Product Preview # 1 A, 40 V Schottky Barrier Diode These Schottky barrier diodes are optimized for low forward voltage drop and low leakage current that offers the most optimal power dissipation in applications. They are housed in spacing saving micro-packaging ideal for space constraint applications. #### **Features** - Low Forward Voltage Drop 470 mV (Typ.) @ $I_F = 1 A$ - Low Reverse Current $5 \mu A$ (Typ.) @ $V_R = 40 V$ - 1 A of Continuous Forward Current - High Switching Speed - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant # **Typical Applications** - LCD and Keypad Backlighting - Camera Photo Flash - Buck and Boost dc-dc Converters - Reverse Voltage and Current Protection - Clamping & Protection #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|------------------|-------|------| | Reverse Voltage | V_{R} | 40 | V | | Forward Current (DC) | ΙF | 1.0 | Α | | Forward Surge Current
(60 Hz @ 1 cycle) | I _{FSM} | 9.5 | Α | | Repetitive Peak Forward Current
(Pulse Wave = 1 sec, Duty Cycle = 66%) | I _{FRM} | 3.8 | Α | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. # ON Semiconductor® www.onsemi.com X2DFNW2 CASE 717AB XX = Specific Device Code M = Date Code #### **ORDERING INFORMATION** | Device | Package | Shipping† | | | |------------------|----------------------|-----------------------|--|--| | NSR10T406MX2WT5G | X2DFNW2
(Pb-Free) | 8000 / Tape &
Reel | | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ### THERMAL CHARACTERISTICS | Characteristic | Symbol | Min | Тур | Max | Unit | |---|------------------------------------|-------------|-----|--------------|------------| | Thermal Resistance Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C | R _{θJA}
P _D | | | 150
800 | °C/W
mW | | Thermal Resistance Junction-to-Ambient (Note 2) Total Power Dissipation @ T _A = 25°C | R _{θJA}
P _D | | | 72.7
1500 | °C/W
mW | | Junction and Storage Temperature Range | T _J , T _{stg} | -55 to +150 | | | °C | - 1. Mounted onto a 4 in square FR-4 board 50 mm sq. 1 oz. Cu 0.06" thick single sided. Operating to steady state. - 2. Mounted onto a 4 in square FR-4 board 650 mm sq. 1 oz. Cu 0.06" thick single sided. Operating to steady state. Figure 1. Thermal Response (Note 1) Figure 2. Thermal Response (Note 2) # **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|-----------------|-----|---------------------------------|---------------------------------|------| | Reverse Leakage
(V _R = 10 V)
(V _R = 40 V) | I _R | | 0.5
2.1 | 1.5
10 | μΑ | | Forward Voltage (I _F = 10 mA) (I _F = 100 mA) (I _F = 200 mA) (I _F = 500 mA) (I _F = 1.0 A) | V _F | | 310
375
400
435
475 | 380
440
470
500
530 | mV | | Total Capacitance
(V _R = 1.0 V, f = 1.0 MHz) | C _T | | 265 | 350 | pF | | Reverse Recovery Time
(I _F = I _R = 10 mA, I _{R(REC)} = 1.0 mA, Figure 3) | t _{rr} | | 65 | 150 | ns | | Peak Forward Recovery Voltage
(I _F = 100 mA, t _r = 20 ns, Figure 4) | V_{FRM} | | 0.54 | 1.0 | V | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. Notes: 1. A 2.0 $k\Omega$ variable resistor adjusted for a Forward Current (IF) of 10 mA. - 2. Input pulse is adjusted so I_{R(peak)} is equal to 10 mA. - 3. t_p » t_{rr} Figure 3. Recovery Time Equivalent Test Circuit Figure 4. Peak Forward Recovery Voltage Definition # **TYPICAL CHARACTERISTICS** Figure 5. Forward Voltage Figure 6. Leakage Current Figure 7. Total Capacitance #### PACKAGE DIMENSIONS ## X2DFNW2 1.60x0.80 CASE 717AB **ISSUE O** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - 2. CONTROLLING DIMENSION: MILLIMETERS **Detail A** # RECOMMENDED MOUNTING FOOTPRINT ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** # LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative