Product Preview # **Power MOSFET** # 60 V, 1.5 m Ω , 294 A, Single N–Channel, D²PAK7 #### **Features** - Low R_{DS(on)} to Minimize Conduction Losses - Low Q_G and Capacitance to Minimize Driver Losses - Lowers Switching Noise/EMI - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant ## **Typical Applications** - Power Tools, Battery Operated Vacuums - UAV/Drones, Material Handling - BMS/Storage, Home Automation # MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Parameter | | | Symbol | Value | Unit | |--|------------------|----------------------------|-----------------------------------|-----------------|------| | Drain-to-Source Voltage | | | V _{DSS} | 60 | V | | Gate-to-Source Voltage | Э | _ | V _{GS} | ±20 | V | | Continuous Drain Current $R_{\theta JC}$ (Note 2) | Steady
State | T _C = 25°C | I _D | 294 | Α | | Power Dissipation $R_{\theta JC}$ (Note 2) | Oldic | | P _D | 246 | W | | $\begin{array}{c} \text{Continuous Drain} \\ \text{Current R}_{\theta JA} \\ \text{(Notes 1, 2)} \end{array}$ | Steady
State | T _A = 25°C | I _D | 36 | Α | | Power Dissipation $R_{\theta JA}$ (Notes 1, 2) | State | , , | P _D | 3.8 | W | | Pulsed Drain Current | $T_A = 25^\circ$ | °C, t _p = 10 μs | I _{DM} | TBD | Α | | Operating Junction and Storage Temperature | | | T _J , T _{stg} | –55 to
+ 175 | ç | | Source Current (Body Diode) | | | I _S | TBD | Α | | $ \begin{array}{c} \text{Single Pulse Drain-to-Source Avalanche} \\ \text{Energy (I}_{L} = \text{TBD A}_{pk}, \ L = \text{TBD mH}) \end{array} $ | | | E _{AS} | TBD | mJ | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | TL | 260 | °C | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Surface-mounted on FR4 board using a 1 in2, 1 oz. Cu pad. - The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. ## ON Semiconductor® #### www.onsemi.com | V _{(BR)DSS} | R _{DS(ON)} MAX | I _D MAX | |----------------------|-------------------------|--------------------| | 60 V | 1.5 mΩ @ 10 V | 294 A | | 00 V | TBD mΩ @ 6 V | 25474 | **N-CHANNEL MOSFET** D²PAK7 CASE 418AY XXXX = Specific Device Code A = Assembly Location Y = Year WW = Work Week G = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|----------------------------------|-----------------------| | NTBGS1D5N06C | D ² PAK7
(Pb-Free) | 800 / Tape &
Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice. ### THERMAL RESISTANCE MAXIMUM RATINGS | Parameter | Symbol | Value | Unit | |---|---------------|-------|------| | Junction-to-Case - Steady State (Note 2) | $R_{ hetaJC}$ | 0.61 | °C/W | | Junction-to-Ambient - Steady State (Note 2) | $R_{ hetaJA}$ | 40 | | # ELECTRICAL CHARACTERISTICS | Parameter | Symbol | Test Condit | ion | Min | Тур | Max | Unit | |--|---|--|------------------------|-----|------|-----|-------| | OFF CHARACTERISTICS | <u> </u> | | | | | | | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ | | 60 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} / | $I_D = 318 \mu A$, ref to 25°C | | | TBD | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | V _{GS} = 0 V, | T _J = 25°C | | | 10 | μΑ | | | $V_{DS} = 60 \text{ V}$ $T_{J} = 125^{\circ}\text{C}$ | | T _J = 125°C | | | 100 | μΑ | | Gate-to-Source Leakage Current | I _{GSS} | V _{DS} = 0 V, V _{GS} = 20 V | | | | 100 | nA | | ON CHARACTERISTICS (Note 3) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_D =$ | : 318 μA | 2.0 | 3.0 | 4.0 | V | | Negative Threshold Temperature Coefficient | V _{GS(TH)} /T _J | I _D = 318 μA, ref | to 25°C | | TBD | | mV/°C | | Drain-to-Source On Resistance | R _{DS(on)} | V_{GS} = 10 V, I_D | = 64 A | | TBD | 1.5 | 0 | | | | $V_{GS} = 6 \text{ V}, I_D$ | = 32 A | | TBD | | mΩ | | Forward Transconductance | 9FS | $V_{DS} = 5 \text{ V}, I_{D}$ | = 64 A | | TBD | | S | | Gate-Resistance | R_{G} | T _A = 25°C | | | 1.0 | | Ω | | CHARGES, CAPACITANCES & GATE RESIS | TANCE | | | | | • | | | Input Capacitance | C _{ISS} | V _{GS} = 0 V, V _{DS} = 30 V, f = 1 MHz | | | 7181 | | | | Output Capacitance | C _{OSS} | | | | 4265 | | pF | | Reverse Transfer Capacitance | C _{RSS} | | | | 39 | | | | Total Gate Charge | Q _{G(TOT)} | V _{GS} = 10 V, V _{DS} = 30 V; I _D = 64 A | | | 88 | | nC | | Threshold Gate Charge | Q _{G(TH)} | | | | TBD | | | | Gate-to-Source Charge | Q _{GS} | | | | 31 | | | | Gate-to-Drain Charge | Q_{GD} | | | | 13 | | | | Total Gate Charge | Q _{G(TOT)} | | | | TBD | | | | SWITCHING CHARACTERISTICS (Note 4) | | | | | • | | • | | Turn-On Delay Time | t _{d(ON)} | | | | TBD | | | | Rise Time | t _r | V_{GS} = 10 V, V_{DS} = 30 V, I_{D} = 64 A, R_{G} = 6 Ω | | | TBD | | - ns | | Turn-Off Delay Time | t _{d(OFF)} | | | | TBD | | | | Fall Time | t _f | | | | TBD | | | | DRAIN-SOURCE DIODE CHARACTERISTIC | | | | | • | | | | Forward Diode Voltage | V _{SD} | V _{GS} = 0 V,
I _S = 64 A | T _J = 25°C | | TBD | 1.2 | | | | | | T _J = 125°C | | TBD | | V | | Reverse Recovery Time | t _{RR} | $V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A}/\mu\text{s,}$ $I_{S} = 32 \text{ A}$ | | | TBD | | | | Charge Time | t _a | | | | TBD | | ns | | Discharge Time | t _b | | | | TBD | | 1 | | Reverse Recovery Charge | Q _{RR} | | | | TBD | | nC | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 4. Switching characteristics are independent of operating junction temperatures. ### **PACKAGE DIMENSIONS** ## D²PAK7 (TO-263 7 LD) CASE 418AY ISSUE B OPTIONAL CONSTRUCTIONS VIEW C-C SCALE 2: 1 #### NOTES: - A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED. B. ALL DIMENSIONS ARE IN MILLIMETERS. - D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994. - Y14,5-1994. E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS. F. LAND PATTERN RECOMMENDATION PER IPC. TO127P1524X465-8N. | DIM | MILLIMETERS | | | | | | |-----|-------------|-------|-------|--|--|--| | DIM | MIN | NOM | MAX | | | | | Α | 4.30 | 4.50 | 4.70 | | | | | A1 | 0.00 | 0.10 | 0.20 | | | | | b2 | 0.70 | 0.80 | 0.90 | | | | | b | 0.51 | 0.60 | 0.70 | | | | | С | 0.40 | 0.50 | 0.60 | | | | | c2 | 1.20 | 1.30 | 1.40 | | | | | D | 9.00 | 9.20 | 9.40 | | | | | D1 | 6.70 | 6.80 | 6.95 | | | | | Е | 9.70 | 9.90 | 10.20 | | | | | E1 | 7.80 | 7.90 | 8.00 | | | | | e | ~ | 1.27 | ~ | | | | | Ι | 15.10 | 15.40 | 15.70 | | | | | L | 2.44 | 2.64 | 2.84 | | | | | L1 | 1.00 | 1.20 | 1.40 | | | | | L3 | ~ | 0.25 | ~ | | | | | aaa | ~ | ~ | 0.25 | | | | ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative ♦ NTBGS1D5N06C/D