Product Preview **Power MOSFET** 120 V, 6.0 mΩ, TBD A, Single N-Channel

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- Soft Body Diode Reduces Voltage Ringing
- These Devices are Pb–Free, Halogen–Free / BFR Free and are RoHS Compliant

Typical Applications

- Synchronous Rectification
- AC-DC and DC-DC Power Supplies
- AC-DC Adapters (USB PD) SR
- Load Switch

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

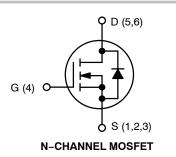
Dava			Cumple of	Value	1.1	
Parameter		Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	120	V	
Gate-to-Source Voltage			V _{GS}	±20	V	
Continuous Drain Current $R_{\theta JC}$ (Note 2)	Steadv	$= 2)$ Steady $T_C = 25^{\circ}C$ I_D		۱ _D	TBD	A
Power Dissipation $R_{\theta JC}$ (Note 2)	State	T _C = 25°C	P _D	TBD	W	
Continuous Drain Current $R_{\theta JA}$ (Notes 1, 2)	Steady State	Bout (Notes 1.2)		۱ _D	TBD	A
Power Dissipation $R_{\theta JA}$ (Notes 1, 2)		T _A = 25°C	P _D	TBD	W	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	TBD	А	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +150	°C		
Source Current (Body Diode)		۱ _S	TBD	А		
Single Pulse Drain-to-Source Avalanche Energy (I_{AV} = TBD A, L = TBD mH)		E _{AS}	TBD	mJ		
Lead Temperature Soldering Reflow for Solder- ing Purposes (1/8" from case for 10 s)			ΤL	300	°C	

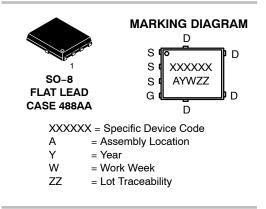
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{\theta JC}$	TBD	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	TBD	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


2. Surface-mounted on FR4 board using a 1 in² pad size, 2 oz. Cu pad. This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.



ON Semiconductor®

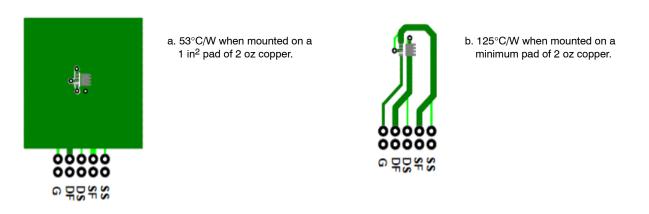
www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
120 V	$6.0~\mathrm{m}\Omega$ @ 10 V	TBD A
	TBD m $\Omega @ 6 V$	IBDA

ORDERING INFORMATION

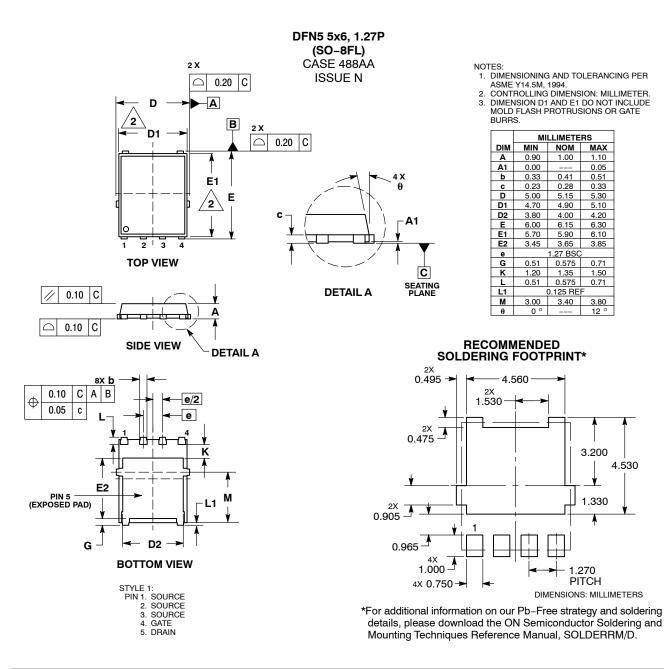
Device	Package	Shipping [†]		
NTMFS006N12MC	PQFN56 (Pb-Free)	3000 / Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS		-			-	-	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		120			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	$I_D = 250 \ \mu\text{A}$, ref to 25°C			TBD		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1	μA
		V _{DS} = TBD V	T _J = 125°C			100	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	TBD μA	2.0		4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 250 μA, ref to 25°C			TBD		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	= TBD A		TBD	6.0	mΩ
		V _{GS} = 6 V, I _D = TBD A			TBD	TBD	
Forward Transconductance	9 _{FS}	V _{DS} = TBD V, I _D = TBD A			TBD		S
Gate Resistance	R _G	T _A = 25°C			TBD		Ω
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 60 V			2678		pF
Output Capacitance	C _{OSS}				1347		
Reverse Transfer Capacitance	C _{RSS}				28		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 60 V, I_D = TBD A			44		nC
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 6 V, V_{DS} = 60 V, I_D = TBD A			TBD		-
Gate-to-Source Charge	Q _{GS}				11		
Gate-to-Drain Charge	Q _{GD}				14		
Plateau Voltage	V _{GP}				TBD		V
SWITCHING CHARACTERISTICS (Note 3)							
Turn–On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 60 V, I _D = TBD A, R _G = TBD Ω			TBD		ns
Rise Time	t _r				TBD		
Turn-Off Delay Time	t _{d(OFF)}				TBD		
Fall Time	t _f				TBD		
DRAIN-SOURCE DIODE CHARACTERISTIC	s						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = TBD A	$T_J = 25^{\circ}C$		0.9		V
			T _J = 125°C		TBD		
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dI _S /dt = 300 A/µs, I _S = TBD A			TBD		ns
Reverse Recovery Charge	Q _{RR}				TBD		nC
Reverse Recovery Time	t _{RR}	$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \text{ V, } dI_S/dt = 1000 \text{ A}/\mu \text{s}, \\ I_S = \text{TBD A} \end{array}$			TBD		ns
Reverse Recovery Charge	Q _{RR}				TBD		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Switching characteristics are independent of operating junction temperatures.


NOTES:

4. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

- 5. Pulse Test: Pulse Width < TBD. Duty cycle < TBD. 6. E_{AS} of TBD is based on started $T_J = 25^{\circ}C$, L = TBD, $I_{AS} = TBD$, $V_{DD} = TBD$, $V_{GS} = TBD$. 100% test at L = TBD, $I_{AS} = TBD$. 7. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

PACKAGE DIMENSIONS

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor for dusts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleg

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support: Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative