## **Power MOSFET**

## 60 V, 7 A, 29 m $\Omega$ , Single N-Channel

#### **Features**

- UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction
- Low Profile UDFN 1.6 x 1.6 x 0.55 mm for Board Space Saving
- Ultra Low R<sub>DS(on)</sub>
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

#### **Applications**

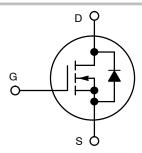
- Power Load Switch
- Battery Management
- Power Management
- Reverse Polarity Protection

#### MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise stated)

| Parameter                                                         |                 |                                      | Symbol          | Value | Unit |
|-------------------------------------------------------------------|-----------------|--------------------------------------|-----------------|-------|------|
| Drain-to-Source Voltage                                           |                 |                                      | $V_{DSS}$       | 60    | V    |
| Gate-to-Source Vol                                                | tage            |                                      | $V_{GS}$        | ±20   | V    |
| Continuous Drain                                                  | Steady          | T <sub>A</sub> = 25°C                | I <sub>D</sub>  | 5.4   | Α    |
| Current (Note 1)                                                  | State           | T <sub>A</sub> = 85°C                |                 | 3.9   |      |
|                                                                   | t ≤ 5 s         | T <sub>A</sub> = 25°C                |                 | 7     |      |
| Power Dissipa-<br>tion (Note 1)                                   | Steady<br>State | T <sub>A</sub> = 25°C                | P <sub>D</sub>  | 1.5   | W    |
|                                                                   | t ≤ 5 s         | T <sub>A</sub> = 25°C                |                 | 2.3   |      |
| Continuous Drain                                                  | Steady<br>State | T <sub>A</sub> = 25°C                | I <sub>D</sub>  | 3.5   | Α    |
| Current (Note 2)                                                  | State           | T <sub>A</sub> = 85°C                |                 | 2.6   |      |
| Power Dissipation (Note 2)                                        |                 | T <sub>A</sub> = 25°C                | P <sub>D</sub>  | 0.6   | W    |
| Pulsed Drain Current $t_p = 10 \mu s$                             |                 | t <sub>p</sub> = 10 μs               | I <sub>DM</sub> | 28    | Α    |
| MOSFET Operating Junction and Storage<br>Temperature              |                 | T <sub>J</sub> ,<br>T <sub>STG</sub> | -55 to<br>150   | °C    |      |
| Source Current (Body Diode) (Note 1)                              |                 | I <sub>S</sub>                       | 2.0             | Α     |      |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s) |                 | TL                                   | 260             | °C    |      |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface-mounted on FR4 board using the minimum recommended pad size, 2 oz. Cu.
- 3. The device does not have an ESD protection diode.




#### ON Semiconductor®

www.onsemi.com

#### MOSFET

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> MAX | I <sub>D</sub> MAX |  |
|----------------------|-------------------------|--------------------|--|
| 60 V                 | 29 mΩ @ 10 V            | 7 A                |  |
| 00 V                 | 42 mΩ @ 4.5 V           | / A                |  |



**N-CHANNEL MOSFET** 

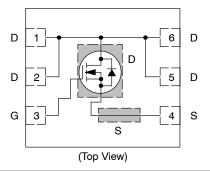
# S

## UDFN6 1 o

UDFN6 (μCOOL™) CASE 517AU



**MARKING DIAGRAM** 


AJ = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

#### **PIN CONNECTIONS**



#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 5 of this data sheet.

#### THERMAL RESISTANCE RATINGS

| Parameter                                           | Symbol          | Max   | Unit |
|-----------------------------------------------------|-----------------|-------|------|
| Junction-to-Ambient – Steady State (Note 4)         | $R_{\theta JA}$ | 81.7  |      |
| Junction-to-Ambient – t ≤ 5 s (Note 4)              | $R_{\theta JA}$ | 52.8  | °C/W |
| Junction-to-Ambient – Steady State min Pad (Note 5) | $R_{\theta JA}$ | 193.6 |      |

- 4. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
  5. Surface-mounted on FR4 board using the minimum recommended pad size, 2 oz. Cu.

#### **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C unless otherwise specified)

| Parameter                                                    | Symbol                               | Test Condition                                                                          |                                       | Min | Тур  | Max | Units      |
|--------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|-----|------|-----|------------|
| OFF CHARACTERISTICS                                          |                                      | •                                                                                       |                                       | •   |      |     |            |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                 | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                                           |                                       | 60  |      |     | V          |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /T <sub>J</sub> | I <sub>D</sub> = 250 μA, ref to 25°C                                                    |                                       |     | 25   |     | mV/°C      |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                     | $V_{GS} = 0 V$ ,                                                                        | T <sub>J</sub> = 25°C                 |     |      | 10  | μΑ         |
|                                                              |                                      | V <sub>DS</sub> = 24 V                                                                  | T <sub>J</sub> = 125°C                |     |      | 100 |            |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                     | $V_{DS} = 0 V$                                                                          | V <sub>GS</sub> = 20 V                |     |      | 100 | nA         |
| ON CHARACTERISTICS (Note 6)                                  |                                      |                                                                                         |                                       |     |      |     |            |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                  | $V_{GS} = V_{DS}$                                                                       | <sub>S</sub> , I <sub>D</sub> = 15 μA | 1   |      | 2   | V          |
| Negative Threshold Temp. Coefficient                         | V <sub>GS(TH)</sub> /T <sub>J</sub>  |                                                                                         |                                       |     | 6    |     | mV/°C      |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                  | V <sub>GS</sub> = 10                                                                    | ) V, I <sub>D</sub> = 7 A             |     | 24.5 | 29  | mΩ         |
|                                                              |                                      | V <sub>GS</sub> = 4.5                                                                   | 5 V, I <sub>D</sub> = 6 A             |     | 32   | 42  |            |
| CHARGES, CAPACITANCES & GATE                                 | RESISTANCE                           |                                                                                         |                                       | •   |      |     |            |
| Input Capacitance                                            | C <sub>ISS</sub>                     | V <sub>GS</sub> = 0 V, f = 1 MHz,<br>V <sub>DS</sub> = 30 V                             |                                       |     | 410  |     | pF         |
| Output Capacitance                                           | C <sub>OSS</sub>                     |                                                                                         |                                       |     | 190  |     |            |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                     |                                                                                         |                                       |     | 3.4  |     |            |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                  | V <sub>GS</sub> = 10 V, V <sub>DS</sub> = 30 V;<br>I <sub>D</sub> = 7 A                 |                                       |     | 7    |     | nC         |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                   |                                                                                         |                                       | 1   | 0.6  |     | ]<br> <br> |
| Gate-to-Source Charge                                        | Q <sub>GS</sub>                      |                                                                                         |                                       | 1   | 1.3  |     |            |
| Gate-to-Drain Charge                                         | $Q_{GD}$                             |                                                                                         |                                       |     | 1.0  |     |            |
| SWITCHING CHARACTERISTICS, VG                                | s = <b>4.5 V</b> (Note 7)            |                                                                                         |                                       | •   |      |     |            |
| Turn-On Delay Time                                           | t <sub>d(ON)</sub>                   | $V_{GS} = 10 \text{ V}, V_{DD} = 30 \text{ V},$ $I_{D} = 7 \text{ A}, R_{G} = 6 \Omega$ |                                       |     | 5.4  |     | ns         |
| Rise Time                                                    | t <sub>r</sub>                       |                                                                                         |                                       |     | 2.8  |     |            |
| Turn-Off Delay Time                                          | t <sub>d(OFF)</sub>                  |                                                                                         |                                       | 1   | 14.9 |     |            |
| Fall Time                                                    | t <sub>f</sub>                       |                                                                                         |                                       |     | 1.4  |     |            |
| DRAIN-SOURCE DIODE CHARACTER                                 | RISTICS                              |                                                                                         |                                       | •   |      |     |            |
| Forward Diode Voltage                                        | V <sub>SD</sub>                      | V <sub>GS</sub> = 0 V,                                                                  | T <sub>J</sub> = 25°C                 |     | 0.79 | 1.2 | V          |
|                                                              |                                      | I <sub>S</sub> = 2.0 A                                                                  | T <sub>J</sub> = 125°C                |     | 0.63 |     |            |
| Reverse Recovery Time                                        | t <sub>RR</sub>                      | $V_{GS} = 0 \text{ V, dIs/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 2.0 \text{ A}$     |                                       |     | 20.4 |     | ns         |
| Charge Time                                                  | t <sub>a</sub>                       |                                                                                         |                                       |     | 10.4 |     |            |
| Discharge Time                                               | t <sub>b</sub>                       |                                                                                         |                                       |     | 10   |     |            |
| Reverse Recovery Charge                                      | Q <sub>RR</sub>                      |                                                                                         |                                       |     | 10.5 |     | nC         |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

<sup>6.</sup> Pulse Test: pulse width  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2%.

<sup>7.</sup> Switching characteristics are independent of operating junction temperatures.

#### **TYPICAL CHARACTERISTICS**

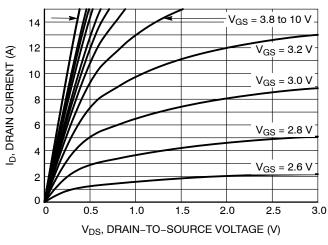



Figure 1. On-Region Characteristics

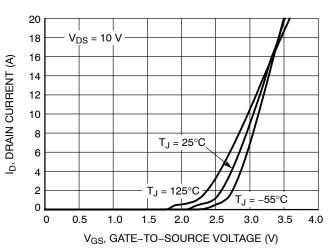



Figure 2. Transfer Characteristics

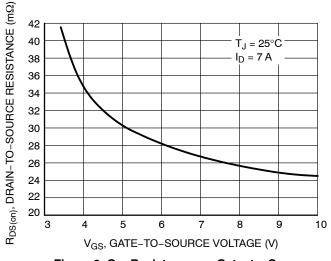



Figure 3. On-Resistance vs. Gate-to-Source Voltage

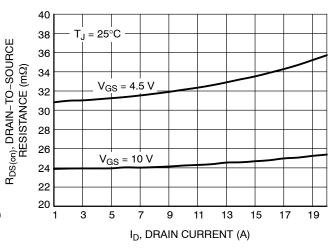



Figure 4. On-Resistance vs. Drain Current and Gate Voltage

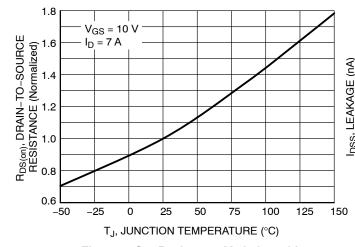



Figure 5. On–Resistance Variation with Temperature

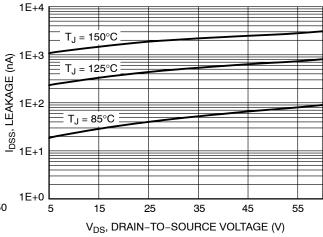



Figure 6. Drain-to-Source Leakage Current vs. Voltage

#### **TYPICAL CHARACTERISTICS**

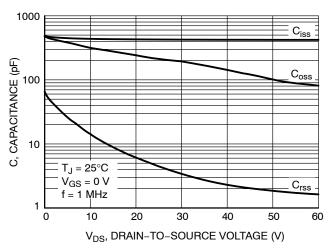



Figure 7. Capacitance Variation

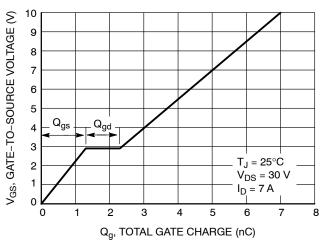



Figure 8. Gate-to-Source Voltage vs. Total Charge

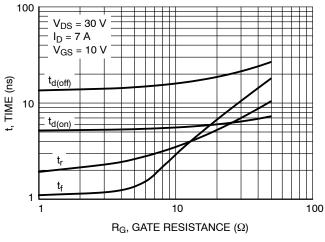



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

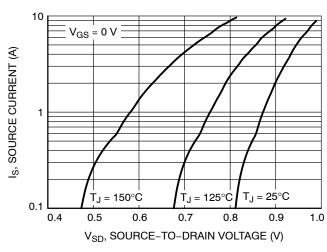



Figure 10. Diode Forward Voltage vs. Current

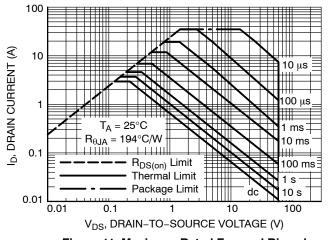



Figure 11. Maximum Rated Forward Biased Safe Operating Area

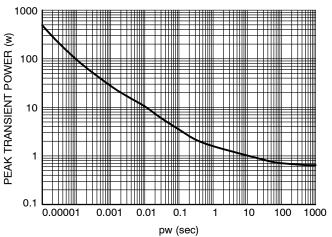



Figure 12. Peak Power

## **TYPICAL CHARACTERISTICS**

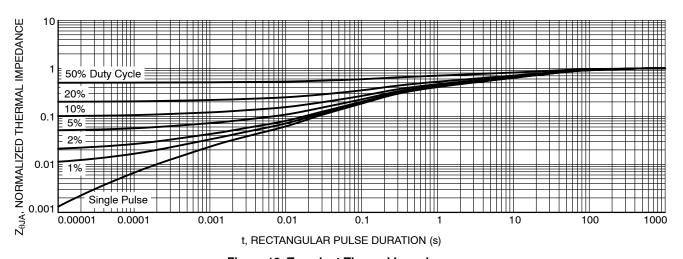
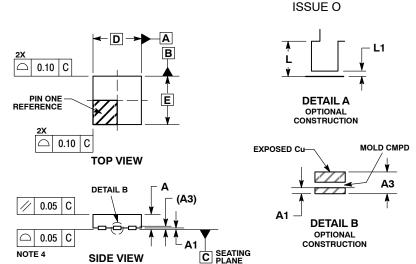



Figure 13. Transient Thermal Impedance


#### **DEVICE ORDERING INFORMATION**

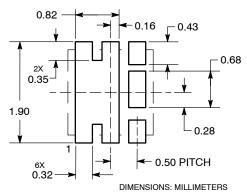
| Device           | Package            | Shipping <sup>†</sup> |
|------------------|--------------------|-----------------------|
| NTLUS029N06T6TAG | UDFN6<br>(Pb-Free) | 3000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### PACKAGE DIMENSIONS

## **UDFN6 1.6x1.6, 0.5P** CASE 517AU




#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
  2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL.
   COPLANARITY APPLIES TO THE EXPOSED
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

| _   |             |      |  |
|-----|-------------|------|--|
|     | MILLIMETERS |      |  |
| DIM | MIN         | MAX  |  |
| Α   | 0.45        | 0.55 |  |
| A1  | 0.00        | 0.05 |  |
| А3  | 0.13        | REF  |  |
| b   | 0.20        | 0.30 |  |
| D   | 1.60 BSC    |      |  |
| Е   | 1.60 BSC    |      |  |
| е   | 0.50 BSC    |      |  |
| D1  | 0.62        | 0.72 |  |
| D2  | 0.15        | 0.25 |  |
| E2  | 0.57        | 0.67 |  |
| F   | 0.55 BSC    |      |  |
| G   | 0.25 BSC    |      |  |
| L   | 0.20        | 0.30 |  |
| L1  |             | 0.15 |  |

#### $\oplus$ 0.10 С Α В е **E2** CA 6X L 0.10 $\oplus$ DETAIL A С A B D<sub>1</sub> 0.10 0 C NOTE 3 0.05 **BOTTOM VIEW**

# SOLDERMASK DEFINED MOUNTING FOOTPRINT\*



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor datas sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative