Special Function Logic Gate

Description

The NLSF457 is a single special function gate in tiny footprint package.

Features

- Designed for 1.65 V to 5.5 V V_{CC} Operation
- 2.7 ns t_{PD} at 5 V (typ)
- Inputs/Outputs Over–Voltage Tolerant up to 5.5 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.0 V
- Available in 1.45 mm x 1.0 mm UDFN8 Package
- Chip Complexity < 100 FETs
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

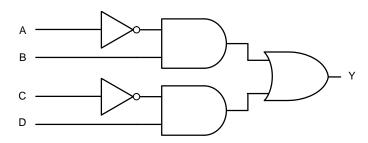


Figure 1. Logic Diagram

ON Semiconductor®

www.onsemi.com

UDFN8, 1.45x1, 0.35P CASE 517EB

MARKING DIAGRAM

AA = Specific Device Code
M = Assembly Operation Code*

= Pb-Free Package

(Note: Microdot may be in either location)
*Assembly Operation Code orientation and/or may
vary depending upon manufacturing location.

PIN ASSIGNMENT

1]	8	Vcc
2	7	Υ
3	6	Α
4	5	В
		2 7 7

Pin	Name	Description
1	nc	No Connect
2	D	Input
3	С	Input
4	GND	Ground
5	В	Input
6	Α	Input
7	Y	Output
8	V _{CC}	Power Supply

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

Table 1. FUNCTION TABLE

	Input					
Α	В	С	D	Y		
0	0	0	0	0		
0	0	0	1	1		
0	0	1	0	0		
0	0	1	1	0		
0	1	0	0	1		
0	1	0	1	1		
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0	0		
1	0	0	1	1		
1	0	1	0	0		
1	0	1	1	0		
1	1	0	0	0		
1	1	0	1	1		
1	1	1	0	0		
1	1	1	1	0		

MAXIMUM RATINGS

Symbol	Paramo	Ratings	Unit		
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V	
V _{IN}	DC Input Voltage		-0.5 to +6.5	V	
V _{OUT}	DC Output Voltage	Active–Mode (High or Low State)		V	
		Tri-State Mode (Note 1)	-0.5 to +6.5		
		Power–Down Mode (V _{CC} = 0 V)	-0.5 to +6.5	1	
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA	
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA	
l _{OUT}	DC Output Source/Sink Current	OC Output Source/Sink Current			
I _{CC} or I _{GND}	DC Supply Current Per Supply Pin or Grou	±100	mA		
T _{STG}	Storage Temperature Range	-65 to +150	°C		
TL	Lead Temperature, 1 mm from Case for 10	Seconds	260	°C	
TJ	Junction Temperature Under Bias		+150	°C	
$\theta_{\sf JA}$	Thermal Resistance (Note 2)	UDFN8	150	°C/W	
P _D	Power Dissipation in Still Air at 125°C	UDFN8	833	mW	
MSL	Moisture Sensitivity	•	Level 1		
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in		
V _{ESD}	ESD Withstand Voltage (Note 3)	Charged Device Model	> 2000	V	
		Human Body Model	> 1000		
I _{LATCHUP}	Latchup Performance (Note 4)		±100	mA	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Applicable to devices with outputs that may be tri-stated.
- Measured with minimum pad spacing on an FR4 board, using 10mm by 1inch, 2 ounce copper trace no air flow.
 HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.
- 4. Tested to EIA/JESD78 Class II.

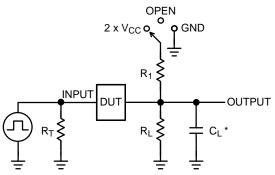
RECOMMENDED OPERATING CONDITIONS

Symbol	Para	Parameter			Unit
V _{CC}	Positive DC Supply Voltage		1.65	5.5	V
V _{IN}	Digital Input Voltage		0	5.5	V
V _{OUT}	Output Voltage	t Voltage Active Mode (High or Low State)		V _{CC}	V
		Tri-State Mode (Note 1)	0	5.5	1
		Power Down Mode (V _{CC} = 0 V)	0	5.5	
T _A	Operating Free-Air Temperature		-55	+125	°C
t _r , t _f	Input Transition Rise or Fall Rate	V _{CC} = 1.65 V to 1.95 V	0	20	nS/V
		V _{CC} = 2.3 V to 2.7 V	0	20	
		V _{CC} = 3.0 V to 3.6 V	0	10	
		V _{CC} = 4.5 V to 5.5 V	0	5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

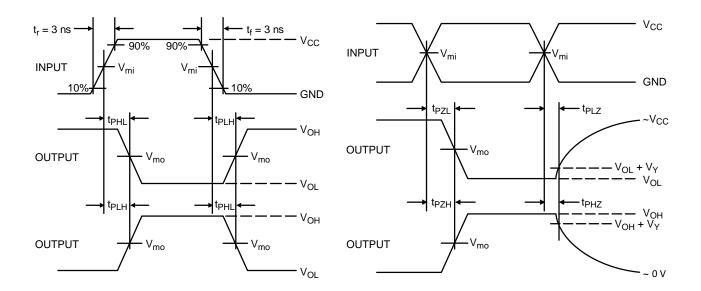
					T _A = 25°C		T _A = −55°C	c to +125°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level		1.65 to 1.95	0.65 x V _{CC}	_	-	0.65 x V _{CC}	-	V
	Input Voltage		2.3 to 5.5	0.70 x V _{CC}	-	-	0.70 x V _{CC}	-	1
V _{IL}	Low-Level		1.65 to 1.95	_	-	0.35 x V _{CC}	-	0.35 x V _{CC}	V
	Input Voltage		2.3 to 5.5	-	_	0.30 x V _{CC}	-	0.30 x V _{CC}	1
V _{OH}	High-Level Output Voltage	$\begin{split} V_{IN} &= V_{IH} \text{ or } V_{IL} \\ I_{OH} &= -100 \ \mu\text{A} \\ I_{OH} &= -4 \ \text{mA} \\ I_{OH} &= -8 \ \text{mA} \\ I_{OH} &= -12 \ \text{mA} \\ I_{OH} &= -16 \ \text{mA} \\ I_{OH} &= -24 \ \text{mA} \\ I_{OH} &= -32 \ \text{mA} \end{split}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8	V _{CC} 1.4 2.1 2.4 2.7 2.5 4.0	-	V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8	-	V
V _{OL}	Low-Level Output Voltage	$\begin{aligned} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OL} = 100 \mu\text{A} \\ &I_{OL} = 4 \text{ mA} \\ &I_{OL} = 8 \text{ mA} \\ &I_{OL} = 12 \text{ mA} \\ &I_{OL} = 16 \text{ mA} \\ &I_{OL} = 24 \text{ mA} \\ &I_{OL} = 32 \text{ mA} \end{aligned}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	-	0.08 0.2 0.22 0.28 0.38 0.42	0.1 0.24 0.3 0.4 0.4 0.55 0.55	-	0.1 0.24 0.3 0.4 0.4 0.55	V
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V or GND	1.65 to 5.5	-	-	±0.1	_	±1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	_	1.0	_	10	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5	-	-	1.0	-	10	μΑ


AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ nS}$)

					T _A = 25°C		T _A = -55°C	to +125°C	
Symbol	Characteristic	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	$R_L = 1 M\Omega$, $C_L = 15 pF$	1.65 to 1.95	_	7.7	10	_	10.5	ns
t _{PHL}	A to Y (Figures 3 and 4)	$R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$	2.3 to 2.7	-	4.2	7.5	_	8.0	
		$R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$	3.0 to 3.6	_	3.0	5.2	_	5.5	
		$R_L = 500 \Omega$, $C_L = 50 pF$		_	3.5	5.7	_	6.0	
		$R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$	4.5 to 5.5	_	2.3	4.5	_	4.8	
		$R_L = 500 \Omega$, $C_L = 50 pF$		_	2.6	5.0	_	5.3	

CAPACITAVE CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ nS}$)

Symbol	Parameter	Test Condition	Typical (T _A = 25 °C)	Unit
C _{IN}	Input Capacitance	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0 \text{ V or } V_{CC}$	2.5	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0 \text{ V or } V_{CC}$	2.5	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	10 MHz, V_{CC} = 3.3 V, V_{IN} = 0 V or V_{CC}	9	pF
		10 MHz, V _{CC} = 5.5 V, V _{IN} = 0 V or V _{CC}	11	


^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption: P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

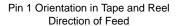
Test	Switch Position	C _L , pF	R_L, Ω	R ₁ , Ω
t _{PLH} / t _{PHL}	Open	See AC Characteristics Tabl		
t _{PLZ} / t _{PZL}	2 x V _{CC}	50	500	500
t _{PHZ} / t _{PZH}	GND	50	500	500

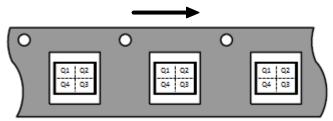
 C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typicaly 50 $\Omega)$ f = 1 MHz

Figure 2. Test Circuit

		V _m		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ}	V _Y , V
1.65 to 1.95	V _{CC} /2	(V _{OH} – V _{OL})/2	V _{CC} /2	0.15
2.3 to 2.7	V _{CC} /2	(V _{OH} – V _{OL})/2	V _{CC} /2	0.15
3.0 to 3.6	V _{CC} /2	(V _{OH} – V _{OL})/2	V _{CC} /2	0.3
4.5 to 5.5	V _{CC} /2	(V _{OH} – V _{OL})/2	V _{CC} /2	0.3

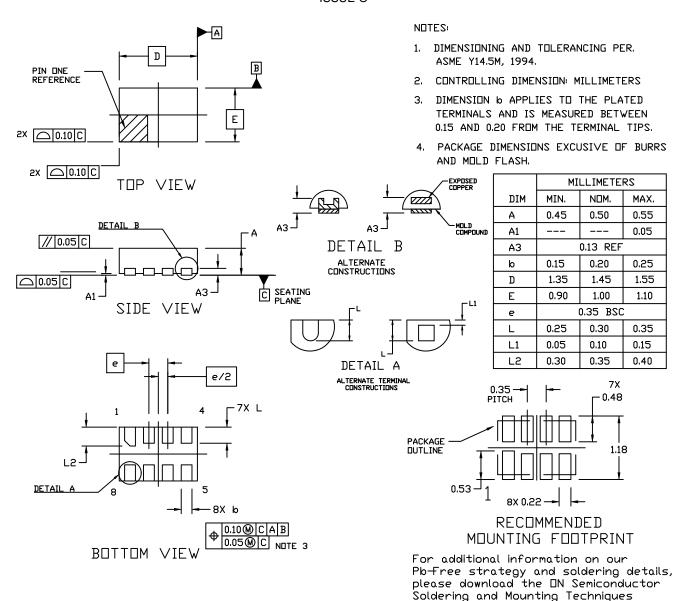
Figure 3. Switching Waveforms


ORDERING INFORMATION


Device	Package	Marking	Pin 1 Orientation (see bellow)	Shipping [†]
NLSF457MU3TCG	UDFN8, 1.45 x 1.0, 0.35P	AA	Q4	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

* NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC – Q100 Qualified and


PPAP Capable.

PACKAGE DIMENSIONS

UDFN8, 1.45x1, 0.35P CASE 517EB ISSUE O

Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

♦ NLSF457/D