MOSFET – Power, Single, P-Channel, ESD, UDFN, 1.6x1.6x0.55 mm -20 V, -5.2 A

Features

- UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction
- Low Profile UDFN 1.6 x 1.6 x 0.55 mm for Board Space Saving
- Ultra Low R_{DS(on)}
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Optimized for Power Management Applications for Portable Products, Such as Cell Phones, PMP, Media Tablets, DSC, GPS, and Others
- Battery Switch
- High Side Load Switch

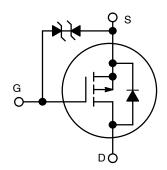
MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Pa	Parameter			Value	Unit
Drain-to-Source Vo	Drain-to-Source Voltage			-20	V
Gate-to-Source Vol	tage		V _{GS}	±8.0	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$	Ι _D	-5.2	А
Current (Note 1) Continuous Drain	State	$T_A = 85^{\circ}C$		-3.7	
Current (Note 1)	t ≤ 5 s	T _A = 25°C	1	-6.4	
Power Dissipa- tion (Note 1)	Steady State	$T_A = 25^{\circ}C$	PD	1.5	W
	t ≤ 5 s	$T_A = 25^{\circ}C$		2.3	
Continuous Drain	Steady State	T _A = 25°C	Ι _D	-3.4	А
Current (Note 2)	Siale	$T_A = 85^{\circ}C$		-2.4	
Power Dissipation ((Note 2)	$T_A = 25^{\circ}C$	PD	0.6	W
Pulsed Drain Curre	Pulsed Drain Current tp :		I _{DM}	-17	А
Operating Junction and Storage Temperature		T _J , T _{STG}	-55 to 150	°C	
Source Current (Body Diode) (Note 2)			۱ _S	-1	А
Lead Temperature t (1/8" from case for		g Purposes	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

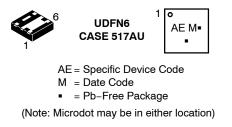
 Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).

 Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

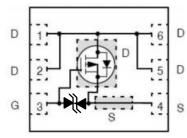


ON Semiconductor®

www.onsemi.com


MOSFET

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX				
	39 mΩ @ –4.5 V					
-20 V	50 mΩ @ −2.5 V	-5.2 A				
	81 mΩ @ –1.8 V	0.27				
	147 mΩ @ –1.5 V					



P-Channel MOSFET

MARKING DIAGRAM

(Top View)

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter		Max	Unit
Junction-to-Ambient – Steady State (Note 3)	R_{\thetaJA}	85	
Junction-to-Ambient – t \leq 5 s (Note 3)	R_{\thetaJA}	55	°C/W
Junction-to-Ambient – Steady State min Pad (Note 4)	R_{\thetaJA}	200	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Units
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I	_D = –250 μA	-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = -250 μA	∧, ref to 25°C		13		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -20 V	$T_J = 25^{\circ}C$			-1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	/ _{GS} = ±8.0 V			±10	μΑ

ON CHARACTERISTICS (Note 5)

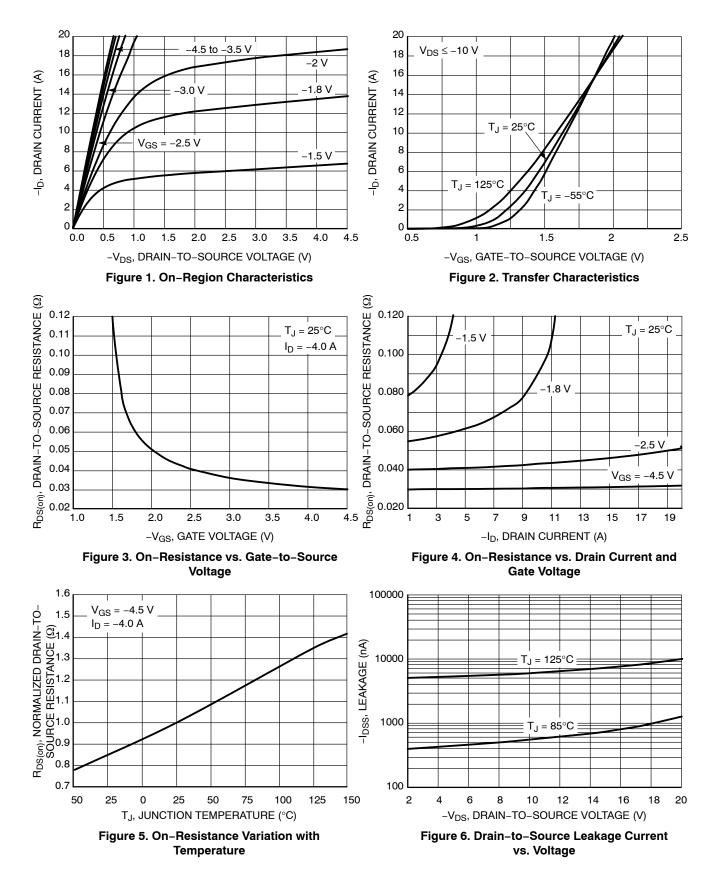
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$	-0.4		-1.0	V
Negative Threshold Temp. Coefficient	V _{GS(TH)} /T _J			3.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5$ V, $I_D = -4.0$ A		30	39	mΩ
		$V_{GS} = -2.5$ V, $I_D = -2.0$ A		40	50	
		$V_{GS} = -1.8 \text{ V}, I_D = -1.2 \text{ A}$		55	81	
		$V_{GS} = -1.5 \text{ V}, \text{ I}_{D} = -0.5 \text{ A}$		75	147	
Forward Transconductance	9 _{FS}	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -3.0 \text{ A}$		25		S

CHARGES, CAPACITANCES & GATE RESISTANCE

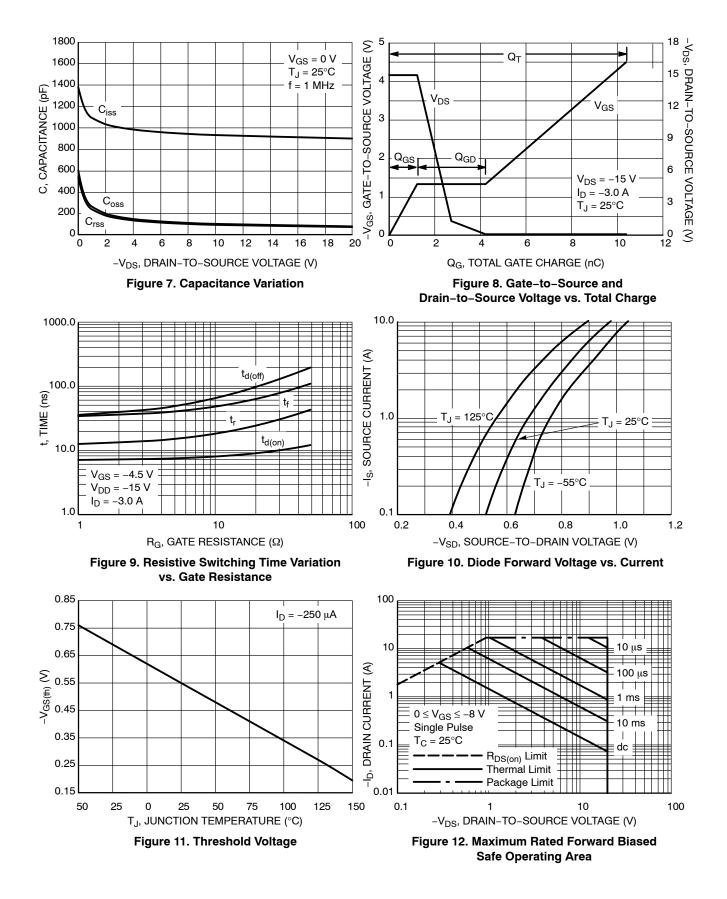
Input Capacitance	C _{ISS}		920	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = -15 V	85	
Reverse Transfer Capacitance	C _{RSS}		80	
Total Gate Charge	Q _{G(TOT)}		10.4	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = -4.5 V, V _{DS} = -15 V; I _D = -3.0 A	0.5	
Gate-to-Source Charge	Q _{GS}	$I_{\rm D} = -3.0$ A	1.2	
Gate-to-Drain Charge	Q _{GD}		3.0	

SWITCHING CHARACTERISTICS, VGS = 4.5 V (Note 6)

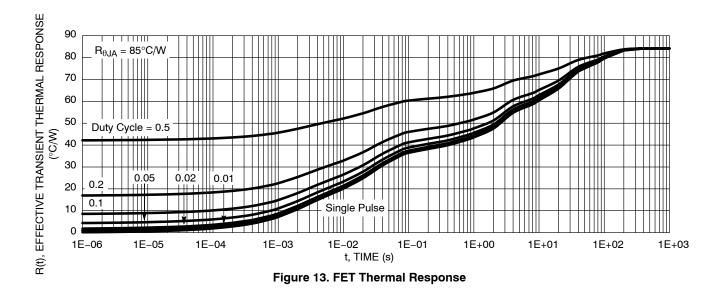
Turn-On Delay Time	t _{d(ON)}		7.2	ns
Rise Time	t _r	V _{GS} = -4.5 V, V _{DD} = -15 V,	12.2	
Turn-Off Delay Time	t _{d(OFF)}	$\overline{I}_D = -3.0 \text{ A}, \ \overline{R}_G = 1 \Omega$	34.7	
Fall Time	t _f		34.8	


DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = -1.0 A	$T_J = 25^{\circ}C$	0.67	1.0	V
		Ι _S = –1.0 Α	$T_J = 125^{\circ}C$	0.56		
Reverse Recovery Time	t _{RR}			11.1		ns
Charge Time	t _a	V _{GS} = 0 V, dis/dt = 100 A/μs, I _S = −1.0 A		5.8		
Discharge Time	t _b			5.3		
Reverse Recovery Charge	Q _{RR}			4		nC

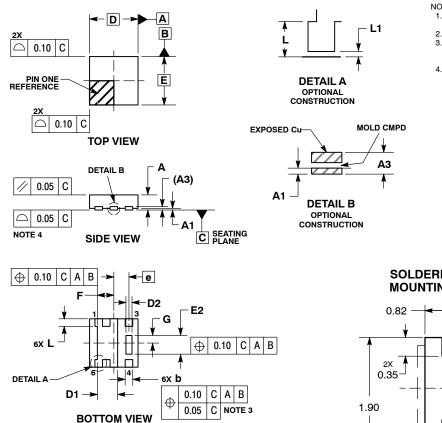

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

6. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

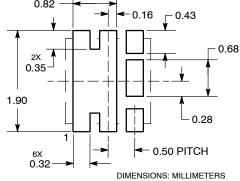

DEVICE ORDERING INFORMATION

Device	Package	Shipping [†]
NTLUS3A39PZTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel
NTLUS3A39PZTBG	UDFN6 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

UDFN6 1.6x1.6, 0.5P CASE 517AU **ISSUE O**



NOTES

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 3
- 0.30 mm FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED
- 4 PAD AS WELL AS THE TERMINALS.

	MILLIMETERS					
DIM	MIN	MAX				
Α	0.45	0.55				
A1	0.00	0.05				
A3	0.13	REF				
b	0.20	0.30				
D	1.60	BSC				
Е	1.60	BSC				
е	0.50	BSC				
D1	0.62	0.72				
D2	0.15	0.25				
E2	0.57	0.67				
F	0.55 BSC					
G	0.25 BSC					
L	0.20 0.30					
L1		0.15				

SOLDERMASK DEFINED **MOUNTING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed Solicito wins emicion/site/pdt/Patent-Marking.pde/fis. Solicito reserves the right to make changes without further notice to any products herein. Solicito Rakes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILCC assume any liability arising out of the application or use of any products hereis and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILCC does not convey any license under its patent rights or the rights of others. SCILC products are not designed, intended, or authorized for use a components in systems intended for surgical internation in which the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative