Advance Information

RF Filtering and ESD Protection on I²C Bus and Digital Line, Thermal Shutdown and Power Switch with Short Circuit Protection

The NMF3506 interfaces with mobile phone accessories using I²C bus. It includes two I²C line filters and a general purpose digital line filter. It is compliant with EMC international standards required for cellular phones and portable equipment. It also includes a low voltage drop power switch to control the accessory supply. It has safety features such as thermal shutdown and main switch short circuit protection. All I/O are ESD protected according to the stringent IEC 61000–4–2 international standard.

Features

- ESD Protection IEC 61000–4–2 Level 4 (Vbatt and Output Pins)
- ESD Protection IEC 61000-4-2 Level 1 (All I/O)
- RF Filtering (800 MHz-6.0 GHz): -25 dB
- RF Filtering (1.0 GHz-2.5 GHz): -30 dB
- Power Switch: 120 mA (<200 mV)
- Voltage Drop Across Power Switch: <200 mV
- Controlled I²C Bias
- Low Quiescent Current, 10 μA_{off}, 100 μA_{on}
- 15 Bump Flip-Chip Direct Chip Attach: 2.1 mm x 2.1 mm x 0.65 mm
- This is a Pb–Free Device

Typical Application

- Cellular Phones
- Portable Equipment

http://onsemi.com

MARKING DIAGRAM

FLIP-CHIP 15 CSP CASE TBD

xx = Specific Device Code

L = Wafer Lot

Y = Year

W = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]
NMF3506FCT1G	Flip-Chip	3000 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

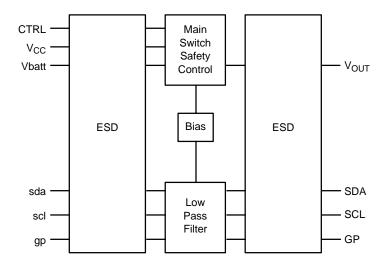


Figure 1. Simplified Block Diagram

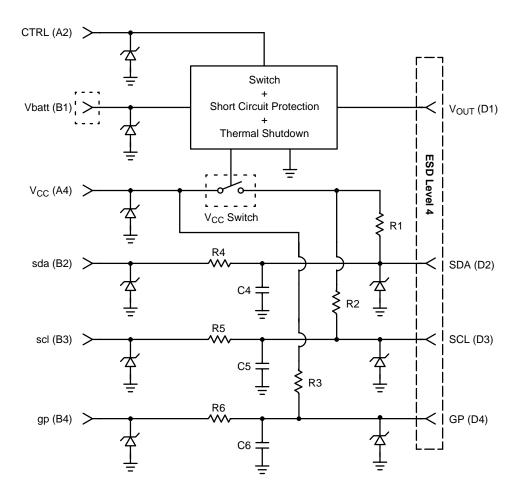



Figure 2. Schematic

PIN FUNCTION DESCRIPTION

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A4	V _{CC}	А3	GND	A2	CTRL	A1	_
B4	gp	В3	scl	B2	sda	B1	Vbatt
C4	GND	C3	GND	C2	GND	C1	GND
D4	GP	D3	SCL	D2	SDA	D1	V _{OUT}

ESD Level 1

ESD Level 4

Bump Side Up

Figure 3. Pin Configuration

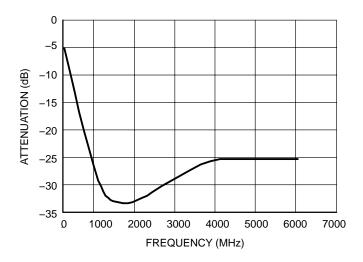
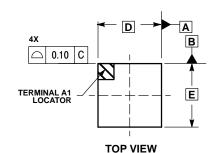
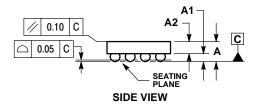
MAXIMUM RATINGS

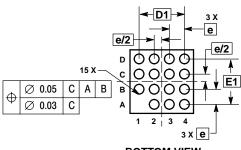
Rating	Symbol	Max	Unit
Junction Temperature	T_J	150	°C
Operating Temperature Range	T _{OP}	-40 to +85	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
ESD Structure Breakdown Voltage (I _R = 1.0 mA)		V _{BRESD}	6.0	_	20	V
ESD Structure Leakage Current (Per Line) (V _{RM} = 3.0 V)		I _R	-	_	0.1	μΑ
ESD Discharge IEC61000–4–2 Level 1 Air ESD Discharge IEC61000–4–2 Level 1 Contact Machine Model (For CTRL, V _{CC} , sda, scl, gp Pins)		V _{PP}	2.0 2.0 0.2	- - -	- - -	kV
ESD Discharge IEC61000–4–2 Level 4 Air ESD Discharge IEC61000–4–2 Level 4 Contact Machine Model (For Vbatt, V _{OUT} , SDA, SCL, GP Pins)		V _{PP}	15 8.0 0.2	- - -	- - -	kV
Line Capacitance		C _L	37	46	55	pF
I ² C Filter Bias Resistors R1, R2	Ambient Temperature	RB _{I2CAMB}	1.8	2.0	2.2	kΩ
	–40 to 85°C Temperature Range	RB _{I2C}	1.4	2.0	2.6	kΩ
GP Filter Bias Resistors R3	Ambient Temperature	RB _{GPAMB}	90	100	110	ΚΩ
	–40 to 85°C Temperature Range	RB _{GP}	70	100	130	kΩ
I ² C Filter Resistors R4, R5	Ambient Temperature	R _{I2CAMB}	90	100	110	Ω
	−40 to 85°C Temperature Range	R _{I2C}	70	100	130	Ω
GP Filter Resistor R6	Ambient Temperature –40 to 85°C Temperature Range	R _{GPAMB}	225	250	275	Ω
		R _{GP}	175	250	325	Ω
Stopband Rejection, $R_S = R_L = 50 \Omega$	Freq = 0.8 GHz to 6.0 GHz Freq = 1.0 GHz to 2.5 GHz	SB _{REJ1}	-25	_	_	dB
		SB _{REJ2}	-30	_	-	dB
Crosstalk Rejection, $R_S = R_L = 50 \Omega$	Freq = 1.0 kHz to 0.8 GHz Freq = 0.8 GHz to 6.0 GHz	XT _{REJ1}	-	_	-30	dB
		XT _{REJ2}	-	_	-20	dB
Vbatt Input Voltage	Vbatt _{in}	2.8	_	5.5	V	
Voltage Drop from Vbatt to V _{OUT} @ lout = 120 mA		Vbatt _{DROP}	-	_	200	mV
Thermal Shutdown Rising Threshold		TSD _{up}	150	_	-	°C
Thermal Shutdown Falling Threshold	TSD _{dn}	85	_	-	°C	
Thermal Shutdown Hysteresis	TSD _{hyst}	10	_	-	°C	
V _{OUT} Current Vbatt _{DROP} < 200 mV	I _{OUT}	-	_	120	mA	
V _{OUT} Short Circuit Current		l _{outsc}	-	_	200	mA
V _{CC} Input Voltage		V _{CC}	1.7	1.8	1.95	V
Voltage Drop in V _{CC} Switch	V _{CCDROP}	-	_	120	mV	
Input CTRL Voltage High = ON		V _{CTRLHI}	0.7xV _{CC}	_	V _{CC} +0.3	V
Input CTRL Voltage Low = OFF		V _{CTRLLO}	0.0	-	0.3xV _{CC}	V
Quiescent Current ($I_{Vbatt}+I_{VCC}$) Load < 100 μ A CTRL = 1.0		I _{QON}	-	-	100	μΑ
Quiescent Current (I _{Vbatt} +I _{VCC}) CTRL = 0 Does Not Include I _{2K} and I _{100K}		I _{QOFF}	-	-	10	μΑ


Figure 4. S21 Characteristic

PACKAGE DIMENSIONS

FLIP-CHIP 15 CSP CASE TBD ISSUE O

BOTTOM VIEW

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS IN COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

	MILLIMETERS			
DIM	MIN	MAX		
Α		0.660		
A1	0.210	0.270		
A1	0.380	0.430		
D	2.100 BSC			
Е	2.100 BSC			
b	0.290	0.340		
е	0.500 BSC			
D1	1.500 BSC			
E1	1.500 BSC			

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free LISA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.