NTJD1155L

MOSFET - Power, P-Channel, High Side Load Switch with Level-Shift, SC-88

8 V, ± 1.3 A

The NTJD1155L integrates a P and N -Channel MOSFET in a single package. This device is particularly suited for portable electronic equipment where low control signals, low battery voltages and high load currents are needed. The P -Channel device is specifically designed as a load switch using ON Semiconductor state-of-the-art trench technology. The N -Channel, with an external resistor (R1), functions as a level-shift to drive the P -Channel. The N -Channel MOSFET has internal ESD protection and can be driven by logic signals as low as 1.5 V . The NTJD1155L operates on supply lines from 1.8 to 8.0 V and can drive loads up to 1.3 A with 8.0 V applied to both V_{IN} and $\mathrm{V}_{\mathrm{ON} / \mathrm{OFF}}$.

Features

- Extremely Low R ${ }_{\text {DS(on) }}$ P-Channel Load Switch MOSFET
- Level Shift MOSFET is ESD Protected
- Low Profile, Small Footprint Package
- VIN Range 1.8 to 8.0 V
- ON/OFF Range 1.5 to 8.0 V
- These Devices are Pb -Free and are RoHS Compliant

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating			Symbol	Value	Unit
Input Voltage (V $\mathrm{V}_{\text {DSS }}$, $\mathrm{P}-\mathrm{Ch}$)			$\mathrm{V}_{\text {IN }}$	8.0	V
ON/OFF Voltage (V_{GS}, N -Ch)			$\mathrm{V}_{\text {ON/OFF }}$	8.0	V
Continuous Load Current (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	L	± 1.3	A
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		± 0.9	
Power Dissipation (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	0.40	W
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		0.20	
Pulsed Load Current		$10 \mu \mathrm{~s}$	ILM	± 3.9	A
Operating Junction and Storage Temperature			$\begin{gathered} \hline \mathrm{T}_{\mathrm{J},} \\ \mathrm{~T}_{\text {STG }} \end{gathered}$	$\begin{gathered} -55 \text { to } \\ 150 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Source Current (Body Diode)			Is	-0.4	A
Lead Temperature for Soldering Purposes ($1 / 8^{\prime \prime}$ from case for 10 s)			T_{L}	260	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$\mathrm{R}_{\text {ӨJA }}$	320	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Foot - Steady State (Note 1)	$\mathrm{R}_{\text {日JF }}$	220	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

$\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{on)}}$ TYP	$\mathrm{I}_{\mathrm{D}} \mathrm{MAX}$
8.0 V	$130 \mathrm{~m} \Omega$ @ -4.5 V	± 1.3 A
	$170 \mathrm{~m} \Omega$ @ -2.5 V	
	$260 \mathrm{~m} \Omega$ @ -1.8 V	

SIMPLIFIED SCHEMATIC

SC-88
(SOT-363)
CASE 419B
STYLE 30

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping †
NTJD1155LT1G, NTJD1155LT2G	SC-88 (Pb-Free)	3000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NTJD1155L

1. Surface-mounted on FR4 board using 1 inch sq pad size (Cu area $=1.127$ in sq [1 oz] including traces).

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Test Condition		Min	Typ	Max	Unit
OFF CHARACTERISTICS							
Q2 Drain-to-Source Breakdown Voltage	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\mathrm{GS} 2}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D} 2}=250 \mu \mathrm{~A}$		-8.0			V
Forward Leakage Current	I_{FL}	$\begin{gathered} \mathrm{V}_{\mathrm{GS} 1}=0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{DS} 2}=-8.0 \mathrm{~V} \end{gathered}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			10	
Q1 Gate-to-Source Leakage Current	$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{DS} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS} 1}= \pm 8.0 \mathrm{~V}$				± 100	nA
Q1 Diode Forward On-Voltage	$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\mathrm{S}}=-0.4 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS} 1}=0 \mathrm{~V}$			-0.8	-1.1	V

ON CHARACTERISTICS

ON/OFF Voltage	$\mathrm{V}_{\text {ON/OFF }}$			1.5		8.0	V
Q1 Gate Threshold Voltage	$\mathrm{V}_{\text {GS1 (th) }}$	$\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{DS} 1}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		0.4		1.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{DS} 1}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		1.8		8.0	V
Q2 Drain-to-Source On Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\text {ON/OFF }}=1.5 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{L}}=1.2 \mathrm{~A} \end{gathered}$		130	175	$\mathrm{m} \Omega$
			$\begin{gathered} \mathrm{V}_{I N}=2.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{L}}=1.0 \mathrm{~A} \end{gathered}$		170	220	
			$\begin{aligned} & V_{I N}=1.8 \mathrm{~V} \\ & I_{L}=0.7 \mathrm{~A} \end{aligned}$		260	320	
Load Current	I_{L}	$\begin{gathered} \mathrm{V}_{\text {DROP }} \leq 0.2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.0 \mathrm{~V}, \\ \mathrm{~V}_{\text {ON/OFF }}=1.5 \mathrm{~V} \end{gathered}$		1.0			A
		$\begin{gathered} \mathrm{V}_{\text {DROP }} \leq 0.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}, \\ \mathrm{~V}_{\text {ON/OFF }}=1.5 \mathrm{~V} \end{gathered}$		1.0			

Figure 1. Load Switch Application

Components	Description	Values
R1	Pullup Resistor	Typical $10 \mathrm{k} \Omega$ to $1.0 \mathrm{M} \Omega^{\star}$
R2	Optional Slew-Rate Control	Typical 0 to $100 \mathrm{k} \Omega^{\star}$
$\mathrm{C}_{\mathrm{O}}, \mathrm{C}_{\mathrm{l}}$	Output Capacitance	Usually < $1.0 \mu \mathrm{~F}$
C1	Optional In-Rush Current Control	Typical $\leq 1000 \mathrm{pF}$

*Minimum R1 value should be at least $10 \times$ R2 to ensure Q1 turn-on.

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Figure 2. $V_{\text {drop }}$ vs. $\mathrm{I}_{\mathrm{L}} @ \mathrm{~V}_{\text {in }}=2.5 \mathrm{~V}$

Figure 4. On-Resistance vs. Input Voltage

Figure 6. Normalized On-Resistance Variation with Temperature

Figure 3. $\mathrm{V}_{\text {drop }}$ vs. $\mathrm{I}_{\mathrm{L}} @ \mathrm{~V}_{\text {in }}=4.5 \mathrm{~V}$

Figure 5. On-Resistance Variation with Temperature

Figure 7. Switching Variation
R2 @ $\mathrm{V}_{\mathrm{in}}=4.5 \mathrm{~V}, \mathrm{R} 1=20 \mathrm{k} \Omega$

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Figure 10. Switching Variation R2 @ $\mathrm{V}_{\mathrm{in}}=2.5 \mathrm{~V}, \mathrm{R} 1=20 \mathrm{k} \Omega$

Figure 11. FET Thermal Response

NTJD1155L

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363
 CASE 419B-02
 ISSUE Y

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor and on are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

