MOSFET - Power, Single, P-Channel, TSOP-6 -20 V, -5.9 A

Features

- Leading -20 V Trench for Low R_{DS(on)}
- -1.8 V Rated for Low Voltage Gate Drive
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Power Load Switch
- High Side Load Switch
- Charging Circuits and Battery Protection

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

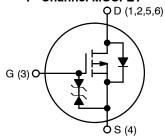
Paramet	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	-20	٧
Gate-to-Source Voltage			V _{GS}	±8	V
Continuous Drain Current	Steady	T _A = 25°C	I _D	-5.1	Α
(Note 1)	State	T _A = 85°C		-3.7	
	t ≤ 5 s	T _A = 25°C		-5.9	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	1.19	W
	t≤5s			1.58	
Continuous Drain Current	Steady	T _A = 25°C	I _D	-3.8	Α
(Note 2)	State	T _A = 85°C		-2.7	
Power Dissipation (Note 2)		T _A = 25°C	P _D	0.65	W
Pulsed Drain Current	t _p =	10 μs	I _{DM}	-20	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Lead Temperature for Soldering Purposes (1/8 in from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	105	°C/W
Junction-to-Ambient - t ≤ 5 s (Note 1)	$R_{\theta JA}$	79	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	192	

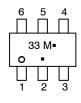
- 1. Surface-mounted on FR4 board using 1 in sq. pad size (Cu area = 1.127 in sq., 2 oz).
- 2. Surface-mounted on FR4 board using minimum pad size (Cu area = 0.0775 in sq.).



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D MAX	
	22 mΩ @ -4.5 V		
-20 V	29 mΩ @ -2.5 V	–5.9 A	
	40 mΩ @ –1.8 V		


P-Channel MOSFET

MARKING DIAGRAM

TSOP-6 CASE 318G

33 = Specific Device Code

M = Date Code ■ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGS3A033PZT1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condi	tion	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D =	–250 μΑ	-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = -250 μA, ref to 25°C			21		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			-1	μΑ
		$V_{DS} = -20 \text{ V}$	T _J = 85°C			-10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$; = ±8 V			±10	μΑ
ON CHARACTERISTICS (Note 3)	•				•	•	
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D = -250 μA		-0.4		-1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -4.5 V	I _D = -5.1 A		22	33	mΩ
		V _{GS} = -2.5 V	I _D = -4.5 A		29	40	
		V _{GS} = -1.8 V	I _D = -1.5 A		40	55	
Forward Transconductance	9FS	$V_{DS} = -5 \text{ V}, I_D = -5 \text{ V}$	= -5.1 A		23		S
CHARGES AND CAPACITANCES	_					•	
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = -10 V			1870		pF
Output Capacitance	C _{oss}				203		
Reverse Transfer Capacitance	C _{rss}				174		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $I_{D} = -5.1 \text{ A}$			18.8		nC
Threshold Gate Charge	Q _{G(TH)}				1.0		_
Gate-to-Source Charge	Q _{GS}				2.7		
Gate-to-Drain Charge	Q_{GD}				5.0		
SWITCHING CHARACTERISTICS (Not	e 4)						
Turn-On Delay Time	t _{d(on)}				9.4		ns
Rise Time	t _r	Voc = -4 5 V Vo	s = -10 V		9.3		1
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $I_{D} = -1.0 \text{ A}, R_{G} = 6.0 \Omega$			131		1
Fall Time	t _f				56		
DRAIN-SOURCE DIODE CHARACTER							
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V},$ $I_{S} = -1.7 \text{ A}$	T _J = 25°C		-0.7	-1.2	V
-			T _J = 125°C		-0.6		1
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{SD}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = -1.7 \text{ A}$			26		ns
Charge Time	t _a				9.0		1
Discharge Time	t _b				17		1
Reverse Recovery Charge	Q _{RR}				11	 	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: pulse width ≤ 300 ms, duty cycle ≤ 2%.

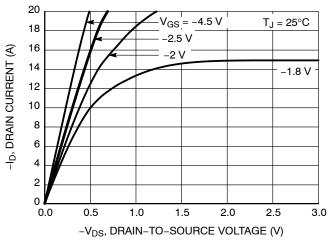
4. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

20

18

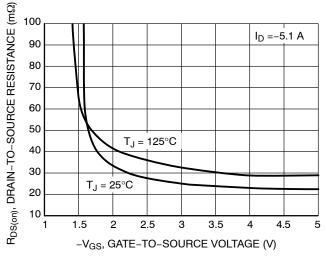
16


14

12

10

8


 $V_{DS} = -5 V$

-I_D, DRAIN CURRENT (A) $T_J = 125^{\circ}C$ 6 $T_J = 25^{\circ}C$ 4 2 $T_J = -55^{\circ}C$ 0.9 0.5 0.7 1.1 1.5 1.7 1.9 2.1

Figure 1. On-Region Characteristics

-V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 2. Transfer Characteristics

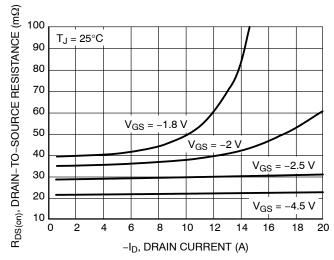
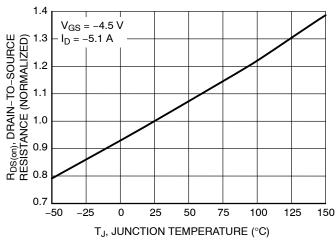



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

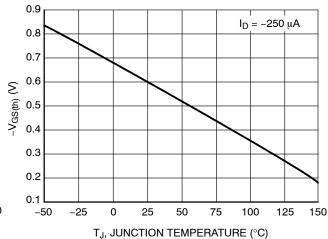


Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Threshold Voltage Variation with **Temperature**

TYPICAL CHARACTERISTICS

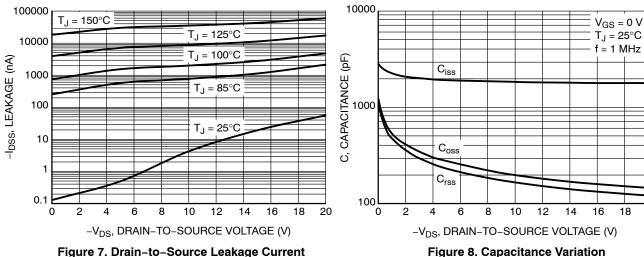


Figure 7. Drain-to-Source Leakage Current vs. Voltage

 V_{GS}

 $V_{DS} = -10 \text{ V}$ $I_{D} = -5.1 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$

14

16

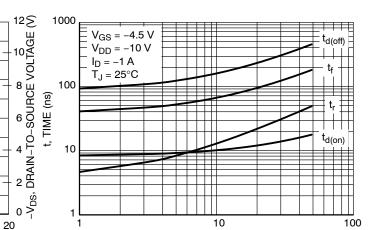
18

 Q_T

V_{DS}

 Q_{gd}

6


8

-V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Q_{gs}

2 4

0

20

Figure 9. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

12

10

Q_q, TOTAL GATE CHARGE (nC)

 $\label{eq:RG} \textbf{R}_{G},\, \textbf{GATE RESISTANCE}\,\,(\Omega)$ Figure 10. Resistive Switching Time Variation vs. Gate Resistance

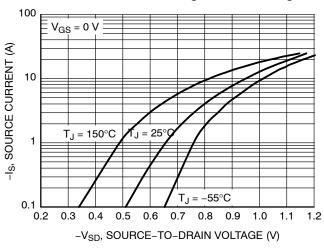


Figure 11. Diode Forward Voltage vs. Current

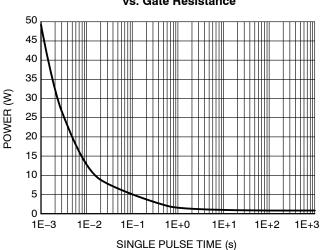


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

Figure 13. Maximum Rated Forward Biased Safe Operating Area

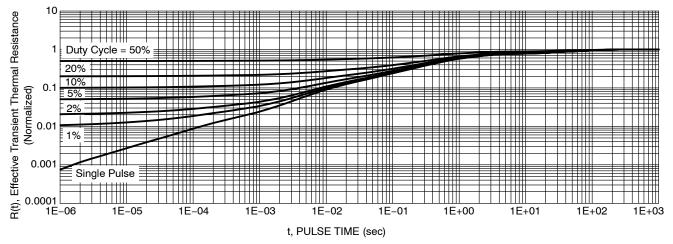
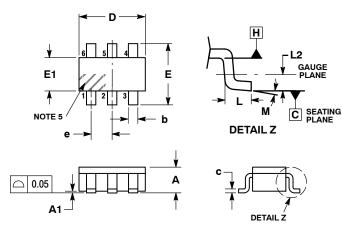
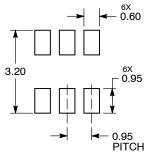



Figure 14. Thermal Response

PACKAGE DIMENSIONS


TSOP-6 CASE 318G-02 ISSUE V

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
 LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
- 5. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.01	0.06	0.10	
b	0.25	0.38	0.50	
С	0.10	0.18	0.26	
D	2.90	3.00	3.10	
E	2.50	2.75	3.00	
E1	1.30	1.50	1.70	
е	0085	0.95	11.005	
L	0.20	0.40	0.60	
L2	0.25 BSC			
М		_		

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability ON Semiconductor markes in owarrainty, representation or guarantee regarding the suitability of its products for any particular purpose, into does ON Semiconductor assume any itability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor, "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and ovary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

0

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative