Self Protected High Side Driver with Temperature Shutdown and Current Limit

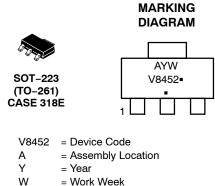
The NCV8452 is a fully protected High–Side driver that can be used to switch a wide variety of loads, such as bulbs, solenoids and other activators. The device is internally protected from an overload condition by an active current limit and thermal shutdown.

Features

- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- CMOS (3 V/5 V) Compatible Control Input
- Overvoltage Protection and Shutdown
- Output Voltage Clamp for Inductive Switching
- Under Voltage Shutdown
- Loss of Ground Protection
- ESD Protection
- Reverse Battery Protection (with external resistor)
- Very Low Standby Current
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial

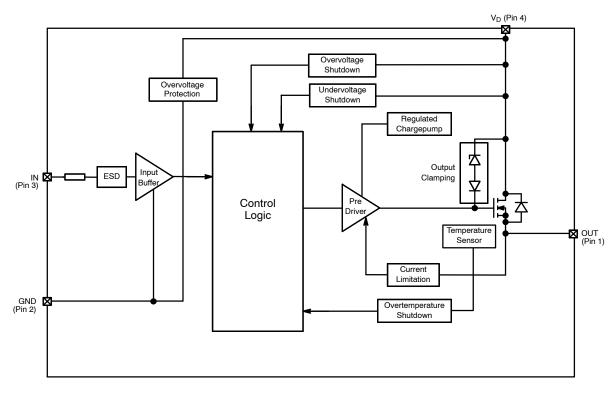

PRODUCT SUMMARY

Symbol	Characteristics	Value	Unit
V _{OV}	Overvoltage Protection	41	V
VD	Operation Voltage	5 – 34	V
R _{ON}	On-State Resistance	200	mΩ
I _{ILIM}	Output Current Limit	1.0	А

ON Semiconductor®

www.onsemi.com

= vvork vveek = Pb-Free Package


= FD-Flee Fackage

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

1

PACKAGE PIN DESCRIPTION

Pin #	Symbol	Description
1	OUT	Output
2	GND	Ground
3	IN	Logic Level Input
4	VD	Supply Voltage

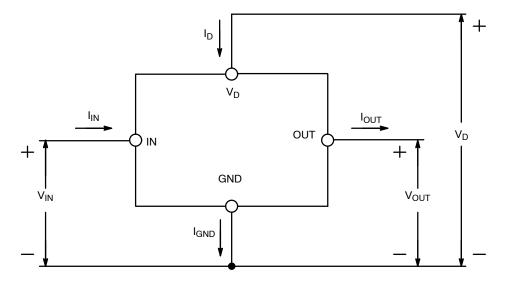


Figure 2. Voltage and Current Definition

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	V _D	40	V
Peak Transient Input Voltage (Load Dump 37.5 V, V _D = 13.5 V, ISO7637-2 pulse5) (Note 1)	V _{peak}	51	V
Input Voltage	V _{IN}	-5 to V _D	V
Input Current	I _{IN}	±5	mA
Output Current	Ι _{ΟUT}	Internally Limited	А
Power Dissipation $@T_A = 25^{\circ}C$ (Note 3) $@T_A = 25^{\circ}C$ (Note 4)	PD	1.19 1.76	W
Electrostatic Discharge (Note 1) (HBM Model 100 pF / 1500 Ω) Input Output V _D		±1 ±5 ±5	kV
Single Pulse Inductive Load Switch Off Energy (Note 1) (L = 4.55 H, V _D = 13.5 V; I _L = 0.5 A, T _{Jstart} = 25°C)	E _{AS}	0.8	J
Operating Junction Temperature	ТJ	-40 to +150	°C
Storage Temperature	T _{storage}	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Not subjected to production testing
Reverse Output current has to be limited by the load to stay within absolute maximum ratings and thermal performance.

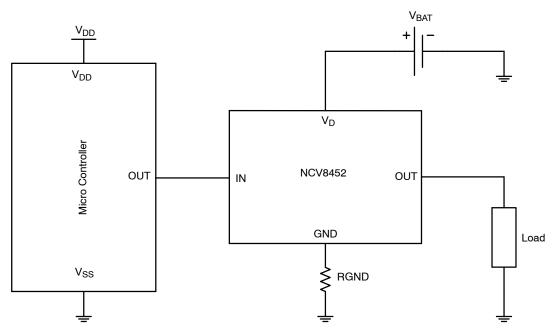
3. Minimum pad.

4. 1 in square pad size, FR-4, 1 oz Cu.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max Value	Unit
Thermal Resistance (Note 5) Junction-to-Soldering Point Junction-to-Ambient (Note 6) Junction-to-Ambient (Note 7)	R _{thJS} R _{thJA} R _{thJA}	10 105 71	°C/W °C/W °C/W

5. Reverse Output current has to be limited by the load to stay within absolute maximum ratings and thermal performance.

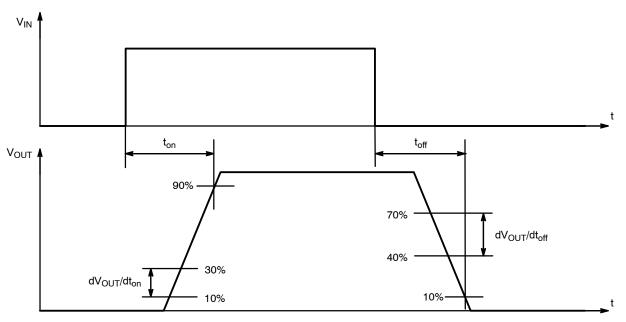
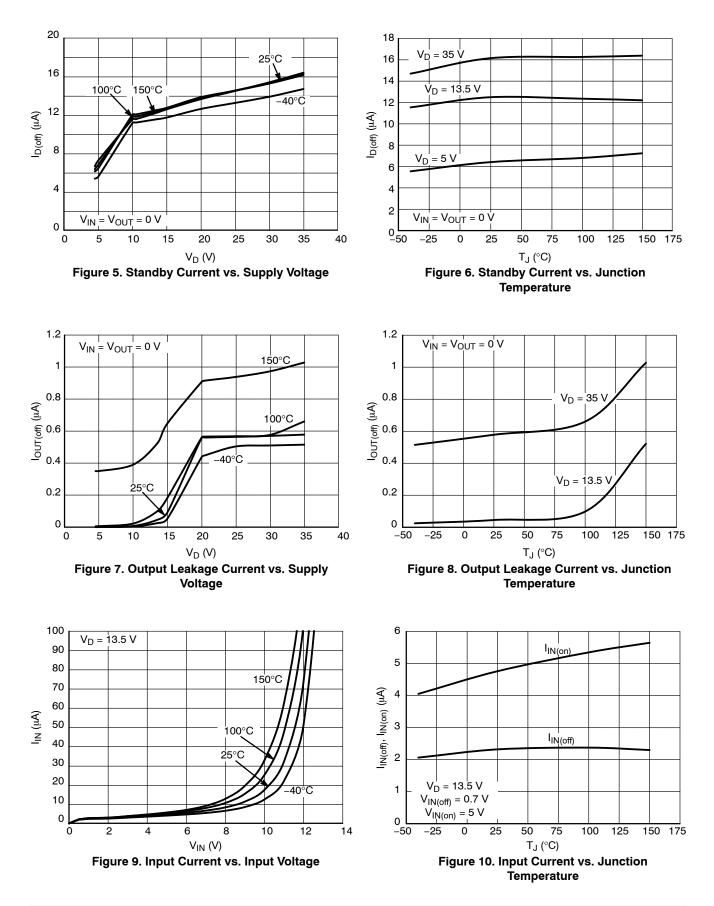
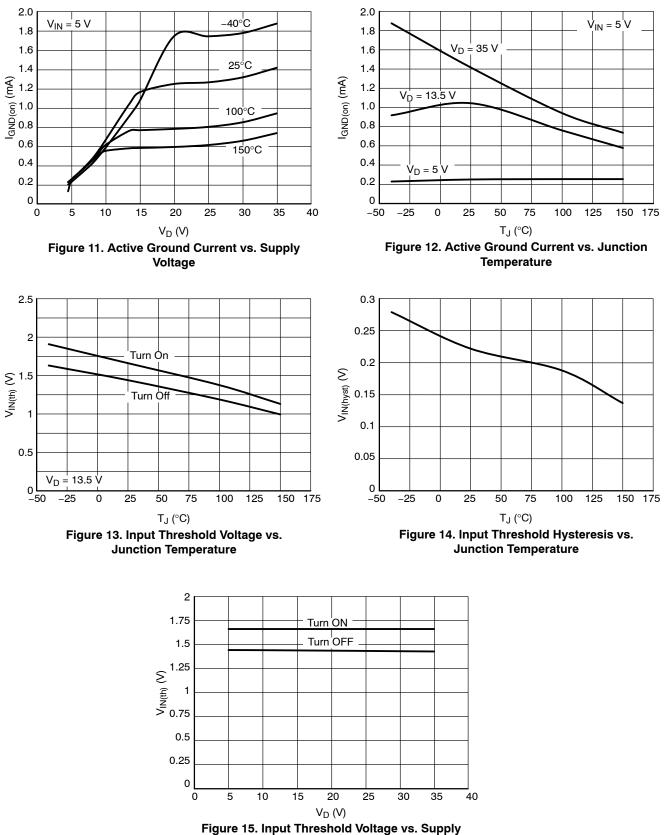
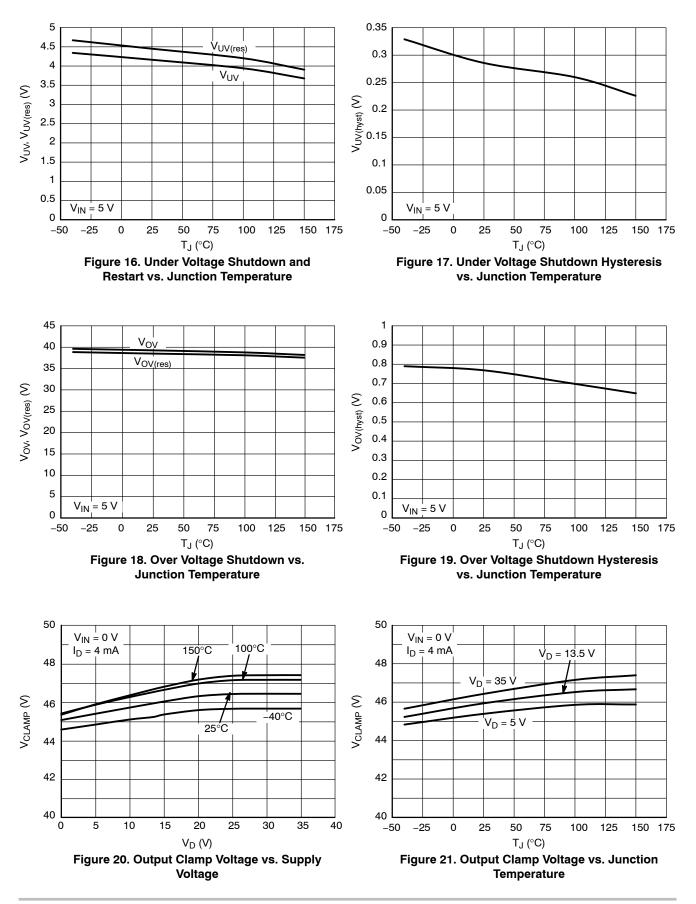

6. Minimum pad.

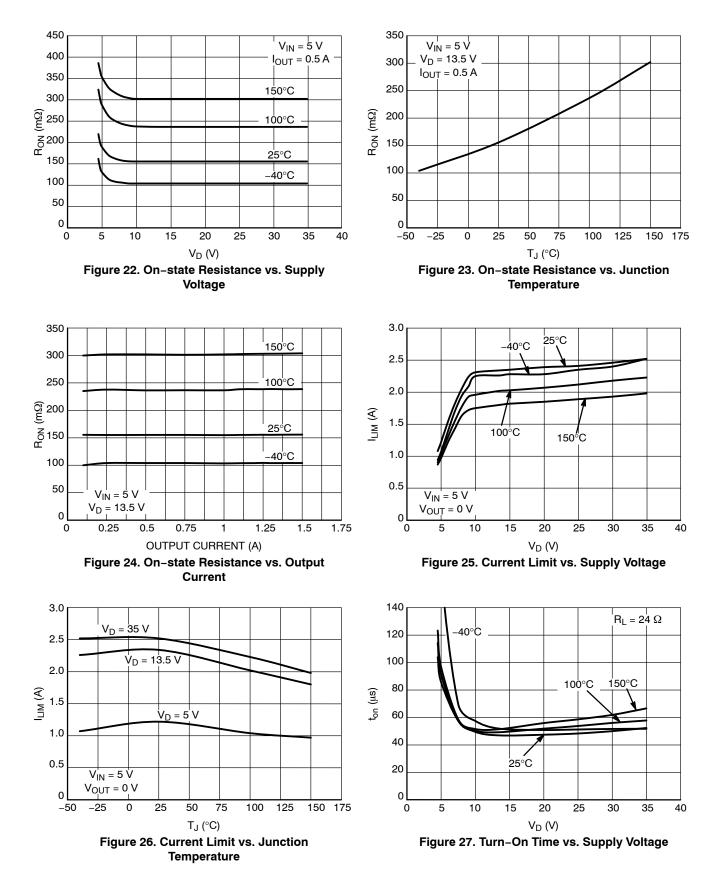
7. 1 in square pad size, FR-4, 1 oz Cu.

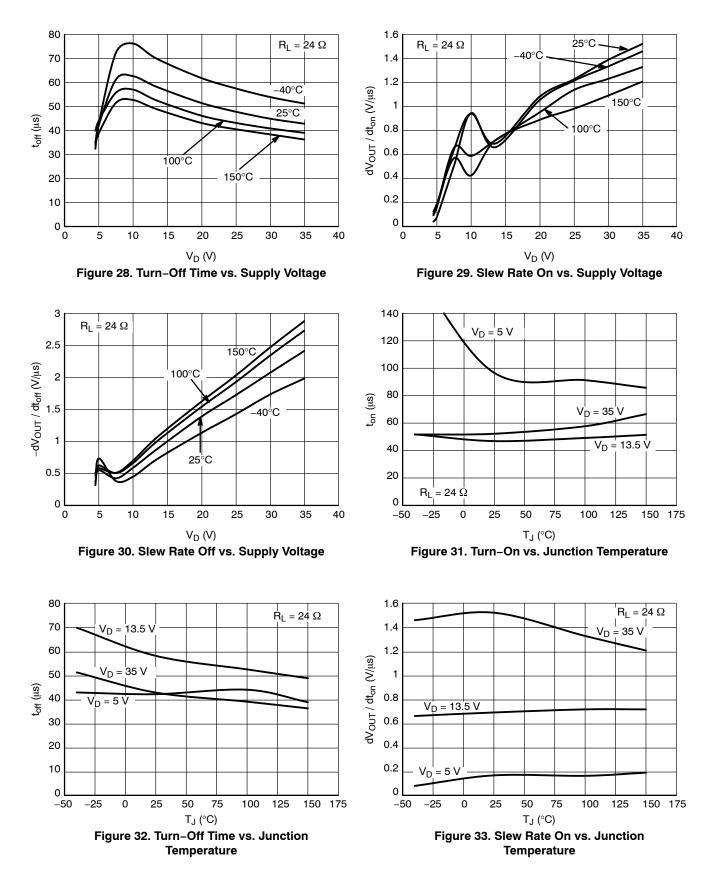
ELECTRICAL CHARACTERISTICS (V_D = 13.5 V; $-40^{\circ}C < T_J < 150^{\circ}C$ unless otherwise specified)

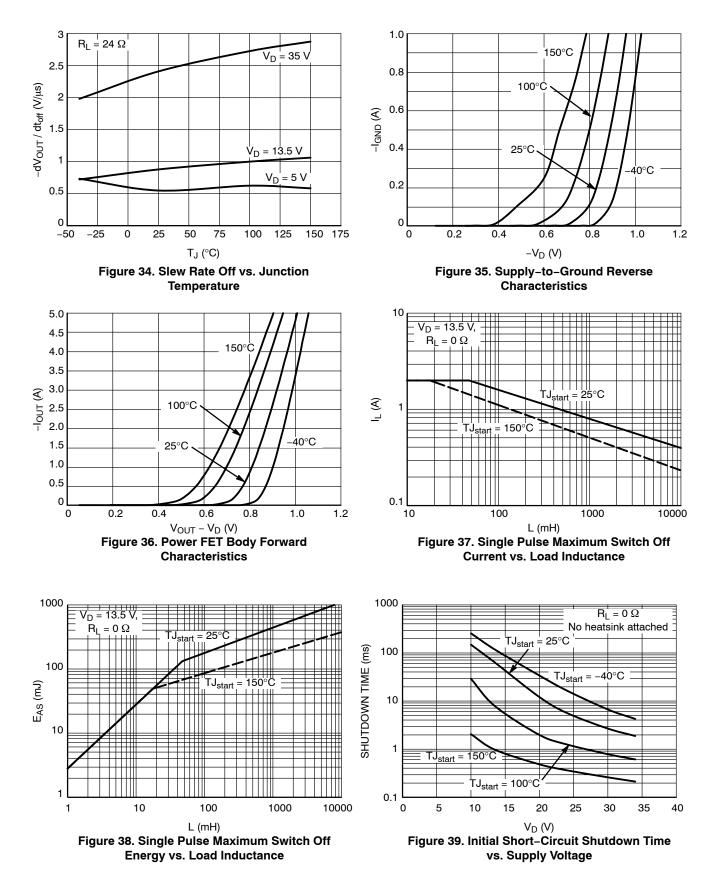
			Value			
Rating	Symbol	Conditions	Min	Тур	Max	Unit
Operating Supply Voltage	VD		5	-	34	V
Undervoltage Shutdown	V _{UV}		2.5		5.5	V
Undervoltage Restart	V _{UV(res)}				6.0	V
Undervoltage Hysteresis	V _{UV(hyst)}			0.3		
Overvoltage Shutdown	V _{OV}		34		42	V
Overvoltage Restart	V _{OV(res)}		33			
On-state Resistance	R _{ON}	$I_{OUT} = 0.5 \text{ A}, V_{IN} = 5 \text{ V}, T_J = 25^{\circ}\text{C}$ $I_{OUT} = 0.5 \text{ A}, V_{IN} = 5 \text{ V}, T_J = 150^{\circ}\text{C}$		160 -	200 400	mΩ
Standby Current	I _{D(off)}	V _{IN} = V _{OUT} = 0 V		12	25	μΑ
Active Ground Current	I _{GND(on)}	V _{IN} = 5 V		1	1.8	mA
Output Leakage Current	I _{OUT(off)}	V _{IN} = 0 V			2	μΑ
INPUT CHARACTERISTICS						
Input Voltage – Low	V _{IN(low)}				0.8	V
Input Voltage – High	V _{IN(high)}		2.2			V
Off State Input Current	I _{IN(off)}	V _{IN} = 0.7 V			10	μΑ
On State Input Current	I _{IN(on)}	V _{IN} = 5.0 V			10	μΑ
Input Threshold Hysteresis	V _{IN(hyst)}			0.3		V
Input Resistance	RI		1.5	2.8	3.5	kΩ
SWITCHING CHARACTERISTICS						
Turn-On Time	t _{on}	to 90% V _{OUT} , R _L = 24 Ω		60	120	μs
Turn-Off Time	t _{off}	to 10% V _{OUT} , R _L = 24 Ω		60	120	μs
Slew Rate On	dV _{OUT} /dt _{on}	10% to 30% V _{OUT} , R _L = 24 Ω		1	4	V/μs
Slew Rate Off	dV _{OUT} /dt _{off}	70% to 40% V _{OUT} , R _L = 24 Ω		1	4	V/μs
REVERSE BATTERY (Note 8)						
Reverse Battery	-V _D	Requires a 150 Ω Resistor in GND Connection			32	V
Forward Voltage	V _F	T _J = 150°C		0.6		V
PROTECTION FUNCTIONS (Note 9)						
Temperature Shutdown (Note 8)	TSD		150	175	200	°C
Temperature Shutdown Hysteresis (Note 8)	TSD _(hyst)			10		°C
Overvoltage Protection	V _{OV}	I _D = 4 mA	41			V
Switch Off Output Clamp Voltage	V _{CLAMP}	I _D = 4 mA, V _{IN} = 0 V	V _D - 41	V _D – 47		V
Output Current Limit Initial Peak	I _{LIM}	$V_D = 20 \text{ V}, \text{ T}_J = 25^{\circ}\text{C}$ $\text{T}_J = -40^{\circ}\text{C} \text{ to}150^{\circ}\text{C}$	1.0	1.8 -	3	А

Not subjected to production testing
To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper hardware/software strategy. If the devices operates under abnormal conditions this hardware/software solutions must limit the duration and number of activation cycles.


Figure 4. Resistive Load Switching Waveform





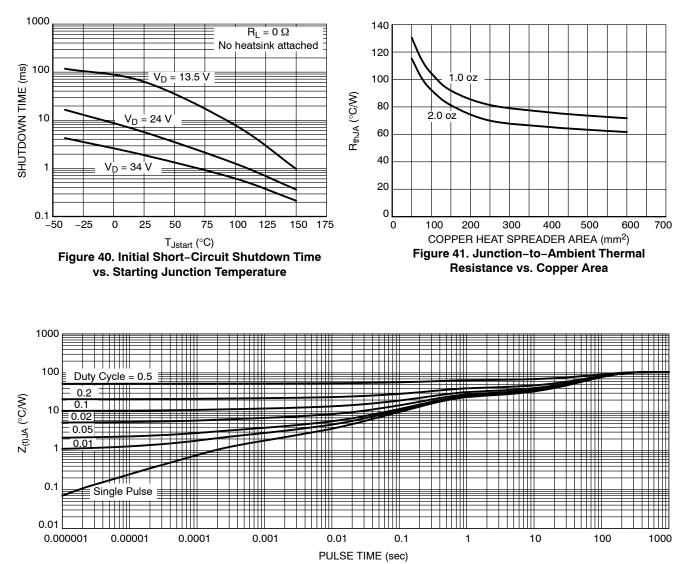


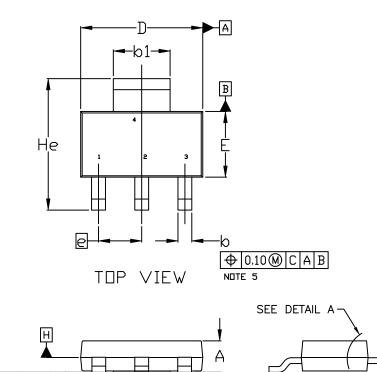
Figure 42. Junction-to-Ambient Transient Thermal Impedance (minimum pad size)

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8452STT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NCV8452STT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DATE 02 OCT 2018



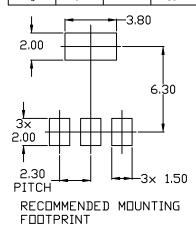
SCALE 1:1

0.10 C

A1

-11

SIDE VIEW


DETAIL A

NDTES:

SOT-223 (TO-261) CASE 318E-04 ISSUE R

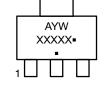
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST PDINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS			
DIM	MIN. NDM. MAX.			
A	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
b	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
с	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30 3.50		3.70	
e		2.30 B2C		
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0*		10*	

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-223 (TO-261) PA		PAGE 1 OF 2		
ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.					

FRONT VIEW

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


© Semiconductor Components Industries, LLC, 2018

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	Style 9: Pin 1. Input 2. Ground 3. Logic 4. Ground	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	Style 12: Pin 1. Input 2. Output 3. NC 4. Output	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

- A = Assembly Location
- Y = Year
- W = Work Week
- XXXXX = Specific Device Code
- = Pb-Free Package
- (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2		
ON Semiconductor and 🕕 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the outbills of its products herein to be and on the changes without further notice to gave products herein. ON semiconductor makes no warranty, representation or guarantee regarding the outbills of t					

the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit Phone: 421 33 790 2910

For additional information, please contact your local

Sales Representative