# NTMFS1D7P02P8Z

## Product Preview **Power MOSFET** P-Channel, SO8-FL, -20 V Single

#### Features

- Advanced SO8–FL Package (5x6mm) with Excellent Thermal Conduction
- Ultra-Low RDS(on) to Improve System Efficiency
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

#### **Typical Applications**

- Power Load Switch
- Battery Management and Protection

#### **MAXIMUM RATINGS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise noted)

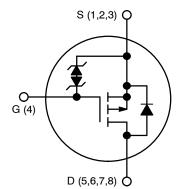
| Parameter                                                                               |                                       |                       | Symbol                            | Value          | Unit |  |
|-----------------------------------------------------------------------------------------|---------------------------------------|-----------------------|-----------------------------------|----------------|------|--|
| Drain-to-Source Voltage                                                                 |                                       |                       | V <sub>DSS</sub>                  | -20            | V    |  |
| Gate-to-Source Voltage                                                                  |                                       |                       | V <sub>GS</sub>                   | ±12            | V    |  |
| Continuous Drain                                                                        |                                       | $T_{C} = 25^{\circ}C$ | Ι <sub>D</sub>                    | 226            | А    |  |
| Current R <sub>0JC</sub> (Note 2)                                                       | Steady                                | T <sub>C</sub> = 85°C |                                   | 163            |      |  |
| Power Dissipation $R_{\theta JC}$ (Note 2)                                              | State                                 | T <sub>A</sub> = 25°C | P <sub>D</sub>                    | 139            | W    |  |
| Continuous Drain<br>Current $R_{\theta,IA}$                                             |                                       | $T_A = 25^{\circ}C$   | ۱ <sub>D</sub>                    | 34             | А    |  |
| (Notes 1, 2)                                                                            | Steady                                | T <sub>A</sub> = 85°C |                                   | 25             |      |  |
| Power Dissipation $R_{\theta JA}$ (Notes 1, 2)                                          | State                                 | T <sub>A</sub> = 25°C | PD                                | 3.2            | W    |  |
| Pulsed Drain Current                                                                    | $T_A = 25^{\circ}C, t_p = 10 \ \mu s$ |                       | I <sub>DM</sub>                   | -TBD           | А    |  |
| Operating Junction and Storage Temperature<br>Range                                     |                                       |                       | T <sub>J</sub> , T <sub>stg</sub> | –55 to<br>+150 | °C   |  |
| Lead Temperature Soldering Reflow for Solder-<br>ing Purposes (1/8" from case for 10 s) |                                       |                       | ΤL                                | 260            | °C   |  |

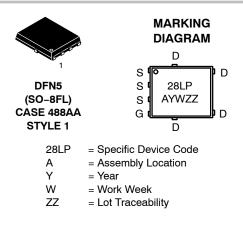
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 in<sup>2</sup> pad size, 2 oz Cu pad.

2. The entire application environment impacts the thermal resistance values shown. They are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro-mechanical application board design.  $R_{\Theta CA}$  is determined by the user's board design.

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.





## **ON Semiconductor®**

#### www.onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(ON)</sub> MAX | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
| -20 V                | 1.7 m $\Omega$ @ –4.5 V | -226 A             |
| -20 V                | 2.8 m $\Omega$ @ –2.5 V | -220 A             |

#### **P-CHANNEL MOSFET**





#### **ORDERING INFORMATION**

| Device            | Package             | Shipping <sup>†</sup> |  |  |
|-------------------|---------------------|-----------------------|--|--|
| NTMFS1D7P02P8ZT1G | SO8-FL<br>(Pb-Free) | 1500 / Tape<br>& Reel |  |  |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

### NTMFS1D7P02P8Z

#### THERMAL RESISTANCE RATINGS

| Parameter                                   | Symbol          | Мах | Unit |
|---------------------------------------------|-----------------|-----|------|
| Junction-to-Case - Steady State (Note 3)    | $R_{\theta JC}$ | 0.9 | °C/W |
| Junction-to-Ambient - Steady State (Note 3) | $R_{\theta JA}$ | 30  |      |

3. Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm<sup>2</sup>, 1 oz Cu.

#### ELECTRICAL CHARACTERISTICS (T<sub>J</sub> = 25°C unless otherwise specified)

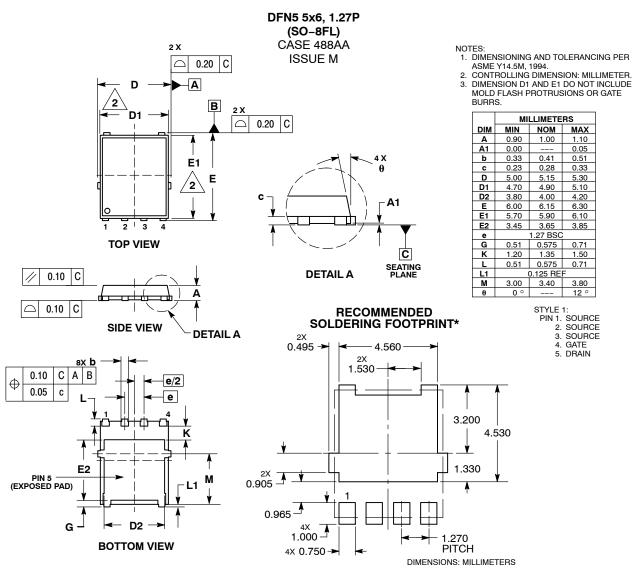
| Parameter                                                    | Symbol                               | Test Condition                                                              |                        | Min  | Тур   | Max  | Unit  |
|--------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|------------------------|------|-------|------|-------|
| OFF CHARACTERISTICS                                          | · · ·                                |                                                                             |                        |      |       |      |       |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                 | $V_{GS}$ = 0 V, I <sub>D</sub> = -250 $\mu$ A                               |                        | -20  |       |      | V     |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /T <sub>J</sub> | $I_D = -250 \ \mu\text{A}$ , ref to $25^{\circ}\text{C}$                    |                        |      | TBD   |      | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                     | V <sub>GS</sub> = 0 V,<br>V <sub>DS</sub> = -16 V                           | $T_J = 25^{\circ}C$    |      |       | 1    | μΑ    |
|                                                              |                                      |                                                                             | $T_J = 85^{\circ}C$    |      |       | TBD  |       |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                     | V <sub>DS</sub> = 0 V, V <sub>GS</sub> = ±12 V                              |                        |      |       | ±10  | ±μA   |
| ON CHARACTERISTICS (Note 4)                                  |                                      |                                                                             |                        |      |       |      |       |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                  | $V_{GS} = V_{DS}, I_D = -250 \ \mu A$                                       |                        | -0.5 |       | -1.5 | V     |
| Threshold Temperature Coefficient                            | V <sub>GS(TH)</sub> /T <sub>J</sub>  | $I_D = -250 \ \mu A$ , ref to $25^{\circ}C$                                 |                        |      | TBD   |      | mV/°C |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                  | $R_{DS(on)}$ $V_{GS} = -4.5$ V, $I_D = -20$ A                               |                        |      | 1.3   | 1.7  | mΩ    |
|                                                              |                                      | V <sub>GS</sub> = -2.5 V, I <sub>D</sub> = -20 A                            |                        |      | 2.0   | 2.8  |       |
| Forward Transconductance                                     | 9 <sub>FS</sub>                      | $V_{DS} = -5 \text{ V}, \text{ I}_{D} = -20 \text{ A}$                      |                        |      | TBD   |      |       |
| CHARGES & CAPACITANCES                                       |                                      |                                                                             |                        |      |       |      |       |
| Input Capacitance                                            | C <sub>ISS</sub>                     | $V_{GS}$ = 0 V, f = 1 MHz, $V_{DS}$ = -10 V                                 |                        |      | 17305 |      | pF    |
| Output Capacitance                                           | C <sub>OSS</sub>                     |                                                                             |                        |      | 3156  |      |       |
| Reverse Capacitance                                          | C <sub>RSS</sub>                     |                                                                             |                        |      | 2855  |      |       |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                  | $V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$<br>$I_D = -20 \text{ A}$ |                        |      | 188   |      |       |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                   |                                                                             |                        |      | TBD   |      |       |
| Gate-to-Drain Charge                                         | Q <sub>GD</sub>                      |                                                                             |                        |      | 62.8  |      |       |
| Gate-to-Source Charge                                        | V <sub>GS</sub>                      |                                                                             |                        |      | 27.1  |      |       |
| SWITCHING CHARACTERISTICS, VGS                               | = 4.5 V (Note 4)                     |                                                                             |                        |      |       |      |       |
| Turn-On Delay Time                                           | t <sub>d(ON)</sub>                   | $V_{GS}$ = -4.5 V, $V_{DD}$ = -10 V, $I_{D}$ = -20 A, $R_{G}$ = 6 $\Omega$  |                        |      | TBD   |      | ns    |
| Rise Time                                                    | t <sub>r(ON)</sub>                   |                                                                             |                        |      | TBD   |      |       |
| Turn-Off Delay Time                                          | t <sub>d(OFF)</sub>                  |                                                                             |                        |      | TBD   |      |       |
| Fall Time                                                    | t <sub>f</sub>                       |                                                                             |                        |      | TBD   |      |       |
| SOURCE-TO-DRAIN DIODE CHARACT                                | TERISTICS                            |                                                                             |                        |      |       |      |       |
| Forward Diode Voltage                                        | V <sub>SD</sub>                      | $V_{GS} = 0 V,$<br>$I_S = -20 A$                                            | $T_J = 25^{\circ}C$    |      | TBD   | TBD  | V     |
|                                                              |                                      |                                                                             | T <sub>J</sub> = 125°C |      | TBD   |      |       |
| Reverse Recovery Time                                        | t <sub>RR</sub>                      | V <sub>GS</sub> = 0 V, dl/dt = 100 A/μs,<br>ls = -20 A                      |                        |      | TBD   |      | ns    |
|                                                              |                                      |                                                                             |                        |      | 1     |      |       |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 $\mathsf{Q}_{\mathsf{R}\mathsf{R}}$ 

 $I_{\rm S} = -20 ~{\rm A}$ 

TBD


nC

4. Switching characteristics are independent of operating junction temperatures.

Reverse Recovery Charge

#### NTMFS1D7P02P8Z

#### PACKAGE DIMENSIONS



\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor handles, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintend

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Order Literature: http://www.onsemi.com/orderlit

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

For additional information, please contact your local Sales Representative

ON Semiconductor Website: www.onsemi.com