MOSFET – Power, Single, N-Channel, SO-8FL 25 V, 269 A ## **Features** - Integrated Schottky Diode - Optimized Design to Minimize Conduction and Switching Losses - Optimized Package to Minimize Parasitic Inductances - Optimized material for improved thermal performance - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant # **Applications** - High Performance DC-DC Converters - System Voltage Rails - Netcom, Telecom - Servers & Point of Load # MAXIMUM RATINGS (T_J = 25°C unless otherwise stated) | Parameter | Symbol | Value | Units | |--|---------------------|---------------|-------| | Drain-to-Source Voltage | V_{DSS} | 25 | ٧ | | Gate-to-Source Voltage | V_{GS} | ±20 | V | | Continuous Drain Current $R_{\theta JA}$ (T_A = 25°C, Note 1) | Ι _D | 43 | Α | | Power Dissipation $R_{\theta JA}$ (T_A = 25°C, Note 1) | P _D | 2.70 | W | | Continuous Drain Current $R_{\theta JC}$ ($T_C = 25^{\circ}C$, Note 1) | I _D | 269 | Α | | Power Dissipation $R_{\theta JC}$ ($T_C = 25^{\circ}C$, Note 1) | P _D | 104 | W | | Pulsed Drain Current (t _p = 10 μs) | I _{DM} | 505 | Α | | Single Pulse Drain-to-Source Avalanche Energy (Note 1) ($I_L = 51 \text{ A}_{pk}, L = 0.3 \text{ mH}$) | E _{AS} | 390 | mJ | | Drain to Source dV/dt | dV/dt | 7 | V/ns | | Maximum Junction Temperature | T _{J(max)} | 150 | °C | | Storage Temperature Range | T _{STG} | –55 to
150 | °C | | Lead Temperature Soldering Reflow (SMD Styles Only), Pb-Free Versions (Note 2) | T _{SLD} | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Values based on copper area of 645 mm² (or 1 in²) of 2 oz copper thickness and FR4 PCB substrate. - For more information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. - 3. This is the absolute maximum rating. Parts are 100% UIS tested at T_J = 25°C, V_{GS} = 10 V, I_L = 33 A, E_{AS} = 164 mJ. # ON Semiconductor® ## www.onsemi.com | V _{GS} | MAX R _{DS(on)} | TYP Q _{GTOT} | |-----------------|-------------------------|-----------------------| | 4.5 V | 1.4 m Ω | 26 nC | | 10 V | $0.9~\text{m}\Omega$ | 56 nC | #### **PIN CONNECTIONS** SO8-FL (5 x 6 mm) (Top View) (Bottom View) # N-CHANNEL MOSFET ## ORDERING INFORMATION See detailed ordering and shipping information on page 6 of this data sheet. # **THERMALCHARACTERISTICS** | Parameter | Symbol | Max | Units | |--|--|-------------|-------| | Thermal Resistance, Junction-to-Ambient (Note 1 and 4) Junction-to-Case (Note 1 and 4) | $egin{array}{l} R_{ hetaJA} \ R_{ hetaJC} \end{array}$ | 40.0
1.5 | °C/W | ^{4.} Thermal Resistance $R_{\theta JA}$ and $R_{\theta JC}$ as defined in JESD51–3. # **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise specified) | Parameter | Symbol | Test Condi | tion | Min | Тур | Max | Unit | |--|-------------------------------------|--|---------------------------|-----|-------|------|-------| | OFF CHARACTERISTICS | | | | | | | | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | V _{GS} = 0 V, I _D = 1.0 mA | | 25 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} / | | | | 34.5 | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | V _{GS} = 0 V,
V _{DS} = 20 V | T _J = 25 °C | | | 500 | μΑ | | Gate-to-Source Leakage Current | I _{GSS} | $V_{DS} = 0 \text{ V}, V_{GS}$ | = +20 V | | | +100 | nA | | ON CHARACTERISTICS (Note 5) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}$, $I_D = 1.0 \text{ mA}$ | | 1.2 | | 2.1 | V | | Negative Threshold Temperature Coefficient | V _{GS(TH)} /T _J | | | | 4.6 | | mV/°C | | | | V _{GS} = 10 V | I _D = 30 A | | 0.72 | 0.9 | | | Drain-to-Source On Resistance | R _{DS(on)} | V _{GS} = 4.5 V | I _D = 30 A | | 1.1 | 1.4 | mΩ | | Forward Transconductance | 9FS | V _{DS} = 12 V, I _D = 15 A | | | 119 | | S | | CHARGES, CAPACITANCES & GATE RESIS | STANCE | | | | | | | | Input Capacitance | C _{ISS} | | | | 3923 | | | | Output Capacitance | Coss | V _{GS} = 0 V, f = 1 MHz | z, V _{DS} = 12 V | | 2537 | | pF | | Reverse Transfer Capacitance | C _{RSS} | 1 | | | 114 | | | | Total Gate Charge | Q _{G(TOT)} | V _{GS} = 4.5 V, V _{DS} = 12 V; I _D = 30 A | | | 26 | | nC | | Threshold Gate Charge | Q _{G(TH)} | | | | 2.9 | | | | Gate-to-Source Charge | Q _{GS} | | | | 10.7 | | | | Gate-to-Drain Charge | Q_{GD} | | | | 5.8 | | | | Total Gate Charge | Q _{G(TOT)} | V _{GS} = 10 V, V _{DS} = 12 V; I _D = 30 A | | | 56 | | nC | | Gate Resistance | R _G | T _A = 25°C | | | 1.0 | | Ω | | SWITCHING CHARACTERISTICS, V _{GS} = 4.5 | V (Note 5) | | | I | | | | | Turn-On Delay Time | t _{d(ON)} | | | | 17.6 | | | | Rise Time | t _r | Voc = 45 V Vpp = 18 | 2 V In = 15 A | | 55.1 | | ns ns | | Turn-Off Delay Time | t _{d(OFF)} | $V_{GS} = 4.5 \text{ V}, V_{DD} = 12$
$R_{G} = 3.0$ | Ω | | 29.4 | | | | Fall Time | t _f | | | | 9.96 | | | | SWITCHING CHARACTERISTICS, V _{GS} = 10 | V (Note 5) | <u>I</u> | | | | | | | Turn-On Delay Time | t _{d(ON)} | | | | 11.3 | | | | Rise Time | t _r | Voc = 10 V Vpr | . – 12 V | | 44.2 | | 1 | | Turn-Off Delay Time | t _{d(OFF)} | V_{GS} = 10 V, V_{DD} = 12 V, I_{D} = 15 A, R_{G} = 3.0 Ω | | | 39.2 | | ns | | Fall Time | t _f | | | | 7.1 | | | | DRAIN-SOURCE DIODE CHARACTERISTIC | cs | <u>.</u> | | | | | | | | | V _{GS} = 0 V, | T _J = 25°C | | 0.38 | 0.6 | | | Forward Diode Voltage | V_{SD} | | T _J = 125°C | | 0.297 | | V | | Reverse Recovery Time | t _{RR} | V _{GS} = 0 V, dIS/dt = 100 A/μs,
I _S = 30 A | | | 61.3 | | | | Charge Time | t _a | | | | 30.4 | | ns | | Discharge Time | t _b | | | | 30.9 | | ┪ | | Reverse Recovery Charge | Q _{RR} | | | | 66 | | nC | | · | | | | | I | | I | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures. ## **TYPICAL CHARACTERISTICS** Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. Gate-to-Source Voltage Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current vs. Voltage ## **TYPICAL CHARACTERISTICS** Figure 7. Capacitance Variation Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge Figure 9. Resistive Switching Time Variation vs. Gate Resistance Figure 10. Diode Forward Voltage vs. Current Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature ## **TYPICAL CHARACTERISTICS** Figure 13. Thermal Characteristics Figure 14. GFS vs. I_D Figure 15. Avalanche Characteristics # **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-----------------|---------------------|-----------------------| | NTMFS4H013NFT1G | SO8-FL
(Pb-Free) | 1500 / Tape & Reel | | NTMFS4H013NFT3G | SO8-FL
(Pb-Free) | 5000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### PACKAGE DIMENSIONS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. .270 **PITCH** DIMENSIONS: MILLIMETERS ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol 0.905 0.965 - 4X 1.000 4X 0.750 → # **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: PIN 5 (EXPOSED PAD) G Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com D2 **BOTTOM VIEW** N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative