Product Preview

MOSFET - N-Channel Silicon Carbide

1200 V, 21.6 mΩ, 162 A

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

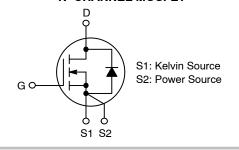
Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V_{DSS}	1200	٧
Gate-to-Source Voltage		V _{GS}	+25/-15	V
Continuous Drain Current $R_{\theta JC}$	T _C = 25°C	I _{DC}	162	Α
Power Dissipation $R_{\theta JC}$		P _{DC}	850	W
Continuous Drain Current $R_{\theta JC}$	T _C = 100°C	I _{DC}	114	Α
Power Dissipation $R_{\theta JC}$		P _{DC}	425	W
Continuous Drain Current $R_{\theta JA}$	T _A = 25°C	I _{DA}	TBD	Α
Power Dissipation $R_{\theta JA}$		P_{DA}	TBD	W
Continuous Drain Current $R_{\theta JA}$	T _A = 100°C	I _{DA}	TBD	Α
Power Dissipation $R_{\theta JA}$		P_{DA}	TBD	W
Pulsed Drain Current R _{θJC}	$T_C = 25^{\circ}C$, $t_p = 10 \mu s$	I _{DM}	1038	Α
Operating Junction and Storage T Range	emperature	T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)		Is	221	Α
Single Pulse Avalanche Energy (T _J = 25°C, V _{GS} = 20 V, I _{LPK} = 1 A, L = 0.1 mH, R _G = 25 Ω)		E _{AS}	TBD	mJ
Lead Temperature for Soldering P	urposes	TL	TBD	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.18	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	TBD	

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)}	I _D MAX
1200 V	21.6 mΩ @ 20 V	162 A

N-CHANNEL MOSFET

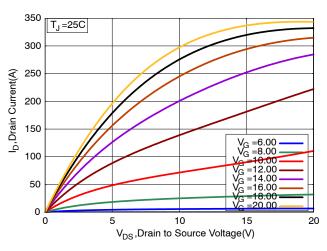
MARKING DIAGRAM

&Z = Assembly Plant Code &3 = Data Code (Year & Week)

&K = Lot

NTH4L020N120SC1 = Specific Device Code

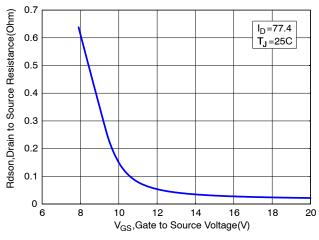
ORDERING INFORMATION


See detailed ordering and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•	•		•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 2.50e - 04A, T_C = 25°C	1200	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSSTj}	$V_{GS} = 0 \text{ V, } I_D = 2.50e - 04A, $ $T_{Jmax} = 175^{\circ}C$	_	0.25	-	V/°C
Zero Gate Voltage Drain Current	I _{DSS}	T _C = 25°C	-	-	10.0	μΑ
		T _C = 175°C	-	-	250	
Gate-to-Source Leakage Current	I _{GSS}	V _G = 20 V, V _D = 0 V	-	-	250	nA
ON CHARACTERISTICS						
Drain-to-Source On Resistance	R _{DS(on)}	V _G = 20 V, I _D = 77.4 A	-	21.6	_	mΩ
Gate Threshold Voltage	V _{GS(th)}	$V_G = V_D, I_D = 0.02 A$	-	2.83	_	V
Gate Threshold Voltage Temperature Coefficient	V _{GS(th)} /T _J		-	-5.37	-	mV/°C
Forward Transconductance	9FS	V _D = 10.0 V, I _D = 77.4 A	-	31.2	_	S
CHARGES, CAPACITANCES & GATE I	RESISTANCE		•	•		•
Gate Resistance	R _G	V _G = 0 V, V _D = 1000 V	_	1.86	_	Ω
Input Capacitance	C _{ISS}		-	4513	_	pF
Reverse Transfer Capacitance	C _{RSS}		_	14.9	_	1
Output Capacitance	C _{OSS}	V _{DS} = 0 to 1000 V, V _G = 0 V	_	266	_	1
Effective Output Capacitance	C _{OSSef}		-	427	_	
Energy Related Output Capacitance	C _{OSSer}		_	316	_	1
Coss Stored Energy	Eoss		_	158	_	μJ
Total Gate Charge	Q _{G(tot)}	V _D = 800 V, I _D = 38.7 A, V _G = 20 V	-	170	_	nC
Gate-to-Source Charge	Q _{GS}		_	38.5	_	1
Gate-to-Drain Charge	Q_{GD}		_	44.3	_	1
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(on)}	$V_G = -5/20 \text{ V}, I_D = 60 \text{ A},$ $V_D = 800 \text{ V}, R_G = 2 \Omega$	-	20.8	_	ns
Turn-Off Delay Time	t _{d(off)}	V_D = 800 V, R_G = 2 Ω	_	31.0	_	1
Rise Time	t _r		_	6.71	_	1
Fall Time	t _f		-	8.39	_	1
Turn-On Switching Loss	E _{ON}		-	0.51	_	mJ
Turn-Off Switching Loss	E _{OFF}		_	0.14	_	1
Total Switching Loss	E _{TOT}		_	0.65	_	1
SOURCE-TO-DRAIN DIODE CHARAC	TERISTICS		•	•		•
Forward Diode Voltage	V _{SD}	I _D = 30 A	_	3.01	_	V
Reverse Recovery Time	t _{RR}	I _D = 60 A, dI/dt = 1000 A/μs,	-	100	_	ns
Reverse Recovery Charge	Q _{RR}	$V_{DS} = 800 \text{ V}, V_{GS} = -5/20 \text{ V}$	-	378	_	nC
Reverse Recovery Energy	E _{REC}		-	93.0	_	μJ
Peak Reverse Recovery Current	I _{RRM}		_	10.7	_	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL PERFORMANCE CHARACTERISTICS

300 | V_{DS} = 10.0 | 250

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

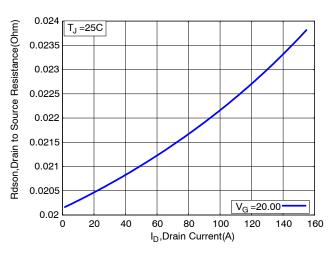
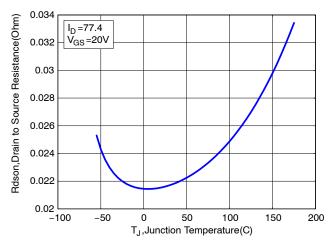



Figure 3. On-Resistance vs. VGS

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

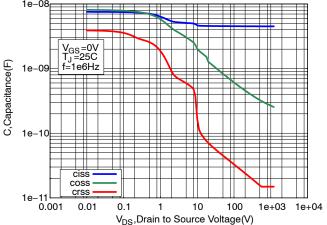


Figure 5. On–Resistance Variation with Temperature

Figure 6. Capacitance Variation

TYPICAL PERFORMANCE CHARACTERISTICS

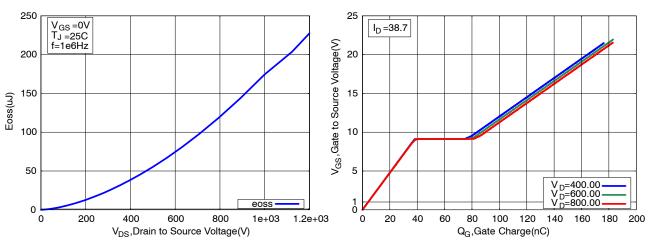


Figure 7. Eoss vs. Drain-to-Source Voltage

Figure 8. Gate-to-Source Voltage vs. Total Charge

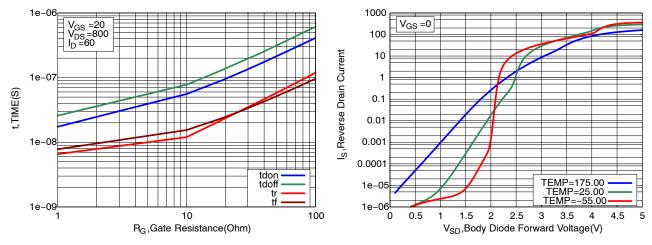


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

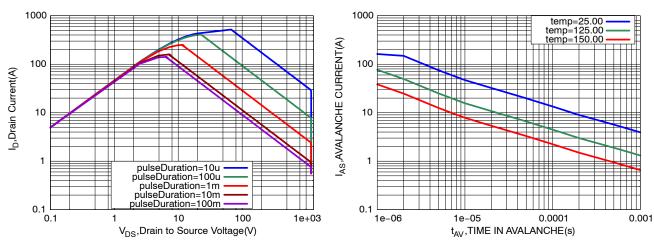
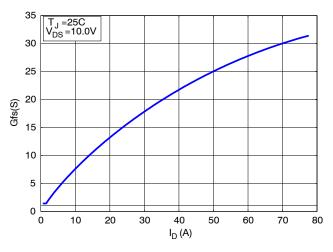



Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Ipeak vs. Time in Avalanche

TYPICAL PERFORMANCE CHARACTERISTICS

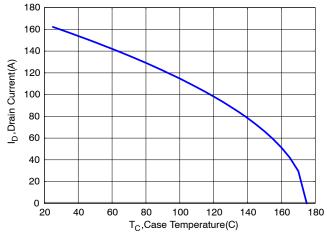
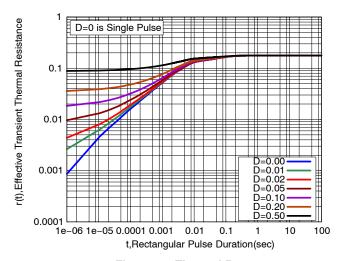
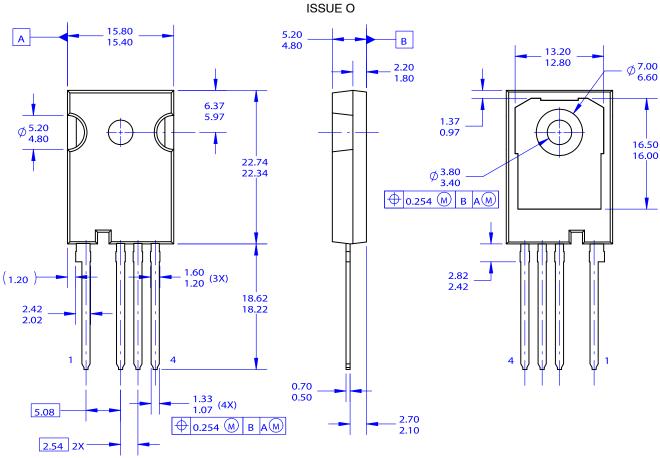


Figure 13. GFS vs. ID

Figure 14. Maximum Current vs. Case Temperature




Figure 15. Thermal Response

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NTH4L020N120SC1	NTH4L020N120SC1	TO-247	Tube	N/A	N/A	30 Units

PACKAGE DIMENSIONS

TO-247-4LD CASE 340CJ

NOTES:

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5-2009.

ON Semiconductor and ᠾ are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative