Product Preview

Power MOSFET

120 V, 8.0 m Ω , TBD A, Single N-Channel

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- Soft Body Diode Reduces Voltage Ringing
- These Devices are Pb-Free, Halogen-Free / BFR Free and are RoHS Compliant

Typical Applications

- Synchronous Rectification
- AC-DC and DC-DC Power Supplies
- AC-DC Adapters (USB PD) SR
- Load Switch

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

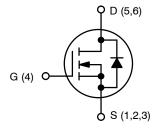
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	120	V
Gate-to-Source Voltage	€		V _{GS}	±20	٧
Continuous Drain Current R _{θJC} (Note 2)			I _D	TBD	Α
Power Dissipation $R_{\theta JC}$ (Note 2)	State	T _C = 25°C	P _D	TBD	W
Continuous Drain Current $R_{\theta JA}$ (Notes 1, 2)	Steady	T _A = 25°C	Ι _D	TBD	Α
Power Dissipation R _{θJA} (Notes 1, 2)	State	T _A = 25°C	P _D	TBD	W
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	TBD	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +150	°C
Source Current (Body Diode)			IS	TBD	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{AV} = TBD A, L = TBD mH)			E _{AS}	TBD	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{\theta JC}$	TBD	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	TBD	

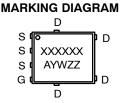
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 1 in² pad size, 2 oz. Cu pad.


This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
120 V	8.0 mΩ @ 10 V	TBD A
	TBD mΩ @ 6 V	TODA



N-CHANNEL MOSFET

SO₋₈ **FLAT LEAD** CASE 488AA

Υ

XXXXXX = Specific Device Code Α

= Assembly Location

= Year

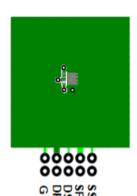
W = Work Week 77 = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS008N12MC	PQFN56 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

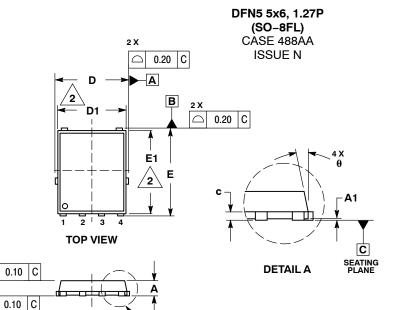

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•			•		•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		120			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 μA, ref to 25°C			TBD		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$,	T _J = 25°C			1	μΑ
		V _{DS} = TBD V	T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)	•	•			•	•	•
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	TBD μA	2.0		4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 250 μA, ref	to 25°C		TBD		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D :	= TBD A		TBD	8.0	mΩ
		V _{GS} = 6 V, I _D =	TBD A		TBD	TBD	
Forward Transconductance	9FS	V _{DS} = TBD V, I _D	= TBD A		TBD		S
Gate Resistance	R_{G}	T _A = 25°	С		TBD		Ω
CHARGES & CAPACITANCES	•					1	
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 60 V			2086		pF
Output Capacitance	C _{OSS}				1049		
Reverse Transfer Capacitance	C _{RSS}				22		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 60 V, I _D = TBD A			34		nC
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 6 \text{ V}, V_{DS} = 60 \text{ V}, I_{D} = \text{TBD A}$			TBD		
Gate-to-Source Charge	Q _{GS}				11		
Gate-to-Drain Charge	Q_{GD}				8		
Plateau Voltage	V_{GP}	1			TBD		V
SWITCHING CHARACTERISTICS (Note 3)	•				•	•	•
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 10 \text{ V}, V_{DS}$	s = 60 V,		TBD		ns
Rise Time	t _r	$I_D = TBD A, R_G = I_D A$	= TBD Ω		TBD		1
Turn-Off Delay Time	t _{d(OFF)}				TBD		
Fall Time	t _f				TBD		
DRAIN-SOURCE DIODE CHARACTERISTIC	s	•				1	
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = TBD A	T _J = 25°C		0.9		V
			T _J = 125°C		TBD		1
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_S/dt = 300 \text{ A/}\mu\text{s,}$ $I_S = TBD \text{ A}$			TBD		ns
Reverse Recovery Charge	Q _{RR}				TBD		nC
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dI_S/dt = 1000 A/ μ s, I_S = TBD A			TBD		ns
Reverse Recovery Charge	Q _{RR}				TBD		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

NOTES:

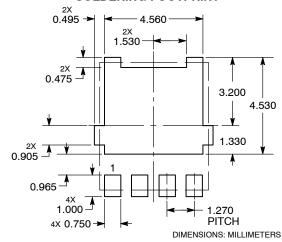
4. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.


a. 53°C/W when mounted on a 1 in² pad of 2 oz copper.

b. 125°C/W when mounted on a minimum pad of 2 oz copper.

- Pulse Test: Pulse Width < TBD. Duty cycle < TBD.
 E_{AS} of TBD is based on started T_J = 25°C, L = TBD, I_{AS} = TBD, V_{DD} = TBD, V_{GS} = TBD. 100% test at L = TBD, I_{AS} = TBD.
 As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

PACKAGE DIMENSIONS


DETAIL A

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
С	0.23	0.28	0.33	
D	5.00	5.15	5.30	
D1	4.70	4.90	5.10	
D2	3.80	4.00	4.20	
E	6.00	6.15	6.30	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
е	1.27 BSC			
G	0.51	0.575	0.71	
K	1.20	1.35	1.50	
L	0.51	0.575	0.71	
L1	0.125 REF			
М	3.00	3.40	3.80	
θ	0 °		12 °	

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. Coverage may be accessed at www.onsemi.com/site/par/-atent_-warking.pgr. On Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

SIDE VIEW

D2

BOTTOM VIEW

STYLE 1: PIN 1. SOURCE

3. 4. SOURCE

SOURCE

GATE 5 DRAIN e/2

8X b

F2

G

С A B

0.10

PIN 5 (EXPOSED PAD)

Œ 0.05 С

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative