Small Signal BJT and MOSFET

30 V, 500 mA, PNP BJT with 20 V, 224 mA, N-Channel MOSFET

Features

 These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

• Portable Devices

Q1 MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Collector–Emitter Voltage	V_{CEO}	30	V
Collector-Base Voltage	V_{CBO}	40	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current	I _C	500	mA
Base Current	Ι _Β	50	mA

Q2 MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	20	V
Gate-to-Source Voltage			V_{GS}	±8	٧
Continuous Drain	Steady	T _A = 25°C	I _D	224	mA
Current (Note 1)	State	T _A = 85°C		162	
	t ≤ 5 s	T _A = 25°C		241	
Pulsed Drain Current $T_p = 10 \mu s$		T _p = 10 μs	I _{DM}	673	mA
Source Current (Body Diode)			I _S	120	mA

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C	R _{θJA} P _D	245 0.8	°C/W W
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to 150	°C
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

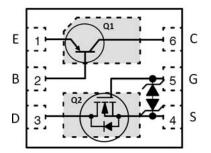
1. Surface mounted on FR4 board using 1 in sq pad size (Cu. area = 1.127 in sq [1 oz] including traces).

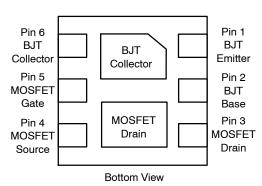
ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

UDFN6 CASE 517AT μCOOL™


AE = Specific Device Code


M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location.

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
NSM3005NZTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Test Condition

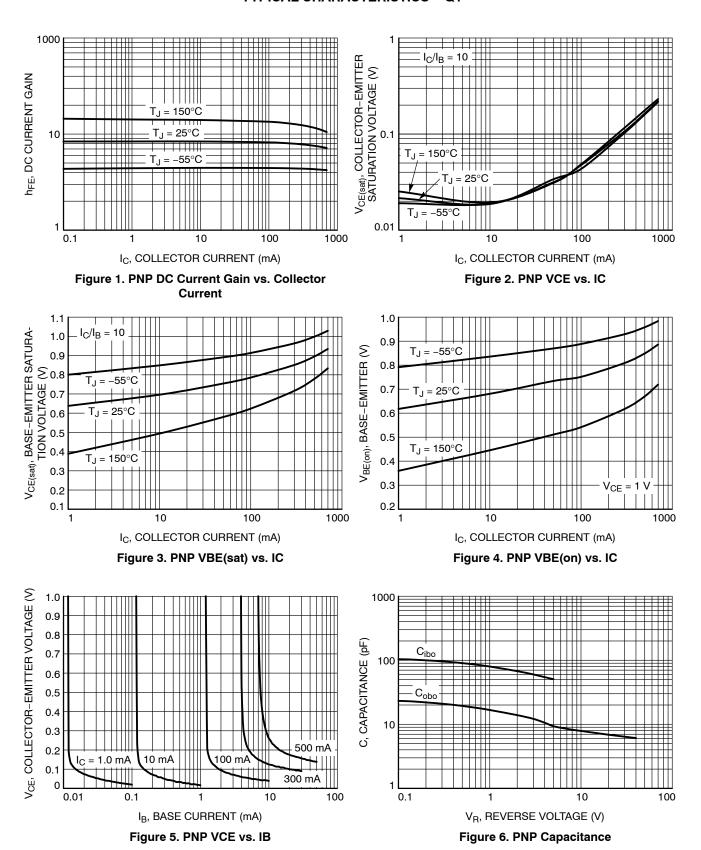
Min

Тур

Max

Unit

Q1 ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}\text{C}$ unless otherwise specified)


Symbol

Parameter

1 414	- ,			.,,,,		
OFF CHARACTERISTICS						
Collector-Base Breakdown Voltage	V _{(BR)CBO}	I _C = 100 μA	40	-	-	V
Collector–Emitter Breakdown Voltage	V _{(BR)CEO}	I _C = 10 mA	30	-	_	V
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	I _E = 100 μA	5.0	-	_	V
Collector Cutoff Current	I _{CBO}	V _{CB} = 25 V, I _E = 0 A	_	-	1.0	μΑ
Emitter Cutoff Current	I _{EBO}	V _{EB} = 5.0 V, I _C = 0 A	_	-	10	μΑ
ON CHARACTERISTICS (Note 2)		-				
DC Current Gain	h _{FE}	$V_{CE} = 3.0 \text{ V}, I_{C} = 30 \text{ mA}$	20	-	100	
		V _{CE} = 3.0 V, I _C = 100 mA	20	-	100	1
		V _{CE} = 3.0 V, I _C = 500 mA	20	-	100	1
Collector–Emitter Saturation Voltage	V _{CE(sat)}	I _C = 500 mA, I _B = 50 mA	-	-	0.4	V
Base–Emitter Saturation Voltage	V _{BE(sat)}	I _C = 500 mA, I _B = 50 mA	-	-	1.1	V
Base-Emitter Turn-On Voltage	V _{BE(on)}	V _{CE} = 1.0 V, I _C = 500 mA	_	-	1.0	V
				•	•	•
Q2 ELECTRICAL CHARACTERISTICS	$(T_J = 25^{\circ}C \text{ unle})$	ess otherwise specified)		•		
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	20	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = -250 μA, ref to 25°C	-	19	_	mV/°C
Zero Gate Votlage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = 16 \text{ V}, T_J = 25^{\circ}\text{C}$	-	-	1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8.0 \text{ V}$	-	-	±2.0	μΑ
ON CHARACTERISTICS (Note 2)						
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$	0.4	-	1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	-	-	1.9	-	mV/°C
Drain-to-Source On Resistance	R _{DS(ON)}	V _{GS} = 4.5 V, I _D = 100 mA	-	0.65	1.4	Ω
		$V_{GS} = 2.5 \text{ V}, I_D = 50 \text{ mA}$	-	0.9	1.9	
		$V_{GS} = 1.8 \text{ V}, I_D = 20 \text{ mA}$	_	1.1	2.2	
		$V_{GS} = 1.5 \text{ V}, I_D = 10 \text{ mA}$		1.4	4.3	
Forward Transconductance	9 _{FS}	$V_{DS} = 5.0 \text{ V}, I_{D} = 100 \text{ mA}$	-	0.56	-	S
CHARGES AND CAPACITANCES						
Input Capacitance	C _{ISS}	f = 1.0 MHz, V _{GS} = 0 V,	-	15.8	_	pF
Output Capacitance	C _{OSS}	V _{DS} = 15 V	-	3.5	_	
Reverse Transfer Capacitance	C _{RSS}		-	2.4	-	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V};$	-	0.70	-	nC
Threshold Gate Charge	Q _{G(TH)}	I _D = 200 mA	-	0.05	-	
Gate-to-Source Charge	Q_{GS}		_	0.14	-	
Gate-to-Drain Charge	Q_{GD}		_	0.10	_	
SWITCHING CHARACTERISTICS, $V_{GS} = 4.5$	V (Note 3)					
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 4.5 \text{ V}, V_{DD} = 15 \text{ V},$	-	18	-	ns
Rise Time	t _r	I_D = 200 mA, R_G = 2 Ω	-	35	-	
Turn-Off Delay Time	T _{d(ON)}		-	201	-	
Fall Time	t _f		-	110	_	
DRAIN-SOURCE DIODE CHARACTERISTIC	s					
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 10 \text{ mA}$	_	0.55	1.0	V
Pulsed Condition: Pulse Width - 300 msec						

Pulsed Condition: Pulse Width = 300 msec, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS - Q1

TYPICAL CHARACTERISTICS - Q2

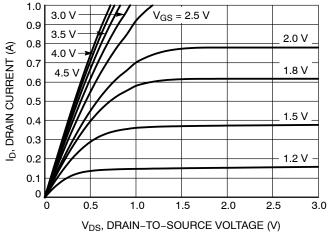


Figure 7. On-Region Characteristics

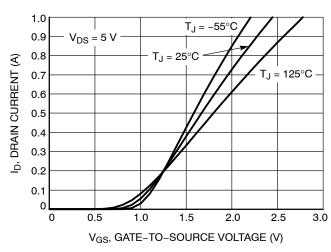


Figure 8. Transfer Characteristics

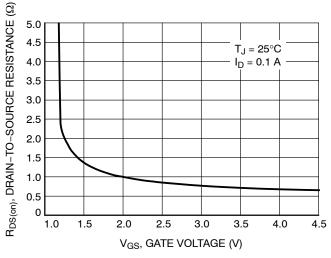


Figure 9. On-Resistance vs. Gate-to-Source Voltage

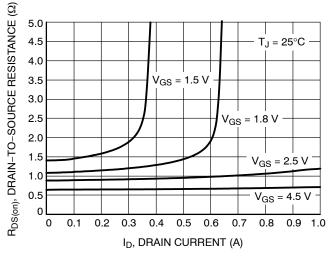


Figure 10. On-Resistance vs. Drain Current and Gate Voltage

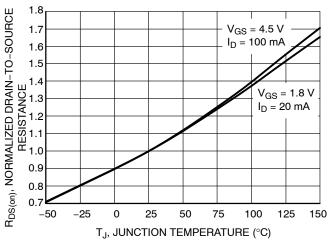


Figure 11. On–Resistance Variation with Temperature

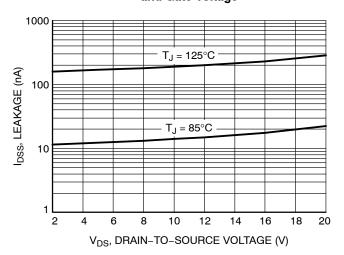


Figure 12. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS - Q2

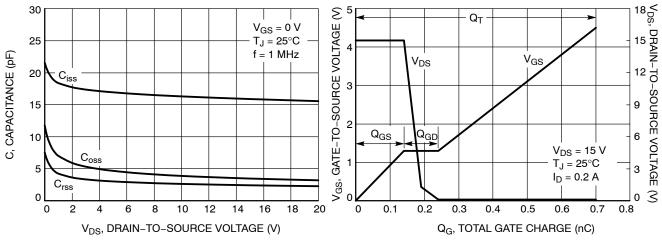


Figure 13. Capacitance Variation

Figure 14. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

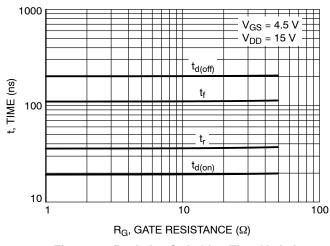


Figure 15. Resistive Switching Time Variation vs. Gate Resistance

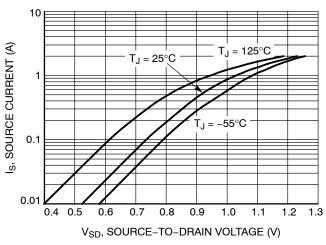


Figure 16. Diode Forward Voltage vs. Current

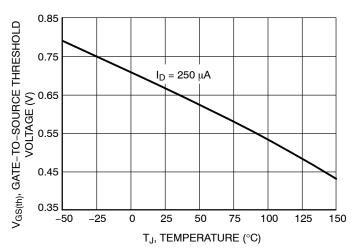
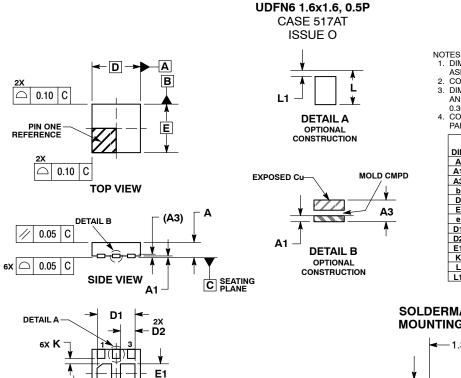
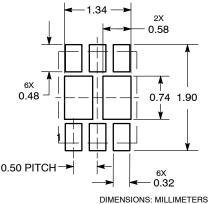



Figure 17. Threshold Voltage

PACKAGE DIMENSIONS

0.10

0.05


CAB

C NOTE 3

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND
- 0.30 mm FROM TERMINAL.
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45	0.55		
A1	0.00	0.05		
А3	0.13 REF			
b	0.20 0.30			
D	1.60 BSC			
E	1.60 BSC			
е	0.50 BSC			
D1	1.14 1.34			
D2	0.38	0.58		
E1	0.54	0.74		
K	0.20			
L	0.15 0.35			
L1	0.10			

SOLDERMASK DEFINED MOUNTING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

μCOOL is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. Coverage may be accessed at www.onsemi.com/site/par/-atent_-warking.pgr. On Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

lе

BOTTOM VIEW

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative