MOSFET – Power, P-Channel, Schottky Diode, Schottky Barrier Diode, µCool 2x2 mm -20 V, -4.1 A, 2.0

ON Semiconductor®

http://onsemi.com

Features

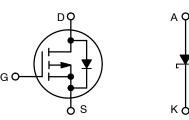
- FETKY[™] Configuration with MOSFET plus Low Vf Schottky Diode
- μCOOL[™] Package Provides Exposed Drain Pad for Excellent Thermal Conduction
- 2x2 mm Footprint Same as SC-88 Package Design
- Independent Pinout Provides Circuit Design Flexibility
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environment
- High Current Schottky Diode: 2 A Current Rating
- This is a Pb–Free Device

Applications

- Optimized for Portable Applications like Cell Phones, Digital Cameras, Media Players, etc.
- DC-DC Buck Circuit
- Li–Ion Battery Applications
- Color Display and Camera Flash Regulators

MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise noted)

Param	Symbol	Value	Unit					
Drain-to-Source Voltag	V _{DSS}	-20	V					
Gate-to-Source Voltage			V _{GS}	±8.0	V			
Continuous Drain	Steady	T _A = 25°C	Ι _D	-3.3	А			
Current (Note 1)	State	T _A = 85°C		-2.4				
	t ≤ 5 s	$T_A = 25^{\circ}C$		-4.1				
Power Dissipation (Note 1)	Steady State	T _A = 25°C	PD	1.5	W			
	t ≤ 5 s			2.3				
Continuous Drain		T _A = 25°C	I _D	-2.3	А			
Current (Note 2)	Steady				$T_A = 85^{\circ}C$		-1.6	
Power Dissipation (Note 2)	State	$T_A = 25^{\circ}C$	PD	0.71	W			
Pulsed Drain Current	t _p =	10 μs	I _{DM}	-20	А			
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C			
Source Current (Body D	iode) (Not	e 2)	I _S	-1.9	А			
Lead Temperature for S (1/8" from case for 10 s)		urposes	ΤL	260	°C			

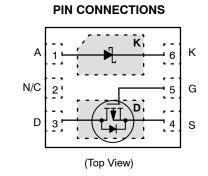

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
- Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm², 2 oz Cu.

http://oliseini.com									
MOSFET									
V _{(BR)DSS}									
	100 mΩ @ –4.5 V								
–20 V	135 mΩ @ –2.5 V	-4.1 A							
	200 mΩ @ –1.8 V								

SCHOTTKY DIODE

V _R MAX	V _F TYP	I _F MAX
30 V	0.47 V	2.0 A



P-CHANNEL MOSFET SCHOTTKY DIODE

JH = Specific Device Code

- M = Date Code
- = Pb-Free Package
- (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

SCHOTTKY DIODE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V _{RRM}	30	V
DC Blocking Voltage	V _R	30	V
Average Rectified Forward Current	١ _F	2.0	А

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit
Junction-to-Ambient – Steady State (Note 3)	$R_{ hetaJA}$	83	
Junction-to-Ambient – t \leq 5 s (Note 3)	$R_{ hetaJA}$	54	°C/W
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{\theta JA}$	177	

Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm², 2 oz Cu.

MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition	ns	Min	Тур	Мах	Unit
OFF CHARACTERISTICS				-			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -28$	50 μA	-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = -250 μA, Ref to	o 25°C		9.95		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}		$T_J = 25^{\circ}C$			-1.0	μΑ
		V _{DS} = -16 V, V _{GS} = 0 V	$T_J = 85^{\circ}C$			-10	1
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±	8.0 V			±100	nA
ON CHARACTERISTICS (Note 5)				-			-
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS}=V_{DS},\ I_{D}=-250\ \mu A$		-0.4	-0.7	-1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.44		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = -4.5, I _D = -2	2.0 A		75	100	mΩ
		V _{GS} = -2.5, I _D = -2	2.0 A		101	135	
		V _{GS} = -1.8, I _D = -	1.6 A		150	200	1
Forward Transconductance	9 _{FS}	V _{DS} = -5.0 V, I _D = -	-2.0 A		3.1		S
CHARGES, CAPACITANCES AND GA	ATE RESISTAN	CE		-	-	-	-
Input Capacitance	C _{ISS}				531		pF
Output Canaditanaa	<u> </u>	V _{GS} = 0 V, f = 1.0 M	MHz,		01		

input Capacitance	CISS		551		рг
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = -10 V	91		
Reverse Transfer Capacitance	C _{RSS}	20	56		
Total Gate Charge	Q _{G(TOT)}		5.5	6.2	nC
Threshold Gate Charge	Q _{G(TH)}		0.7		
Gate-to-Source Charge	Q _{GS}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $I_{D} = -2.0 \text{ A}$	1.0		
Gate-to-Drain Charge	Q _{GD}		1.4		
Gate Resistance	R _G		8.8		Ω

SWITCHING CHARACTERISTICS (Note 6)

Turn-On Delay Time	t _{d(ON)}		5.2	ns
Rise Time	t _r	V _{GS} = -4.5 V, V _{DD} = -5.0 V,	13.2	
Turn-Off Delay Time	t _{d(OFF)}	I_D = -1.0 A, R_G = 6.0 Ω	13.7	
Fall Time	t _f		19.1	

 $\begin{array}{ll} \text{5. Pulse Test: Pulse Width} \leq 300 \ \mu\text{s}, \ \text{Duty Cycle} \leq 2\%. \\ \text{6. Switching characteristics are independent of operating junction temperatures.} \end{array}$

MOSFET ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS	3 (Note 6)					
Turn-On Delay Time	t _{d(ON)}	V _{GS} = -4.5 V, V _{DD} = -10 V,		5.5		ns
Rise Time	t _r			15		
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = -4.5 V, V_{DD} = -10 V, I_{D} = -2.0 A, R_{G} = 2.0 Ω		19.8		
Fall Time	t _f			21.6		
DRAIN-SOURCE DIODE CHARA	CTERISTICS					
Forward Recovery Voltage	Vsd	T ₁ = 25°C	;	-0.75	-1.0	

Forward Recovery Voltage	V _{SD}	V _{GS} = 0 V, IS = -1.0 A	T _J = 25°C	-0.75	-1.0	V
	$T_{\rm J} = T_{\rm J}$	T _J = 125°C	-0.64		v	
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, d_{ISD}/d_t = 100 A/µs, I _S = -1.0 A		16.2		
Charge Time	ta			10.6		ns
Discharge Time	t _b			5.6		
Reverse Recovery Time	Q _{RR}			5.7		nC

5. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

6. Switching characteristics are independent of operating junction temperatures.

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

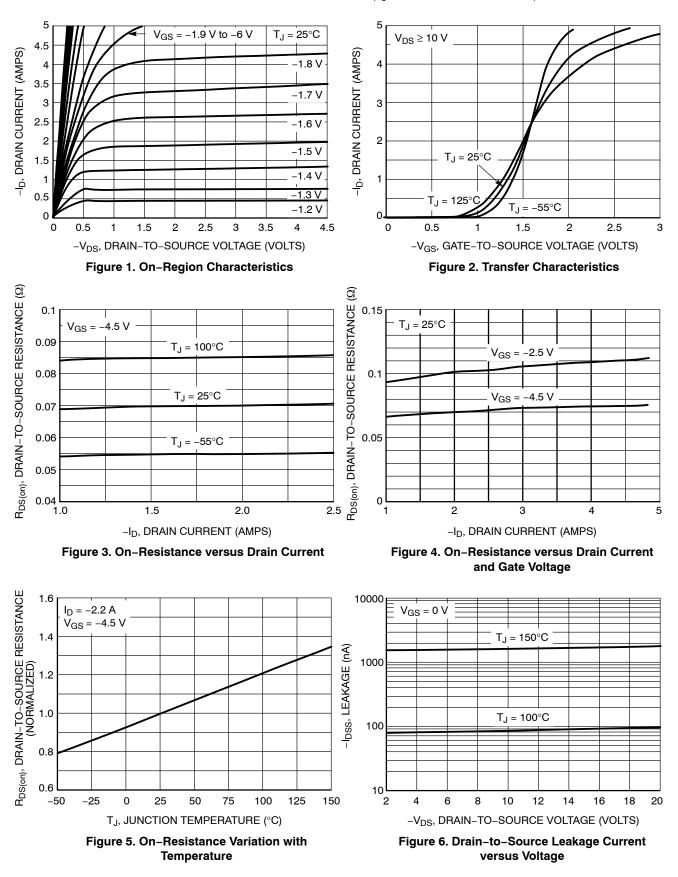
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.1 A		0.34	0.39	V
Forward Voltage		I _F = 1.0 A		0.47	0.53	
Maximum Instantaneous	I _R	V _R = 30 V		17	20	μA
Reverse Current		V _R = 20 V		3.0	8.0	
		V _R = 10 V		2.0	4.5	

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 85°C unless otherwise noted)

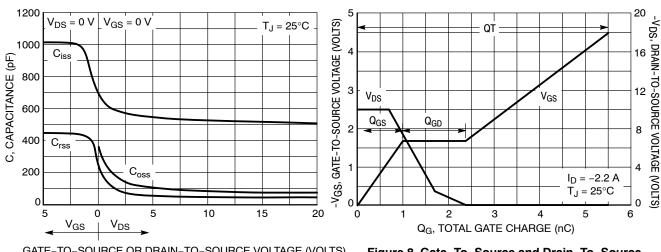
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.1 A		0.22	0.35	V
Forward Voltage		I _F = 1.0 A		0.40	0.50	
Maximum Instantaneous	I _R	V _R = 30 V		0.22	2.5	mA
Reverse Current		V _R = 20 V		0.11	1.6	
		V _R = 10 V		0.06	1.2	

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 125°C unless otherwise noted)

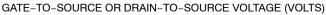
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.1 A		0.2	0.29	V
Forward Voltage		I _F = 1.0 A		0.4	0.47	
Maximum Instantaneous	I _R	V _R = 30 V		2.0	20	mA
Reverse Current		V _R = 20 V		1.1	10.9	
		V _R = 10 V		0.63	8.4	

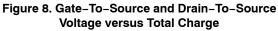

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

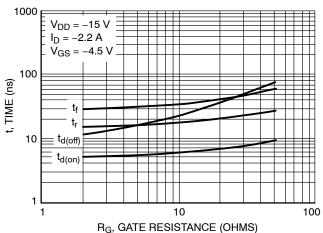
Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Capacitance	С	V _R = 5.0 V, f = 1.0 MHz		38		pF

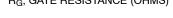

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz cu.

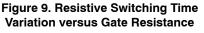
9. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.


10. Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)




TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)



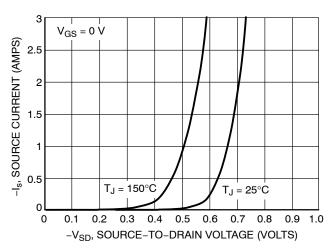
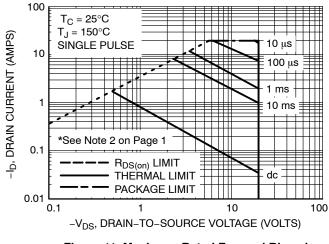
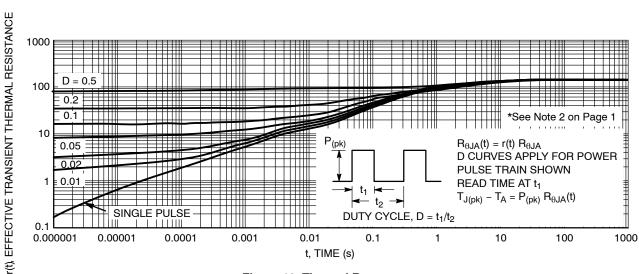




Figure 10. Diode Forward Voltage versus Current

TYPICAL PERFORMANCE CURVES (T_J = 25° C unless otherwise noted)

TYPICAL SCHOTTKY PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

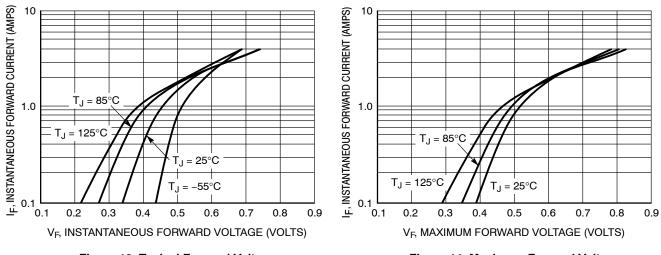
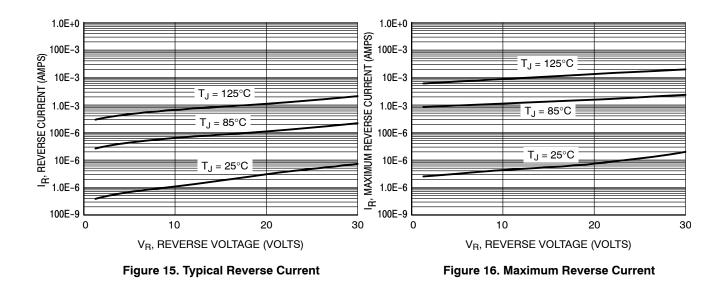
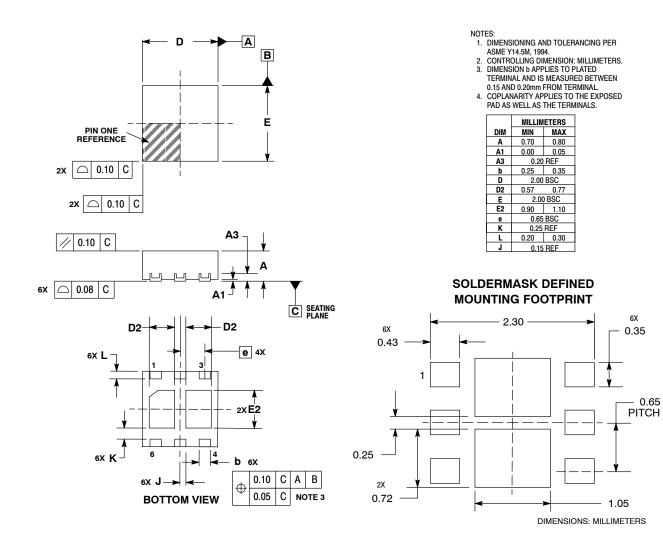



Figure 13. Typical Forward Voltage


ORDERING INFORMATION

Device	Package	Shipping [†]	
NTLJF3117PT1G	WDFN6 (Pb-Free)	3000 / Tape & Reel	
NTLJF3117PTAG	WDFN6 (Pb-Free)	3000 / Tape & Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

WDFN6 2x2 CASE 506AN-01 ISSUE C

FETKY is a registered trademark of International Rectifier Corporation. μ Cool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative