Bipolar Transistor -160 V, -1 A, Low V_{CE}(sat), PNP Single

This device is bipolar junction transistor featuring high current, low saturation voltage, and high speed switching.

Suitable for automotive applications. AEC-Q101 qualified and PPAP capable.

Features

- Large Current Capacitance
- Low Collector to Emitter Saturation Voltage
- High Speed Switching
- High Allowable Power Dissipation
- AEC-Q101 Qualified and PPAP Capable
- Pb-Free, Halogen Free and RoHS Compliant
- Ultra Small Package Facilitates Miniaturization in End Products

Typical Applications

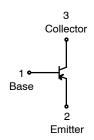
- High Side Switch
- Lighting, Infotainment

ABSOLUTE MAXIMUM RATINGS at T_A = 25°C

Symbol	Value	Unit
V_{CBO}	-180	V
V _{CEO}	-160	V
V _{EBO}	-6	V
I _C	-1	Α
I _{CP}	-2	Α
P _C	0.42	W
Tj	150	°C
Tstg	-55 to +150	°C
	V _{CBO} V _{CEO} V _{EBO} I _C I _{CP} P _C Tj	V _{CBO} -180 V _{CEO} -160 V _{EBO} -6 I _C -1 I _{CP} -2 P _C 0.42 Tj 150

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface mounted on ceramic substrate. (250 mm² x 0.8 mm)



ON Semiconductor®

www.onsemi.com

ELECTRICAL CONNECTION

MARKING DIAGRAM

CMM = Specific Device Code M = Single Digit Date Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

				Value		
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Collector Cutoff Current	I _{CBO}	V _{CB} = -120 V, I _E = 0 A			-0.1	μΑ
Emitter Cutoff Current	I _{EBO}	$V_{EB} = -4 \text{ V, } I_C = 0 \text{ A}$			-0.1	μΑ
DC Current Gain	h _{FE1}	$V_{CE} = -5 \text{ V},$ $I_{C} = -100 \text{ mA}$	100		400	
	h _{FE2}	$V_{CE} = -5 \text{ V},$ $I_{C} = -10 \text{ mA}$	90			
Gain-Bandwidth Product	f _T	V _{CE} = -10 V, I _C = -50 mA		120		MHz
Output Capacitance	Cob	V _{CB} = -10 V, f = 1 MHz		11		pF
Collector to Emitter Saturation Voltage	V _{CE} (sat)1	I _C = -250 mA, I _B = -25 mA		-0.1	-0.5	V
	V _{CE} (sat)2	I _C = -250 mA, I _B = -50 mA		-0.08	-0.13	V
Base to Emitter Saturation Voltage	V _{BE} (sat)	I _C = -250 mA, I _B = -25 mA		-0.8	-1.2	V
Collector to Base Breakdown Voltage	V _{(BR)CBO}	$I_C = -10 \mu A, I_E = 0 A$	-180			V
Collector to Emitter Breakdown Voltage	V _{(BR)CEO}	$I_C = -1$ mA, $R_{BE} = \infty$	-160			V
Emitter to Base Breakdown Voltage	V _{(BR)EBO}	$I_E = -10 \mu A,$ $I_C = 0 A$	-6			V
Turn-On Time	t _{on}	See Figure 1		90		ns
Storage Time	t _{stg}			1000		ns
Fall Time	t _f			70		ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

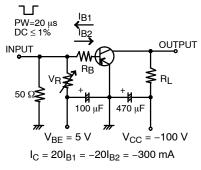


Figure 1. Switching Time Test Circuit

TYPICAL CHARACTERISTICS

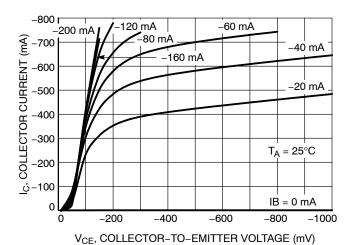
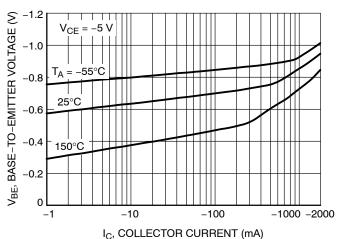



Figure 2. I_C vs. V_{CE}

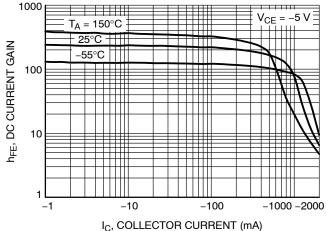


Figure 3. V_{BE} vs. I_{C}

Figure 4. h_{FE} vs. I_C

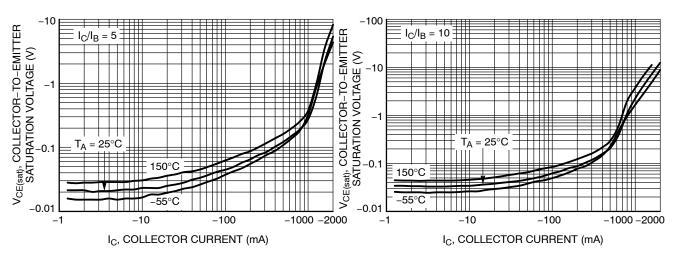


Figure 5. V_{CE(sat)} vs. I_C

Figure 6. V_{CE(sat)} vs. I_C

TYPICAL CHARACTERISTICS

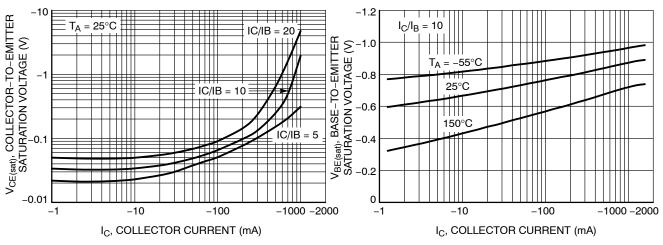


Figure 7. V_{CE(sat)} vs. I_C

Figure 8. V_{BE(sat)} vs. I_C

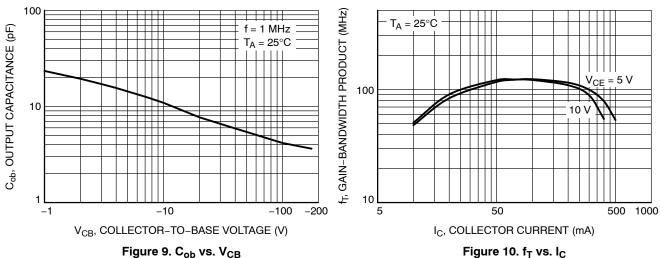


Figure 9. Cob vs. VCB

0.5

0.4

0.3

0.2

0

Mounted on ceramic

board 250 mm² x 0.8 mm

50

P_D, POWER DERATING (W)

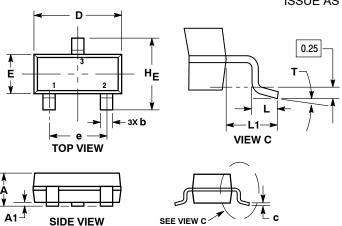
IC, COLLECTOR CURRENT (A) 1 ms 0.1 10 ms T_A = 25°C 100 ms 0.01 Single Pulse Mounted on ceramic $DC \pm$ board 250 mm² x 0.8 mm 0.001 0.01 0.1 10 1000 V_{CE}, COLLECTOR-TO-EMITTER VOLTAGE (V)

T_A, AMBIENT TEMPERATURE (°C) Figure 11. Power Derating

100

Figure 12. Safe Operating Area

150

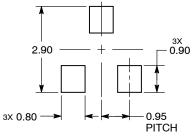

ORDERING INFORMATION

Device	Marking	Package	Shipping (Qty / Packing) †
NSVT1418LT1G	СММ	SOT-23 (Pb-Free / Halogen Free)	3,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 ISSUF AS


END VIEW

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0°		10°	0°		10°

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative