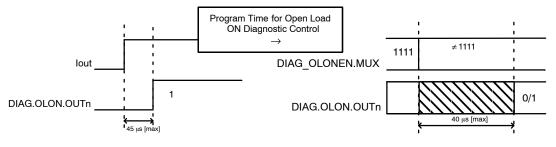


Figure 17. Direct Channel Time for Monitor Active

When operated with the output previously commanded on, the time delay from fault occurrence to report in the

Figure 18. Open Load ON Diagnostic Control Settling Time

register is the Open Load ON Channel Switching Time

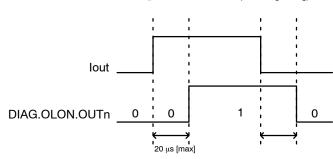
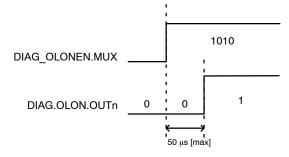


Figure 19. Direct Channel Event Delay Time


(20 µs [max]).

Diagnostic Loop

A diagnostic loop systematically tests all channels for Open Load at ON when 1010_B is programmed into the Open Load at ON diagnostic control (DIAG.OLONEN.MUX).

1. Direct Channels are tested first.

Channels are checked in numerical sequence with

Figure 20. First Direct Channel Diagnostic Completion Timing

Subsequent delay times after the 1^{st} diagnostic are triggered by the internal synchronization time plus the Channel Switching Time (30 µs [max]). This sequence is repeated until all channel are evaluated.

2. Channels configured for PWM operation are tested second with PWM Generator 0 tested first followed by PWM Generator 1

The timing for completion of the 1st diagnostic is triggered by the channel activation ON state from the PWM

off channels set to "0" after diagnostic.

The timing for completion of the 1^{st} diagnostic is different than the rest. This includes the internal synchronization time and the Settling Time (50 µs [max])

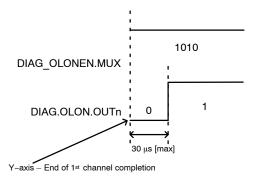


Figure 21. Subsequent Channel Loop Delay Times

Generator. Timing includes Settling Time for the trigger event (40 μ s [max]) plus any possible OFF state programmed by the user in the PWM generator (tPWM) as a low duty cycle event.

Once the PWM generator goes high there is a time delay for Waiting Time before mux activation (76 μ s [max]) plus Channel Switching Time (20 μ s [max]).

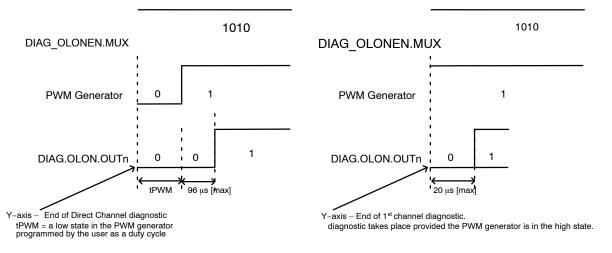


Figure 22. First MUX Channel diagnostic Completion Timing

Channel Switching Delays ($20 \ \mu s \ [max]$) are linked to all the subsequent channel diagnostic for Open Load at ON. The PWM Generator must be in its high state for diagnostic.

A channel in its off state must wait as per the first channel diagnostic which includes the delay for Waiting Time before

Figure 23. Subsequent Channel Delay Times

mux activation (76 μs [max]) plus Channel Switching Time (20 μs [max]).

If subsequent channels do not have the PWM generator high, the 1st mux Channel diagnostic Completion Timing applies.

Table 3. OLON BIT IN THE STANDARD DIAGNOSTICS REGISTER

DIAG_OLON.MUX	OLON Bit Description
$0000_{\text{B}} \rightarrow 0111_{\text{B}}$	Displays the Open Load at ON status for requested channel.
1010 _B	"OR" combination of all bits in the DIAG_OLON register while loop is running.
1111 _B	Show the latest diagnostic results
1000 _B , 1001 _B , 1011 _B , 1100 _B , 1101 _B , 1100 _B	Reserved – Should not be used. OLON Bit will set to "0".

FAULT HANDLING CHART

Fault	Driver Condition during Fault	Driver Condition after Parameters within Specified Limits	Fault Reporting	Output Register Clearing Requirements
Overload	Channel Latch Off	OUTn is off	ERRn is set	SPI clearing with HWCR_OCL.OUTn. Set to "1". After cleared output will immediately turn on if OUT.OUTn = 1
Overload (BIM Mode)	Autorestart for 40 ms	Normal Operation	ERRn is reported periodically in Bulb In–Rush restart time	No register reporting if bulb starts within 40 ms. Else wise reference "Overload" Fault
Open Load Off State	Per setting	Normal Operation	OLOFF is set	Load re-connected. or transition to the ON state.
Open Load On State	Per setting	Normal Operation	OLON is set	Load re-connected.
Thermal Shutdown	Channel Latch Off	OUTn is off.	ERRn is set	SPI clearing with HWCR_OCL.OUTn. Set to "1". After cleared output will immediately turn on if OUT.OUTn = 1.

Reverse Polarity Protection

In reverse polarity (OUTx > VSx), each channel can be on at nearly the forward Rdson. The channel stays in the ON (output = Rdson) or OFF (body diode) state as programmed before reverse polarity with VS powered. ON / OFF state is still programmable while in reverse polarity. Current is limited by only the external loads. Limiting for VDD and logic pins (IDLE, IN0, IN1, CSB, SCLK, SI, SO) require their own external protection (external series resistors) typically 100 Ω for VDD, 500 Ω for the SPI pins (CSB, SCLK, SI, SO) & IDLE, and 4.7 k Ω for IN0 & IN1 in the application.

A thermal shutdown event will set the appropriate ERRn bit during inverse current. Parametric deviations, but no functional deviations of unaffected channels are possible during any reverse polarity event. Protection mechanisms (thermal shutdown or overload) are not active in the reverse mode.

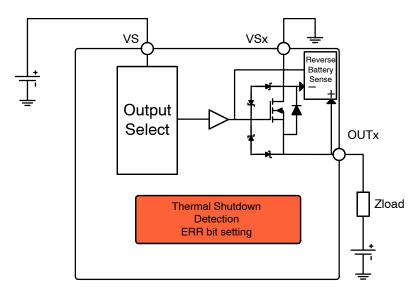


Figure 24. Reverse Polarity Control

In reverse polarity with VS also at ground, the device will turn on with Rdson comparable to the forward Rdson characteristic.

Loss of Ground

All channels are guaranteed off during a loss of ground event to insure unwanted activation of external loads with a missing ground connection to the module. Output Current is tested to be less than 2 mA during a loss of ground event.

Logic Inputs

IN0 and IN1 provide logic input control for the outputs for both normal mode and Limp Home Mode. Control is maintained with or without the digital supply input voltage. The NCV7755 mapping function allows for input control for any single output or any multiple outputs. A single output can be controlled by both IN0 and IN1 as an OR'd condition.

Mapping

There are two mapping functions allowed in the NCV7755. The first is for mapping of IN0 and IN1 to any

assigned outputs. The second is for mapping the two PWM generators to any assigned outputs.

Mapping of IN0 and IN1

INO and IN1 are designed to control two outputs (by default) when in Limp Home Mode (or after POR). INO controls channel 2 and IN1 controls channel 3 as an OR'd function between the INx controls, the OUT register and the PWM Generator. The mapping function of the NCV7755 allows connection to other outputs as well as to assign multiple outputs to the same input pin. The two mapping registers (MAPIN0 & MAPIN1) allow the flexibility for this. The Status Monitor Register (INST) can be monitored to display the logic level of the input pins (also in limp home mode). INO and IN1 can be controlled with or without VDD present making this ideal for Limp Home applications.

A single Output can be controlled by both IN0 and IN1 as an OR'd condition.

PWM Control

In addition to the two input pins (IN0 and IN1) which provide the capability for PWM control, the NCV7755 also includes two internal independent PWM generators which can be assigned to one or more channels.

The duty cycle and frequency of the internal PWM generators can be adjusted with the PWM Configuration Register. The base frequency can be adjusted (-35%, +35%) from the Base Frequency of 102 kHz. The Duty Cycle is adjusted with the PWM Generator 0/1 Configuration Register (with 0.39% resolution) and has 4 options, 100% duty cycle, Base Frequency/256 (corresponding f = 400 Hz), Base Frequency/512 (corresponding f = 200 Hz), Base Frequency/1024 (corresponding f = 100 Hz).

The PWM generator will complete a cycle if commanded to change via the SPI.

Mapping the PWM Generators

Channel mapping of the PWM generator is accomplished via the PWM mapping registers (PWM_OUT and PWM_MAP). PWM_OUT selects which outputs are to be driven by the PWM generator. PWM_MAP selects which of the two generators is connected to the outputs which are to be driven by the PWM generator.

Daisy Chain

The NCV7755 is capable of being daisy chain connected using the SPI connectivity. While the NCV7755 is a 16-bit device, it can be coupled with other 8-bit SPI devices. It is important to note compatible SPI devices must clock data in on the negative edge of the clock. Reference the SPI diagram.

Serial Connection

Daisy chain setups are possible with the NCV7755. The serial setup shown in Figure 25 highlights the NCV7755 along with any 16 bit device using a similar SPI protocol. Particular attention should be focused on the fact that the first 16 bits which are clocked out of the SO pin when the CSB pin transitions from a high to a low will be as per the SPI command summary table. Additional programming bits should be clocked in which follow this. The timing diagram shows a typical transfer of data from the microprocessor to the SPI connected IC's.

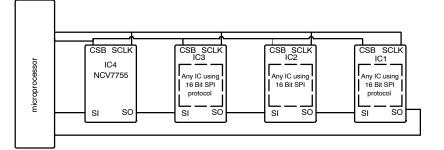


Figure 25. Serial Daisy Chain

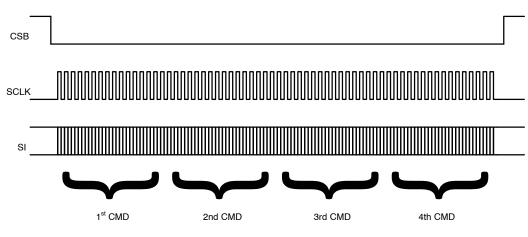


Figure 26. Serial Daisy Chain Timing Diagram

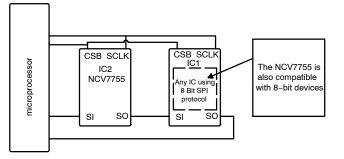
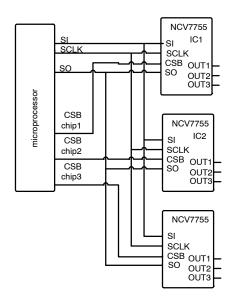

	CLK = 16 bits	CLK = 32 bits	CLK = 48 bits	CLK = 64 bits
IC4	1 st CMD	2 nd CMD	3 rd CMD	4 th CMD
IC3	IC4 DIAG	1 st CMD	2 nd CMD	3 rd CMD
IC2	IC3 DIAG	IC4 DIAG	1 st CMD	2 nd CMD
IC1	IC2 DIAG	IC3 DIAG	IC4 DIAG	1 st CMD
microprocessor	IC1 DIAG	IC2 DIAG	IC3 DIAG	IC4 DIAG

Table 4. SERIAL DAISY CHAIN DATA PATTERN

Table 4 refers to the transition of data over time of the Serial Daisy Chain setup of Figure 25 as word bits are shifted through the system. 64 bits are needed for complete transport of data in the example system. Each column of the table displays the status after transmittal of each word (in 16 bit increments) and the location of each word packet along the way.

8-bit Devices

The NCV77755 is also compatible with 8 bit devices due to the features of the frame detection circuitry. The internal bit counter of the NCV7755 starts counting clock pulses when CSB goes low. The 1st valid word consists of 16 bits and each subsequent word must be comprised of just 8-bits (reference the Frame Detection Section).



NOTE: Compatibility Note the SCLK timing requirements of the NCV7755. Data is sampled from SI on the falling edge of SCLK. Data is shifted out of SO on the rising edge of SCLK. Devices with similar characteristics are required for operation in a daisy chain setup.

Figure 27. Serial Daisy Chain with 8-bit Devices

Input Parallel Connection of ICs in a Daisy Chain Configuration

A more efficient way (time focused) to control multiple SPI compatible devices is to connect them in a parallel fashion and allow each device to be controlled in a multiplex mode. The Figure below shows a typical connection between the microprocessor or microcontroller and multiple SPI compatible devices. In a serial daisy chain configuration, the programming information for the last device in the serial string must first pass through all the previous devices. The parallel control setup eliminates that requirement, but at the cost of additional control pins from the microprocessor for each individual CSB (chip select bar) pin for each controllable device. Serial data is only recognized by the device that is activated through its' respective CSB pin. The Figure below shows the waveforms for typical operation when addressing IC1.

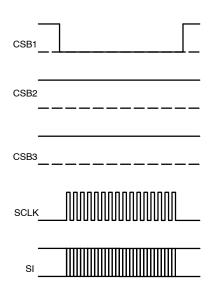
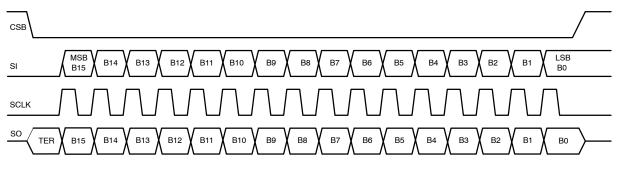


Figure 28.

SPI Communication

The SPI protocol works in conjunction with the 4 SPI pins, CSB, SCLK, SI, & SO.


- CSB Chip Select Bar A high to low transition signals the IC that data is about to be clocked into the IC. Data is then clocked in via the SCLK and SI pins. Data completion is signaled by a low to high transition on the CSB pin
- SCLK Serial clock input pin. Data bits from SI are shifted into the IC on the falling edge of SCLK. Data bits are shifted out of SO at the same time data bit are shifted into the IC. SCLK must be low when CSB makes a transition
- SI Serial input pin. Data is shifted into the IC via the SI pin with the SCLK pin. The MSB (most significant

pin) data is shifted in first. The Register Structure is composed of address and data bits with read/write designators

• SO – Serial output pin. The Diagnostics Register is clocked out of SO at the same time SI is input into the SI pin. The exception here is when operating in a daisy chain configuration when the 16-bit word clocked out the intended data for the next serial device

SPI Diagnostics

All 16 bit words from the SPI Diagnostics are read only bits. The SPI Diagnostics are returned following a received command.

Figure 29. Serial Peripheral Interface

The timing diagram highlighted above shows the SPI interface communication.

TER information retrieval is as simple as bringing CSB high-to-low. No clock signals are required although SI must be low when reading TER.

NOTES:

- 1. The MSB (most significant bit) is the first transmitted bit
- 2. Data is sampled from SI on the falling edge of SCLK
- 3. Data is shifted out from SO on the rising edge of SCLK
- 4. SCLK should be in a low state when CSB makes a transition
- 5. SI should be in a low state during TER retrieval time

SPI Operation

SPI operation works by sending the previous response frame back when a new frame has been clocked in unless

- 1. There was a transmission error in the previous frame
 - a. The response is the Standard diagnostic with the TER
- 2. Coming out of VDD POR.
 - a. The response is the INST register with the TER (8680h)
- 3. There is a syntax error.
 - a. The response to "11" is the Standard diagnostic
 - b. The response to "00" is the Standard diagnostic
 - c. The response to "reserved" or "not used" registers is the Standard diagnostic.

reference the Register Structure for 2 bit designators write commands = "10" read commands = "01"

SPI PROTOCOL

	SI	SO			
Communication	Frame A	Previous response			
	Frame B	Response to Frame A			
	Frame C	Response to Frame B			
Register Content Sent back to the microprocessor	Write Register A	Previous response			
	Read Register A	Standard Diagnostic			
	New command	Register A content			
Response after a transmission error	Frame A (error in transmission)	Previous response			
	New command	Standard Diagnostic +TER			
Response with VDD < POR	Frame A	SO = hi impedance			
Response after VDD POR	Frame B	INST Register +TER (8680h)			
	Frame C	Response to Frame B			
Response after Command Syntax or addressing Error	Frame A (error)	Previous Response			
	New command	Standard Diagnostic			

SPI Register Reset

The following will reset the SPI registers. Device transitions to Sleep Mode. This includes both of the conditions:

- a. INx and IDLE are all = "0"
- b. Both VDD and VS are in undervoltage
- NOTE: Execution of a reset command (HWCR.RST = "1") will clear (turn off) the outputs, but the ERR bits will not be cleared for safety reasons.

Frame Detection Transmission Error (TER)

The NCV7755 detects the number of bits transmitted after CSB goes low for verification of word integrity. Bit counts not a multiple of 8 (16 bit minimum) are reported as a fault on the TER bit. The transmission error information (TER) is available on SO after CSB goes low until the first rising

SCLK edge in the INST register, and the Standard Diagnostics Register.

In addition to unqualified bit counts setting TER = 1, the bit will also be set by

- 1. Coming out of UVLO for VS and VDD
- 2. Transitioning from Limp Home Mode to Active Mode
- 3. Transitioning from Sleep Mode to Idle Mode

The TER bit is cleared by sending any valid SPI command.

The TER bit is multiplexed with the SPI SO data and OR'd with the SI input to allow for reporting in a serial daisy chain configuration. A TER error bit as a "1" automatically propagates through the serial daisy chain circuitry from the SO output of one device to the SI input of the next.

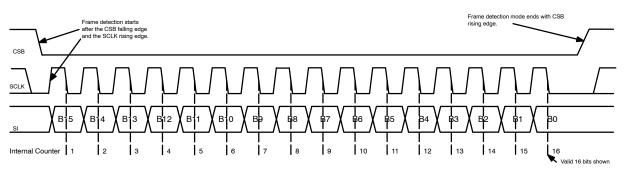
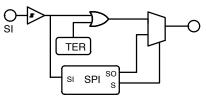
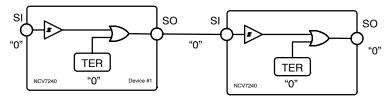
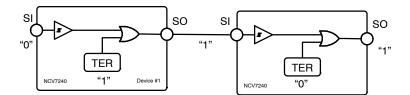
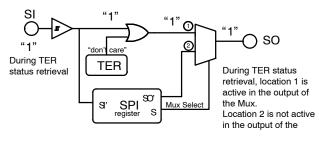



Figure 30. Frame Detection


TER False Reporting

SI should be in a low state during TER status retrieval (from CSB going low to the 1st rising edge of the clock pulse) reporting the previous transmission status. The Figures


below demonstrates what could happen if SI is a one during TER status retrieval. In this situation a "1" on SI propagates to SO regardless of the state of TER. Hence a transmission error (TER) could be reported when it is not true.


TER SPI Link

TER (no error)

TER Error Propagation

TER False Reporting

NOTE: TER is valid from CSB going low until the 1st low-to-high transition of SCLK to allow for propagation of the SI signal. For proper TER status retrieval, SI should be in a low state.

Figure 31.

REGISTERS

STANDARD DIAGNOSTICS REGISTER (LISTING SUMMARY)

		Description
VS Undervoltage Monitor	UVRVS	Reports undervoltage condition for VS. Reading Standard Diagnostics clears the register
VDD Lower Operating Range Monitor	LOPVDD	Reports VDD between 3 V and 4.5 V. Reading Standard Diagnostics clears the register
Operative Mode Monitor	MODE	Displays Active, Idle, and Limp modes
Transmission Error	TER	Reports error from modulo 8/16 counter
Open Load ON State Diagnostics	OLON	Reports open load when requested in On mode
Open Load OFF State Diagnostics	OLOFF	Reports open load when requested in Off mode
Overload / Overtemperature Diagnostics	ERRn	Reports Overload or Overtemperature conditions

REGISTERS (LISTING SUMMARY)

Register Name	Bits	Function
Power output control register	OUT.OUTn	Output control On or Off
Bulb Inrush Mode	BIM.OUTn	Sets latchoff or restart mode
Mapping IN0	MAPIN0.OUTn	Mapping of IN0 to OUTx
Mapping IN1	MAPIN1.OUTn	Mapping of IN1 to OUTx
Input Status Monitor	INST	Reports transmission bit errors Reports INx input pin status
Open Load Diagnostic Current Control	DIAG_IOL.OUTn	Enables diagnostic current
Output Status Monitor	DIAG_OSM.OUTn	Reports open circuit conditions in OFF state. This reporting is synonymous with short to battery (shorted output FET) conditions
Open Load On Monitor	DIAG_OLON.OUTn	Reports open circuit conditions in ON state
Open Load On Diagnostic Control	DIAG_OLONEN.MUX	Sets open load On monitoring
Hardware Configuration Register	HWCR.ACT HWCR.RST HWCR.PAR	Active Mode transitions SPI register reset Sets parallel channel operation
Output Clear Latch	HWCR_OCL.OUTn	Clears the error latch for the selected output
PWM Configuration Register	HWCR_PWM.ADJ HWCR_PWM.PWM1 HWCR_PWM.PWM0	Base PWM frequency adjust PWM Generator 1 activation PWM Generator 0 activation
PWM Generator Configuration 0	PWM_CR0.FREQ	Sets internal divide by clock of PWM generator for Generator 0
	PWM_CR0.DC	Sets PWM Generator 0 duty cycle
PWM Generator Configuration 1	PWM_CR1.FREQ	Sets internal divide by clock of PWM generator for Generator 1
	PWM_CR1.DC	Sets PWM Generator 1 duty cycle
PWM Generator Output Control	PWM_OUTn	Selects active the PWM generator for OUTx
PWM Generator Output Mapping	PWM_MAP.OUTn	Selects one of the two PWM generators

SPI COMMAND SUMMARY

Requested Operation	Frame Sent (SI Pin)	Frame Out (from SO Pin) with the Next Command
Read Standard Diagnostics	0xxxxxxxxxx01 _B	0dddddddddddd _B
Write 8-bit register	10aaaabbccccccccB	0dddddddddddd _B
Read 8-bit register	01aaaabbxxxxx10 _B	10aaaabbcccccccc _B
Write 10-bit register	10aaaaccccccccc _B	0dddddddddddd _B
Read 10-bit register	01aaaaxxxxxxx10 _B	10aaaaccccccccc _B

x = don't care

a = ADDR0 field

b = ADDR1 field

c = register content d = diagnostic bit

HEX SPI COMMAND QUICK LIST

Register	Read Command	Write Command	Content Written	
OUT	4002 _H	80XX _H	$XX_{H} = xxxxxxx_{B}$	
BIM	4102 _H	81XX _H	XX _H = xxxxxxx _B	
MAPINO	4402 _H	84XX _H	XX _H = xxxxxxx _B	
MAPIN1	4502 _H	85XX _H	XX _H = xxxxxxx _B	
INST	4602 _H	(read only)	_	
DIAG_IOL	4802 _H	88XX _H	$XX_{H} = xxxxxxx_{B}$	
DIAG_OSM	4902 _H	(read only)	XX _H = xxxxxxx _B	
DIAG_OLON	4A02 _H	8AXX _H	XX _H = xxxxxxx _B	
DIAG_OLONEN	4B02 _H	8BXX _H	XX _H = xxxxxxx _B	
HWCR	4C02 _H	8CXX _H	$XX_{H} = xxxxxxx_{B}$	
HWCR_OCL	4D02 _H	8DXX _H	XX _H = xxxxxxx _B	
HWCR_PWM	4E02 _H	8EXX _H	XX _H = xxxxxxx _B	
PWM_CR0	5002 _H	90XX _H 91XX _H 92XX _H 93XX _H	$0XX_{H} = 00xxxxxx_{B}$ $1XX_{H} = 01xxxxxx_{B}$ $2XX_{H} = 10xxxxxx_{B}$ $3XX_{H} = 11xxxxxx_{B}$	
PWM_CR1	5402 _H	94XX _H 95XX _H 96XX _H 97XX _H	$0XX_{H} = 00xxxxxx_{B}$ $1XX_{H} = 01xxxxxx_{B}$ $2XX_{H} = 10xxxxxx_{B}$ $3XX_{H} = 11xxxxxx_{B}$	
PWM_OUT	6402 _H	A4XX _H	XX _H = xxxxxxx _B	
PWM_MAP	6502 _H	A5XX _H	XX _H = xxxxxxx _B	

SPI STANDARD DIAGNOSTICS

A Read Standard diagnostics command provides a response with a snapshot of the status of all the monitored faults on the IC. Further fault details (channel fault number etc...) can be reviewed in the subsequent register structure banks.

All 16 bit words from the SPI Diagnostics are read only bits. The SPI Diagnostics are returned with the next command after a *Read Standard Diagnostics Command* $0xxxxxxxx01_B$ where x = don't care.

Table 5. SPI DIAGNOSTIC TABLE

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	UVRVS	LOPVDD	MO	DE	TER	OLON	OLOFF				ER	R			

Default after power up or reset is the INST register including TER = 1_{B} . The TER bit will afterward display the proper transmission state.

Table 6. DETAILED DIAGNOSTICS REGISTER DESCRIPTION

Field	Bits	Description
UVRVS	14	VS Undervoltage Monitor 0 _B No undervoltage condition on VS 1 _B (default) There was an undervoltage VS condition since the last Standard Diagnostics request
LOPVDD	13	VDD Lower Operating Range Monitor0BVDD is above 4.5 V1B(default) VDD was below 4.5 V since the last Standard Diagnostics request
MODE	12,11	Operative Mode Monitor 00 _B (reserved) 01 _B Limp Home Mode 10 _B Active Mode 11 _B (default) Idle Mode
TER	10	$ \begin{array}{l} \mbox{Transmission Error} \\ 0_B & \mbox{Previous transmission was successful. (modulo 16 + n*8 where n = 0,1,2)} \\ 1_B & (default after reset) \mbox{Previous transmission failed} \\ \mbox{The first frame after a reset is the INST register with TER = 1_B} \\ \mbox{The second frame (when the Standard Diagnostics Register is requested) is the Standard} \\ \mbox{Diagnostics register with TER = 0_B provided the previous transmission was good} \end{array} $
OLON	9	Open Load On State Diagnostics 0 _B (default) No Open Load ON detected 1 _B Open Load On detected
OLOFF	8	Open Load Off State Diagnostics 0 _B (default) No Open Load Off detected 1 _B Open Load Off detected
ERR	0-7	Overload / Overtemperature Diagnostics 0 _B (default) No failure detected 1 _B Overload or Overtemperature was detected

REGISTER STRUCTURE (all registers except PWM_CR0/1)(8 bit DATA register)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
R= 0 W=1			ADE	DR0		ADE	DR1	DATA								

12. Read and Write designators require two bits (14 and 15)(r = read, w = write).

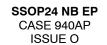
REGISTER STRUCTURE (PWM_CR0/1 registers)(10 bit DATA register)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R=0	R=1		ADE	DR0		DATA									
W=1	W=0														

13. Read and Write designators require two bits (14 and 15) (r = read, w = write).

Table 7. DETAILED REGISTER STRUCTURE

Register Name	ADDR0	ADDR1	Туре	Purpose
OUT	0000 _B	00 _B	r/w	Power Output Control Register bits (OUT.OUT.n) 0_B (default) Output is Off 1_B Output is On DATA = Channel number 0 to 7
BIM	0000 _B	01 _B	r/w	Bulb Inrush Mode bits (BIM.OUTn) 0_B (default) Output latches off with overload 1_B Output restarts with overloadDATA = Channel number 0 to 7
MAPINO	0001 _B	00 _B	r/w	Input Mapping (IN0) bits (MAPIN0.OUTn) O_B (default) No connection to input pin 1_B Output is connected to the input pin DATA = Channel number 0 to 7 Note – Channel 2 has the corresponding bit set to "1" by default
MAPIN1	0001 _B	01 _B	r/w	Input Mapping (IN1) bits (MAPIN1.OUTn) O_B (default) No connection to input pin 1_B Output is connected to the input pin DATA = Channel number 0 to 7 Note – Channel 3 has the corresponding bit set to "1" by default
INST	0001 _B	10 _B	r	Input Status Monitor TER bit bit (TER) 0 _B Previous transmission was successful 1 _B (default) Previous transmission failed Inx Bit bits (INST.RES) (6:2) – reserved, bits (INST.INn) (1:0) 0 _B (default) The input pin is set low
DIAG_IOL	0010 _B	00 _B	r/w	1_B The input pin is set high 0_B Copen Load Diagnostic Current Control bits (DIAG_IOL.OUTn) 0 0_B (default) Diagnostic current is not enabled 1_B Diagnostic current is enabled DATA = Channel number 0 to 7
DIAG_OSM	0010 _B	01 _B	r	Output Status Monitor bits (DIAG_OSM.OUTn) 0_B (default) Voutx is less than the Output Status Monitor Threshold Voltage 3.3 V (typ) 1_B Voutx is more than the Output Status Monitor Threshold Voltage 3.3 V (typ) DATA = Channel number 0 to 7
DIAG_OLON	0010 _B	10 _B	r	Open Load On Monitor bits (DIAG_OLON.OUTn) 0_B (default) Normal operation or diagnostic performed with channel off 1_B Open load On detected DATA = Channel number 0 to 7


Table 7. DETAILED REGISTER STRUCTURE

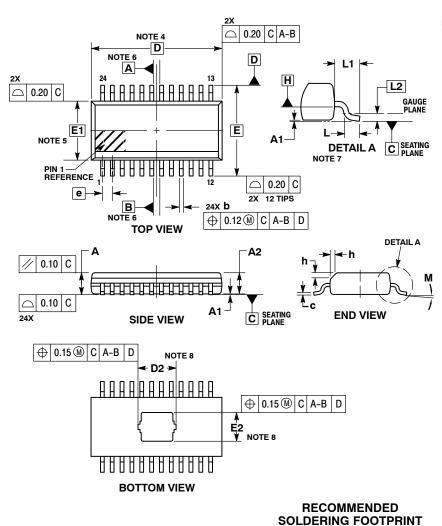

Register Name	ADDR0	ADDR1	Туре	Purpose
DIAG_OLONEN	0010 _B	11 _B	r/w	Open Load On Diagnostic Controlbits (7:4) - reserved,bits 1000_B , 1001_B , 1011_B , 1100_B , 1101_B , 1100_B - reservedbits 1000_B , 1001_B , 1011_B , 1100_B , 1101_B , 1100_B - reservedbits (DIAG_OLONEN.MUX) (3:0) 0000_B Open Load ON active channel 0 0001_B Open Load ON active channel 1 0010_B Open Load ON active channel 2 0011_B Open Load ON active channel 3 0100_B Open Load ON active channel 4 0101_B Open Load ON active channel 5 0110_B Open Load ON active channel 6 0111_B Open Load ON active channel 7 1010_B Open Load ON Diagnostic Loop Start 1111_B (default) Open Load ON not active
HWCR 0011 _B		00 _B	r/w	Hardware Configuration Register bits (5:4) – reserved Active Mode bits (HWCR.ACT) (7) 0 _B (default) Normal operation or device leaves Active Mode 1 _B Device enters Active Mode
				SPI Register Reset bits (HWCR.RST) (6) 0 _B (default) Normal operation 1 _B Reset command executed ERRn bits are not cleared by a reset command for safety reasons Channels Operating in Parallel bits (HWCR.PAR) (3:0) 0 _B (default) Normal operation 1 _B Two neighboring channels have overload and overtemperature
HWCR_OCL	0011 _B	01 _B	w	$\label{eq:synchronized} \hline $$ Synchronized$ Output Latch (ERRn) Clear bits (HWCR_OCL.OUTn) $$ O_B$ (default) Normal operation $$ 1_B$ Clear the error latch for the selected output $$ The HWCR_OCL.OUTn bit is set back to "0" internally after de-latching the channel $$ DATA = Channel number 0 to 7$ }$
HWCR_PWM	0011 _B	10 _B	r/w	PWM Configuration Register (HWCR_PWM.RES) (3:2) (reserved) Bit increment changes subject to change after 1 st silicon!!! PWM Adjustment bits (HWCR_PWM.ADJ) (7:4) HWCR_PWM.ADJ Bit Absolute delta for fINT Relative delta between steps 0000B (reserved) 0001B Base Frequency -35.0% 0010B Base Frequency -35.0% 0101B Base Frequency -25.0% 0100B Base Frequency -20.0% 0101B Base Frequency -15.0% 0100B Base Frequency -15.0% 0110B Base Frequency -5.0% 0101B Base Frequency -5.0% 0101B Base Frequency -10.0% 0111B Base Frequency -5.0% 1000B Base Frequency +10.0% 1010B Base Frequency +15.0% 1010B Base Frequency +25.0% 1100B Base Frequency +25.0% 1101B Base Frequency +35.0 (137.7 kHz[typ])

Table 7. DETAILED REGISTER STRUCTURE

Register Name	ADDR0	ADDR1	Туре	Purpose	
				PWM1 Active bits (HWCR_PWM.PWM1) (1) 0 _B (default) PWM Generator 1 not active 1 _B PWM Generator 1 active	
				PWM0 Active (HWCR_PWM.PWM0) (0) 0 _B (default) PWM Generator 0 not active 1 _B PWM Generator 0 active	
PWM_CRO	0100 _B	00 _B r/w PWM Generator 0 Configuration		PWM Generator 0 Configuration	
				CRO Frequency (PWM_CRO.FREQ) (9:8) 00B Internal clock divided by 1024 (100 Hz) (default) 01B Internal clock divided by 512 (200 Hz) 10B Internal clock divided by 256 (400 Hz) 11B 100% Duty Cycle.	
				CR0 generator on/off control (PWM_CR0.DC) (7:0) 00000000 _B PWM generator is off. (default) 11111111 _B PWM generator is On (99.61% DC).	
PWM_CR1	0101 _B		r/w	PWM Generator 1 Configuration	
				CR1 Frequency(PWM_CR1.FREQ) (9:8)00BInternal clock divided by 1024 (100Hz) (default)01BInternal clock divided by 512 (200 Hz)10BInternal clock divided by 256 (400 Hz)11B100% Duty Cycle	
				CR1 generator on/off control (PWM_CR1.DC) (7:0) 00000000B PWM generator is off. (default) 11111111B PWM generator is On (99.61% DC)	
PWM_OUT	1001 _B	00 _B	r/w	PWM Generator Output Control (PWM_OUT.OUTn) 0B (default) The selected ouput is not driven by one of the two PWM generators 1B The selected output is connected to a PWM generator DATA = Channel number 0 to 7	
PWM_MAP	1001 _B	01 _B	r/w	PWM Generator Output Mapping (PWM_MAP.OUTn) 0_B (default) The selected output is connected to PWM Generator 0 1_B The selected output is connected to PWM Generator 1DATA = Channel number 0 to 7Works in conjunction with PWM_OUT	

PACKAGE DIMENSIONS

2.72 . ^{24X} 1.15 2.19 6.40 ۷ 1 0000000000000 ^{24X} 0.40

0.65 PITCH

DIMENSIONS: MILLIMETERS

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME 2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL E 0.10 MAX. AT MMC. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. DIMENSION & APPLIES TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 TO 0.25 FROM THE LEAD TIP.
- DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD 4 FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION D IS
- DETERMINED AT DATUM PLANE H. DIMENSION E1 DOES NOT INCLUDE INTERLEAD 5 FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE. DIMENSION E1 IS DETERMINED AT DA-TUM PLANE H.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM
- DATIONS A AND B ARE DETERMINED AT DATI PLANE H. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY. CONTOURS OF THE THERMAL PAD ARE UN-CONTROLLED WITHIN THE REGION DEFINED 7.
- 8. BY DIMENSIONS D2 AND E2.

	MILLIMETERS			
DIM	MIN	MAX		
Α		1.75		
A1	0.00	0.10		
A2	1.10	1.65		
b	0.19	0.30		
C	0.09	0.20		
D	8.64 BSC			
D2	2.37	2.67		
E	6.00 BSC			
E1	3.90 BSC			
E2	1.79	1.99		
е	0.65 BSC			
h	0.25	0.50		
L	0.40	0.85		
L1	1.00 REF			
L2	0.25 BSC			
Μ	0°	8°		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Order Lite Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

 \diamond