MOSFET – Power, Single, N-Channel, μ Cool, UDFN6, 1.6x1.6x0.55 mm 30 V, 18 m Ω , 6.9 A

Features

- UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction
- Low Profile UDFN 1.6 x 1.6 x 0.55 mm for Board Space Saving
- Ultra Low R_{DS(on)}
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Power Load Switch
- Wireless Charging
- DC-DC Converters
- Motor Drive

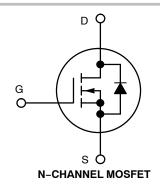
MAXIMUM RATINGS (T_{.I} = 25°C unless otherwise stated)

Parameter			Symbol	Value	Unit
Drain-to-Source Vol	Drain-to-Source Voltage			30	V
Gate-to-Source Volt	age		V _{GS}	±20	V
Continuous Drain		T _A = 25°C	I _D	6.9	Α
Current R _{0JA} (Note 1, 3)	Steady	T _A = 85°C		5.0	
Power Dissipation R _{0JA} (Note 1, 3)	State	T _A = 25°C	P _D	1.49	W
Continuous Drain		T _A = 25°C	I _D	4.5	Α
Current R _{0JA} (Note 2, 3)	Steady	T _A = 85°C		3.2	
Power Dissipation R _{0JA} (Note 2, 3)	State	T _A = 25°C	P _D	0.64	W
Pulsed Drain Current $t_p = 10 \mu s$		I _{DM}	20	Α	
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient – Steady State (Note 1, 3)	$R_{ heta JA}$	83.7	°C/W
Junction-to-Ambient – Steady State min Pad (Note 2, 3)	$R_{\theta JA}$	196.6	G/VV


^{1.} Surface-mounted on FR4 board using 1 in² pad size, 2 oz Cu pad.

ON Semiconductor®

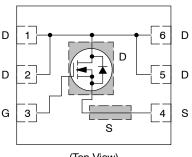
www.onsemi.com

MOSFET					
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX			
30 V	18 mΩ @ 10 V	6.9 A			
30 V	26 m Ω @ 4.5 V	0.9 A			

D

MARKING DIAGRAM

UDFN6 (μCOOL) CASE 517AU



AK = Specific Device Code M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

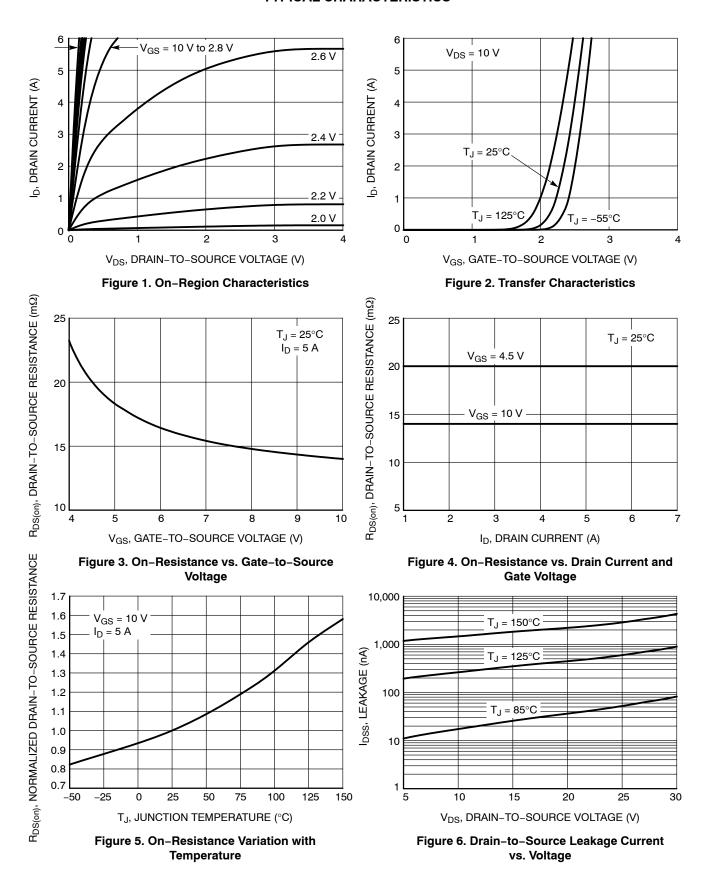
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

1

- Surface-mounted on FR4 board using the min pad size, 2 oz Cu pad.
 The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
 This device does not have ESD protection diode.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS				•			•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V,	I _D = 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA, ref to 25°C			14.2		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		V _{DS} = 24 V	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V,	V _{GS} = 20 V			100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I _D = 250 μA	1.2		2.2	V
Negative Threshold Temp. Coefficient	V _{GS(TH)} /T _J	I _D = 250 μA	A, ref to 25°C		-4.1		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 \	V, I _D = 6.0 A		14	18	mΩ
		V _{GS} = 4.5	V, I _D = 5.0 A		20	26	
Forward Transconductance	9FS	V _{DS} = 1.5	V, I _D = 5.0 A		16		S
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, } f = 1 \text{ MHz,}$ $V_{DS} = 15 \text{ V}$			400		pF
Output Capacitance	C _{OSS}				215		
Reverse Transfer Capacitance	C _{RSS}				21		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 5.0 A			3.7		nC
Threshold Gate Charge	Q _{G(TH)}				0.6		
Gate-to-Source Charge	Q_{GS}				1.3		
Gate-to-Drain Charge	Q_{GD}				1.2		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS}	= 15 V; I _D = 5.0 A		8		nC
SWITCHING CHARACTERISTICS, VG	S = 4.5 V (Note 6)						
Turn-On Delay Time	t _{d(ON)}				9		ns
Rise Time	t _r	V _{GS} = 4.5 V	, V _{DD} = 15 V,		15		
Turn-Off Delay Time	t _{d(OFF)}		, $R_G = 6 \Omega$		11]
Fall Time	t _f				2.5		1
SWITCHING CHARACTERISTICS, VG	S = 10 V (Note 6)	-					
Turn-On Delay Time	t _{d(ON)}				6		ns
Rise Time	t _r	V_{GS} = 10 V, V_{DD} = 15 V, I_{D} = 5.0 A, R_{G} = 6 Ω			13]
Turn-Off Delay Time	t _{d(OFF)}				14		
Fall Time	t _f				2		
DRAIN-SOURCE DIODE CHARACTER	ISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		8.0	1.0	V
		$I_{S} = 5.0 \text{ A}$ $T_{J} = 125^{\circ}\text{C}$			0.7		


^{5.} Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
DRAIN-SOURCE DIODE CHARACTERISTICS						
Reverse Recovery Time	t _{RR}			20		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V, dls/dt} = 100 \text{ A/}\mu\text{s,}$		11		
Discharge Time	t _b	V_{GS} = 0 V, dIs/dt = 100 A/ μ s, I _S = 5.0 A		10		
Reverse Recovery Charge	Q _{RR}			8		nC

^{5.} Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

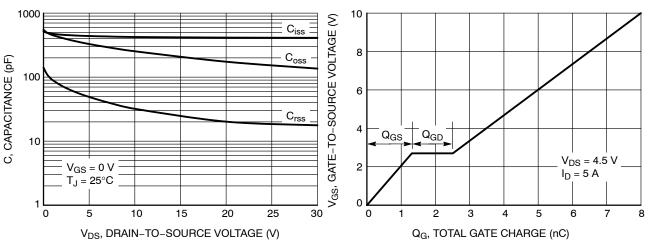


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source vs. Total Charge

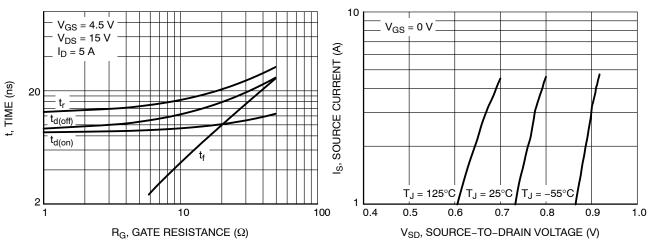


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

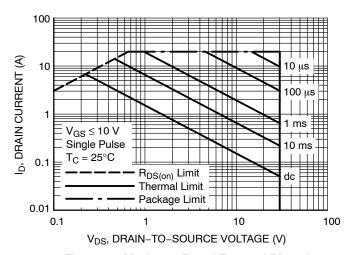


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

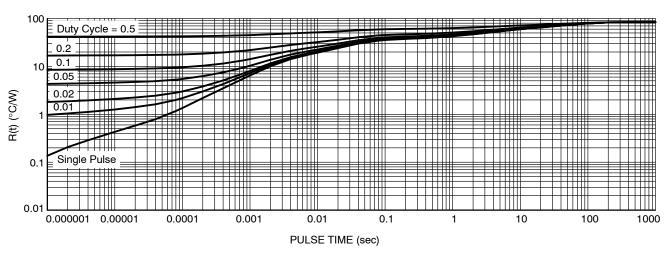
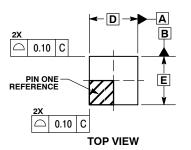


Figure 12. Thermal Response

DEVICE ORDERING INFORMATION

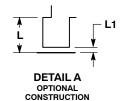

Device	Package	Shipping [†]
NTLUS030N03CTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel

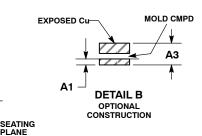
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

UDFN6 1.6x1.6, 0.5P CASE 517AU

ISSUE O

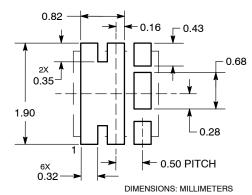

DETAIL B


SIDE VIEW

0.05 C

0.05 C

NOTE 4


NOTES

- 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION b APPLIES TO PLATED TERMINAL
 AND IS MEASURED BETWEEN 0.15 AND
- 0.30 mm FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45	0.55		
A1	0.00	0.05		
A3	0.13	REF		
b	0.20	0.30		
D	1.60 BSC			
E	1.60 BSC			
е	0.50 BSC			
D1	0.62	0.72		
D2	0.15	0.25		
E2	0.57	0.67		
F	0.55 BSC			
G	0.25 BSC			
L	0.20	0.30		
L1		0.15		

С В 0.10 Α 0.10 | C | A | B \oplus DETAIL A CA В D1 0.10 Ф C NOTE 3 0.05 **BOTTOM VIEW**

SOLDERMASK DEFINED MOUNTING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 🕠 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. Coverage may be accessed at www.onsemi.com/site/par/-atent_-warking.pgr. On Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

0