MOSFET – Power, Single, P-Channel, Schottky Diode, Schottky Barrier Diode -30 V, -4.0 A, 20 V, 2.2 A

NTMD4184PF

Features

- FETKY[™] Surface Mount Package Saves Board Space
- Independent Pin–Out for MOSFET and Schottky Allowing for Design Flexibility
- Low R_{DS(on)} MOSFET and Low V_F Schottky to Minimize Conduction Losses
- Optimized Gate Charge to Minimize Switching Losses
- This is a Pb–Free Device

Applications

- Disk Drives
- DC-DC Converters
- Printers

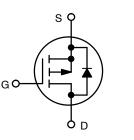
MOSFET MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

MOSFET MAXIMUM	RATING	3 (1 _J = 25°C	uniess otne	rwise state	ea)
Ratir	ng		Symbol	Value	Unit
Drain-to-Source Voltage	Э		V _{DSS}	-30	V
Gate-to-Source Voltage)		V _{GS}	±20	V
Continuous Drain		$T_A = 25^{\circ}C$	I _D	-3.3	А
Current $R_{\theta JA}$ (Note 1)		$T_A = 70^{\circ}C$		-2.6	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	PD	1.6	W
Continuous Drain	1	$T_A = 25^{\circ}C$	I _D	-2.3	А
Current $R_{\theta JA}$ (Note 2)	Steady	$T_A = 70^{\circ}C$		-1.8	
Power Dissipation $R_{\theta JA}$ (Note 2)	State	$T_A = 25^{\circ}C$	PD	0.77	W
Continuous Drain		$T_A = 25^{\circ}C$	۱ _D	-4.0	А
Current R _{θJA} t < 10 s (Note 1)		$T_A = 70^{\circ}C$	•	-3.2	
Power Dissipation R _{θJA} t < 10 s (Note 1)		T _A = 25°C	P _D	2.31	W
Pulsed Drain Current		= 25°C, = 10 μs	I _{DM}	-10	A
Operating Junction and S	Storage T	emperature	T _J , T _{STG}	–55 to +150	°C
Source Current (Body Di	ode)		۱ _S	-1.3	А
Lead Temperature for So (1/8" from case for 10 s)		urposes	ΤL	260	°C

SCHOTTKY MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Peak Repetitive Reverse Voltage		V _{RRM}	20	V
DC Blocking Voltage		V _R	20	V
Average Rectified Forward Current, (Note 1)	Steady State	١ _F	2.2	A
	t < 10 s		3.2	

ON Semiconductor®

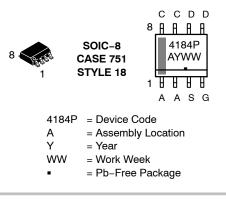

www.onsemi.com

P-CHANNEL MOSFET

V _{(BR)DSS}	R _{DS(on)} Max	I _D Max
-30 V	95 mΩ @ −10 V	-4.0 A
00 1	165 mΩ @ –4.5 V	

SCHOTTKY DIODE

V _R Max	V _F Max	I _F Max
20 V	0.58 V	2.2 A



P-Channel MOSFET

Schottky Diode

MARKING DIAGRAM & PIN ASSIGNMENT

ORDERING INFORMATION

	Device	Package	Shipping [†]
ΓN	MD4184PFR2G	SOIC-8 (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

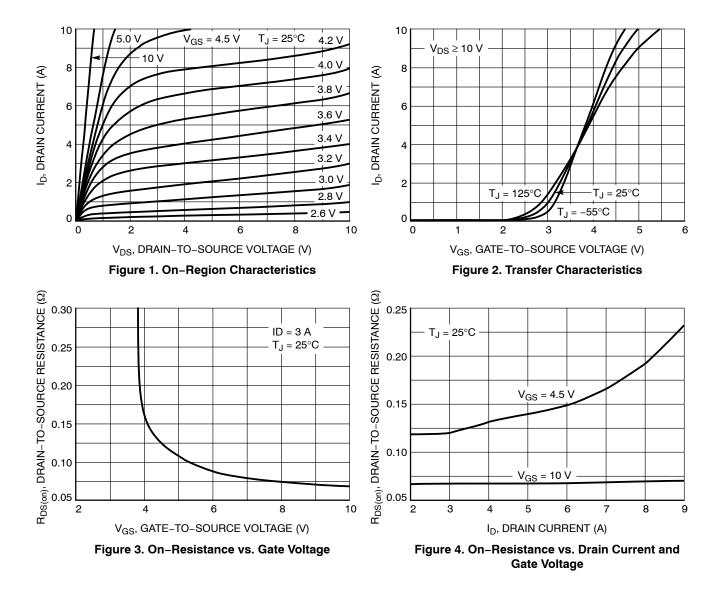
Parameter MOSFET & Schottky	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{ hetaJA}$	79	
Junction-to-Ambient – t ≤10 s Steady State (Note 1)	$R_{ hetaJA}$	54	°C/W
Junction-to-FOOT (Drain) Equivalent to $R_{\theta JC}$	R_{\thetaJF}	50	C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{ hetaJA}$	163	

Surface-mounted on FR4 board using 1 inch sq pad size, 1 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T. - 25°C unloss otherwise noted)

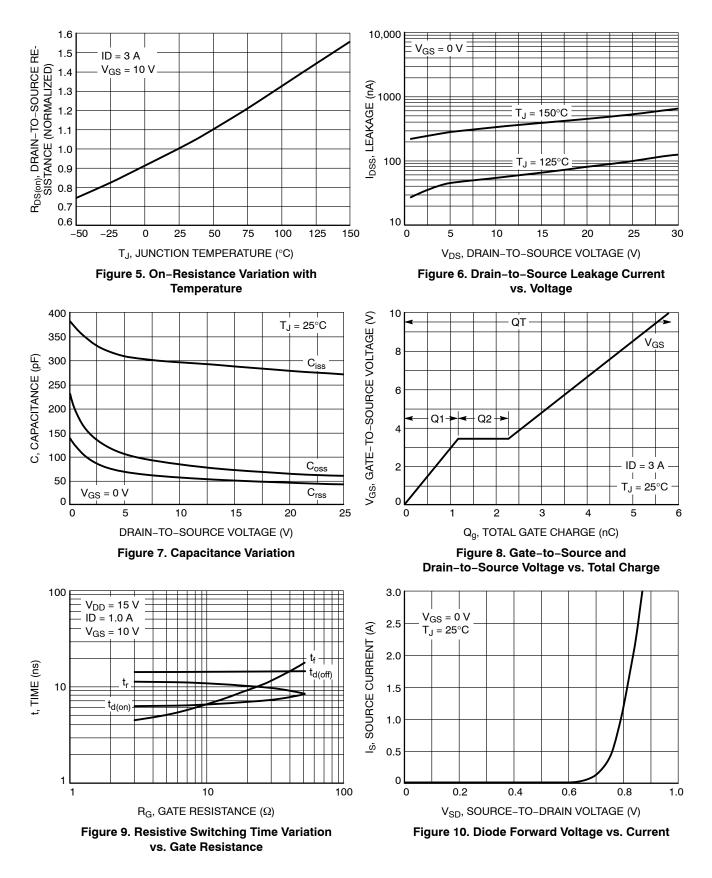
Characteristic	Symbol	Test Cor	ndition	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _I	_D = 250 μA	-30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				30		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -24 V	T _J = 25°C T _J = 125°C			-1.0 -10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	_{GS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I	_D = 250 μA	-1.0		-3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J		2		4.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -10 \text{ V}$ $I_D = -3.0 \text{ A}$			70	95	
	()	V _{GS} = -4.5 V	I _D = -1.5 A		120	165	mΩ
Forward Transconductance	9FS	$V_{DS} = -1.5 \text{ V}, \text{ I}_{D} = -3.0 \text{ A}$			5.0		S
CHARGES, CAPACITANCES AND GATE RE	SISTANCE			•			
Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = –10 V			280	360	pF
Output Capacitance	C _{OSS}				80	110	
Reverse Transfer Capacitance	C _{RSS}				52	80	
Total Gate Charge	Q _{G(TOT)}				2.8	4.2	
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = -4.5 V, V I _D = -3	√ _{DS} = −10 V,		0.4		nC
Gate-to-Source Charge	Q _{GS}	$I_D = -3$	3.0 A		1.1		
Gate-to-Drain Charge	Q _{GD}				1.1		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = -10 V, V I _D = -3			5.8	8.8	nC
SWITCHING CHARACTERISTICS (Note 4)							-
Turn-On Delay Time	t _{d(ON)}				7.2	15	
Rise Time	t _r	V _{GS} = -10 V, \	/ _{DS} = -10 V,		12	24	
Turn-Off Delay Time	t _{d(OFF)}	V _{GS} = -10 V, \ I _D = -1.0 A,	R _G = 6.0 Ω		18	36	ns
Fall Time	t _f				2.6	6.0	1
DRAIN-TO-SOURCE CHARACTERISTICS							
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V	$T_J = 25^{\circ}C$		-0.8	-1.0	V
		$I_{\rm D} = -1.3 \rm A$	T _J = 125°C		0.7		
Reverse Recovery Time	t _{RR}				12.8		1
Charge Time	t _a	$V_{GS} = 0 V, d_{IS}/d_{IS}$	l _t = 100 A/μs,		10		ns
Discharge Time	t _b	I _S = -	1.3 A		2.8		1
Reverse Recovery Time	Q _{RR}				7.4		nC

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

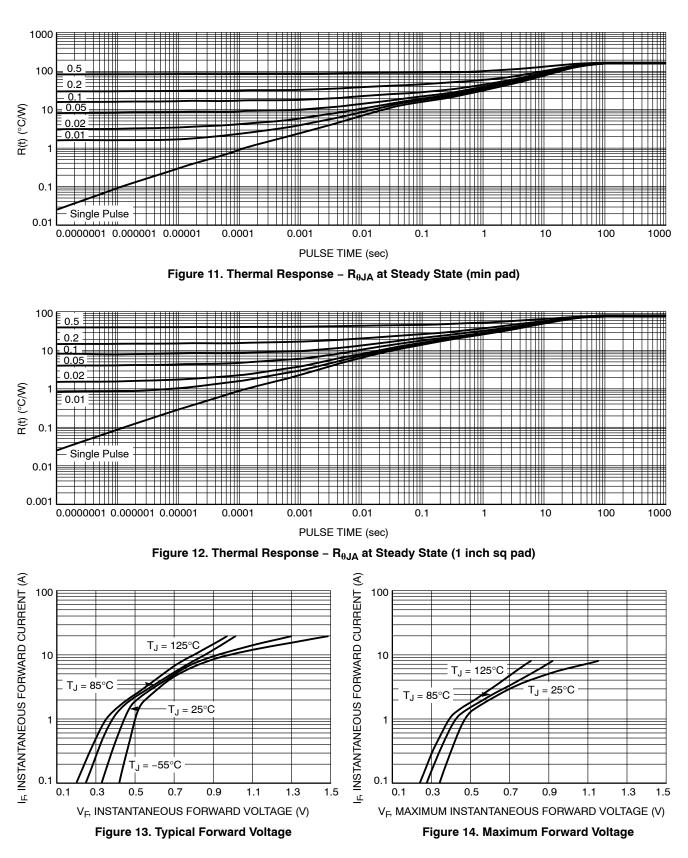

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

				,			
Parameter	Parameter Symbol Test Conditions		Min	Min Typ	Max	Unit	
Maximum Instantaneous	V _F	I _F = 1.0 A	$T_J = 25^{\circ}C$		0.43	0.50	V
Forward Voltage			T _J = 125°C		0.35	0.39	
		I _F = 2.0 A	$T_J = 25^{\circ}C$		0.5	0.58	
			T _J = 125°C		0.45	0.53	
Maximum Instantaneous	I _R	V _R = 10 V	T _J = 25°C		0.001	0.02	mA
Reverse Current			T _J = 125°C		1.2	14	
		V _R = 20 V	$T_J = 25^{\circ}C$		0.004	0.05	
			T.I = 125°C		2.0	18	1


3. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

4. Switching characteristics are independent of operating junction temperatures.



TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

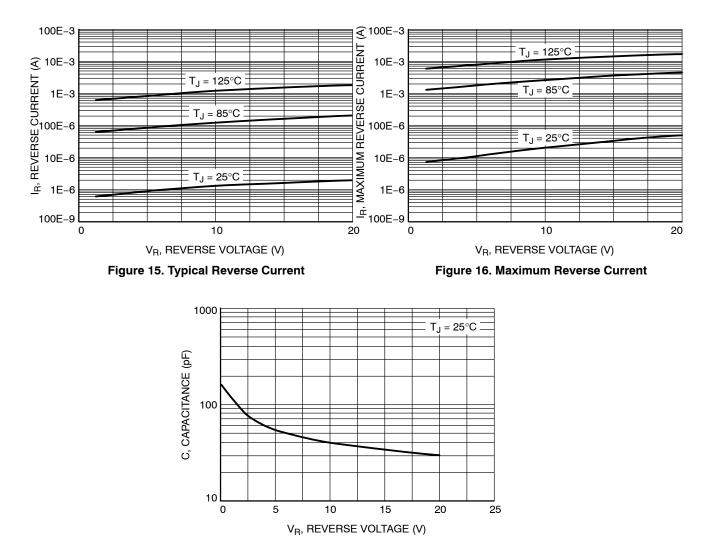
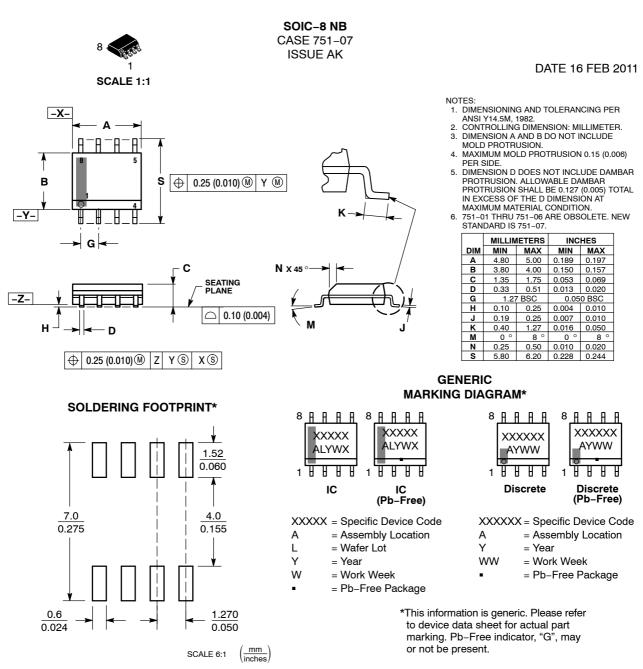



Figure 17. Capacitance

FETKY is a registered trademark of International Rectifier Corporation.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolle	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8, NB		PAGE 1 OF 3

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER 2. COLLECTOR COLLECTOR З. EMITTER 4. 5 FMITTER BASE 6. 7. BASE 8. EMITTER STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 2. 3. COLLECTOR, DIE #2 EMITTER, COMMON 4. 5. EMITTER, COMMON BASE, DIE #2 6. 7. BASE, DIE #1 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2 SOURCE SOURCE З. 4. GATE DRAIN DRAIN 5. 6. DRAIN 7. 8. DRAIN STYLE 17: PIN 1. VCC 2. V2OUT 3 V10UT 4. TXE 5. RXE 6. VEE 7. GND ACC 8. STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 З. CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7 CATHODE 6 8. STYLE 25: PIN 1. VIN 2. N/C З. REXT GND IOUT 4. 5. 6. IOUT 7 IOUT 8. IOUT STYLE 29: PIN 1. BASE, DIE #1 EMITTER, #1 2. З. BASE #2 EMITTER, #2 4. 5. COLLECTOR, #2 6. COLLECTOR, #2 COLLECTOR, #1 7.

8

COLLECTOR, #1

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 COLLECTOR, #2 4. 5 BASE #2 EMITTER, #2 6. 7. BASE, #1 8. EMITTER, #1 STYLE 6: PIN 1. SOURCE 2 DRAIN DRAIN З. 4. SOURCE 5. SOURCE GATE 6. 7. GATE 8. SOURCE STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND BIAS 2 6. 7. INPUT 8. GROUND STYLE 14: PIN 1. N-SOURCE N–GATE
P–SOURCE 4. P-GATE 5. P-DRAIN P-DRAIN 6. 7. N-DRAIN 8. N-DRAIN STYLE 18: PIN 1. ANODE ANODE SOURCE 2. 3 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 22: PIN 1. I/O LINE 1 COMMON CATHODE/VCC 2. З. COMMON CATHODE/VCC I/O LINE 3 4. COMMON ANODE/GND 5. 6. I/O LINE 4 7 I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2. dv/dt З. ENABLE 4. 5. II IMIT SOURCE 6. SOURCE 7 SOURCE 8. VCC STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 GATE 2 З. 4. SOURCE 2 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6. 7. SOURCE 1/DRAIN 2

8. GATE 1

STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN #1 DRAIN, #2 З. DRAIN, #2 4. 5 GATE #2 SOURCE, #2 6. 7. GATE, #1 8. SOURCE, #1 STYLE 7: I. INPUT EXTERNAL BYPASS THIRD STAGE SOURCE З. GROUND 4. 5. DRAIN GATE 3 6. 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5 DRAIN 2 DRAIN 2 6. 7. DRAIN 1 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 ANODE 1 4. CATHODE, COMMON CATHODE, COMMON 5. 6. CATHODE, COMMON 7. 8. CATHODE, COMMON STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3 GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND 2. COMMON ANODE/GND З. LINE 2 IN 4. 5. LINE 2 OUT 6. COMMON ANODE/GND COMMON ANODE/GND 7 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT 2. OVLO З. UVLO 4. INPUT-SOURCE 5. SOURCE 6. 7 SOURCE DRAIN 8.

DATE 16 FEB 2011

STYLE 4: PIN 1. ANODE 2. ANODE ANODE З. ANODE 4. 5 ANODE ANODE 6. 7. ANODE 8. COMMON CATHODE STYLE 8: PIN 1. COLLECTOR, DIE #1 2 BASE, #1 BASE, #2 З. COLLECTOR, #2 4. COLLECTOR, #2 EMITTER. #2 5. 6. 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. SOURCE 4. GATE 5 DRAIN DRAIN 6. 7. DRAIN 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 BASE, DIE #2 4. COLLECTOR, DIE #2 COLLECTOR, DIE #2 5. 6. COLLECTOR, DIE #1 7. 8. COLLECTOR, DIE #1 STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. COLLECTOR/ANODE COLLECTOR/ANODE З. 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7 COLLECTOR/ANODE 8. STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND V MON 5. VBULK 6. 7. VBULK 8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. I versions are uncontrolled except when stamp	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8, NB	PAGE 2	OF 3

PAGE 3 OF 3

ISSUE REVISION DATE		
AB	ADDED STYLE 25. REQ. BY S. CHANG.	15 MAR 2004
AC	ADDED CORRECTED MARKING DIAGRAMS. REQ. BY S. FARRETTA.	13 AUG 2004
AD	CORRECTED MARKING DIAGRAM FOR DISCRETE. REQ. BY S. FARRETTA.	18 NOV 2004
AE	UPDATED SCALE ON FOOTPRINT. REQ. BY S. WEST.	31 JAN 2005
AF	UPDATED MARKING DIAGRAMS. REQ. BY S. WEST. ADDED STYLE 26. REQ. BY S. CHANG.	14 APR 2005
AG	ADDED STYLE 27. REQ. BY S. CHANG.	30 JUN 2005
AH	ADDED STYLE 28. REQ. BY S. CHANG.	09 MAR 2006
AJ	ADDED STYLE 29. REQ. BY D. HELZER.	19 SEP 2007
AK	ADDED STYLE 30. REQ. BY I. CAMBALIZA.	16 FEB 2011

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agolication and expenses and reasonable attorney fees arising out of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit Phone: 421 33 790 2910

For additional information, please contact your local

Sales Representative