MOSFET - Power, Single N-Channel, DUAL COOL®, PQFN8 5x6

40 V, 0.85 mΩ, 313 A

Features

- Advanced Dual-Sided Cooled Packaging
- Ultra Low R_{DS(on)} to Minimize Conduction Losses
- MSL1 Robust Packaging Design
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

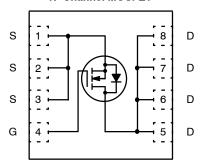
- Orring FET/Load Switching
- Synchronous Rectifier
- DC-DC Conversion

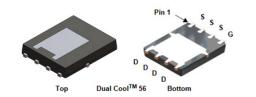
MAXIMUM RATINGS (T_J = 25°C, Unless otherwise specified)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	40	V
Gate-to-Source Voltag	e		V_{GS}	±20	V
Continuous Drain Current R _{0JC} (Note 2)	Steady State			313	Α
Power Dissipation R _{θJC} (Note 2)	Olaic		P_{D}	167	W
Continuous Drain Current $R_{\theta JA}$ (Note 1, 2)	Steady State	T _A = 25°C	I _D	221	Α
Power Dissipation R _{θJA} (Note 1, 2)	Olale		P _D	83	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	900	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +150	°C
Source Current (Body Diode)			Is	169	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 29 A)			E _{AS}	706	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			T_L	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface–mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.




ON Semiconductor®

www.onsemi.com

V _{SSS}	R _{SS(ON)} MAX	I _D MAX	
40 V	0.85 mΩ @ 10 V	313 A	
	1.3 mΩ @ 4.5 V	313A	

N-Channel MOSFET

DFN8 5x6 CASE 506EG

MARKING DIAGRAM

410LDC = Specific Device Code

A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Max	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State (Note 3)	0.9	°C/W
$R_{ heta JA}$	Junction-to-Ambient - Steady State (Note 3)	39	

^{3.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS						•	
Drain – to – Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 2	250 μA	40			V
Drain – to – Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref to 25°C			21.2		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 40 V	T _J = 25°C			10	μΑ
			T _J = 125°C			100	1
Gate – to – Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	= 20 V			100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 2$	250 μΑ	1.2		2.0	٧
Negative Threshold Temperature Coefficient	V _{GS(TH)} / T _J	I _D = 250 μA, ref to	25°C		-5.8		mV/°C
Drain – to – Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = TBD A			0.65	0.85	mΩ
	•	V _{GS} = 4.5 V, I _D = TBD A			1	1.3	1
Gate-Resistance	R_{G}	T _A = 25°C			1.8		Ω
CHARGES & CAPACITANCES	•				•		
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz,	V _{DS} = 20 V		8500		pF
Output Capacitance	C _{OSS}				3400		-
Reverse Transfer Capacitance	C _{RSS}				110		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 20 V, I _D = 50 A			61		nC
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 20 \text{ V}, I_D = 50 \text{ A}$			143		1
Gate-to-Source Charge	Q _{GS}				27		1
Gate-to-Drain Charge	Q_{GD}				19		1
Plateau Voltage	V_{GP}				2.7		٧
SWITCHING CHARACTERISTICS (Note	4)				•	1	
Turn – On Delay Time	t _{d(ON)}	V _{GS} = 4.5 V, V _{DS} :	= 32 V,		20.2		ns
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{DS} = 32 \text{ V},$ $I_{D} = 50 \text{ A}, R_{G} = 2.5 \Omega$			94.6		1
Turn – Off Delay Time	t _{d(OFF)}				77.8		1
Fall Time	t _f				111		1
DRAIN-SOURCE DIODE CHARACTER	STICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 50 A	T _J = 25°C		0.75	1.2	٧
			T _J = 125°C		0.6		1
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dI_S/dt = 100 A/ μ s, I_S = TBD A			92		ns
Reverse Recovery Charge	Q _{RR}				170		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

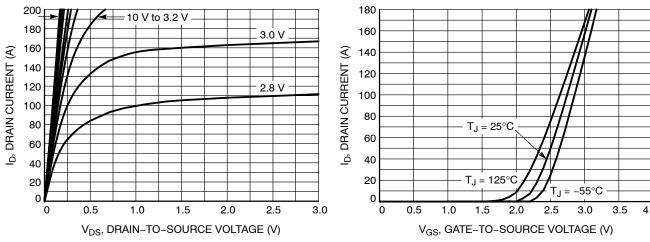


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

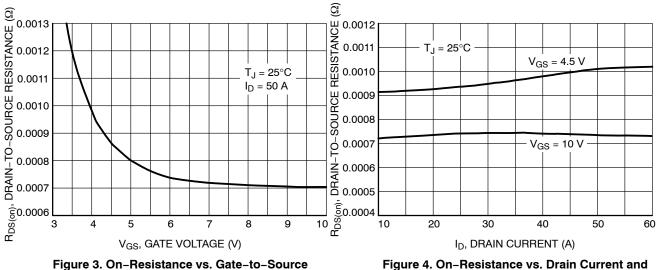


Figure 3. On-Resistance vs. Gate-to-Source Voltage

Gate Voltage 1.9 1M R_{DS(on)}, NORMALIZED DRAIN-TO-SOURCE RESISTANCE V_{GS} = 10 V $T_J = 150^{\circ}C$ 100k $I_{D} = 40 \text{ A}$ I_{DSS}, LEAKAGE (nA) $T_J = 125^{\circ}C$ 10k 1.3 $T_J = 85^{\circ}C$ 1k 100 0.9 0.7 10 -50 -25 25 50 75 100 125 150 5 10 15 20 25 30 35 40 T_J, JUNCTION TEMPERATURE (°C) V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

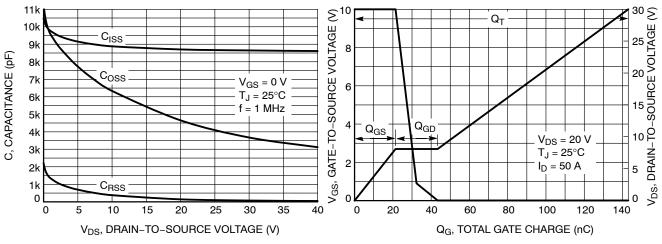


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

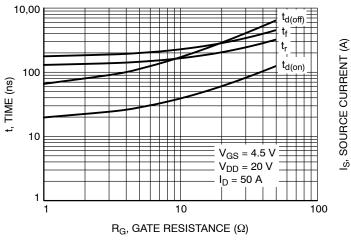


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

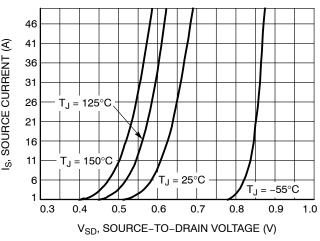


Figure 10. Diode Forward Voltage vs. Current

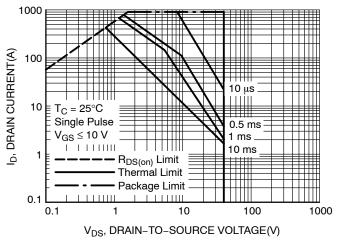


Figure 11. Safe Operating Area

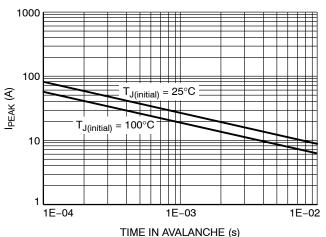
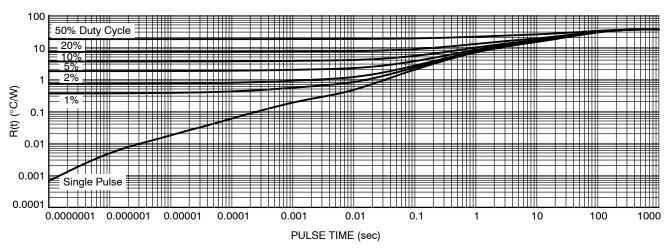
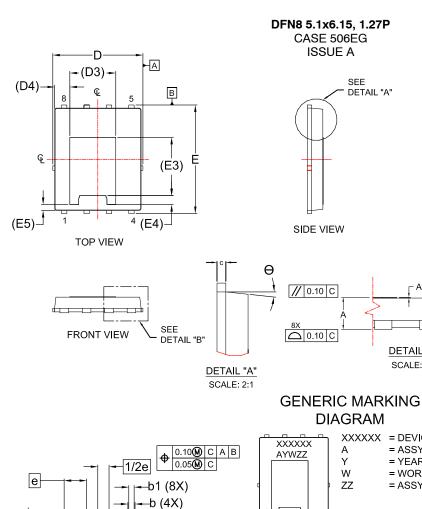


Figure 12. I_{PEAK} vs. Time in Avalanche




Figure 13. Thermal Characteristics

ORDERING INFORMATION

Device	Device Marking	Package	Shipping [†]
NTMFSC0D9N04CL	410LDC	PQFN8 5x6 (Pb-Free/Halogen Free)	3000 / Tape & Reel

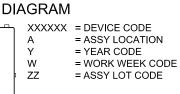
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

Κ

E2

L1 -


D1

BOTTOM VIEW

Ē1

(E7)

(E6)

DETAIL "B" SCALE: 2:1

*THIS INFORMATION IS GENERIC. PLEASE REFER TO DEVICE DATA SHEET FOR ACTUAL PART MARKING.

NOTES:

PIN 1

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

PLANE					
DIM	MILLIMETERS				
	MIN.	NOM.	MAX.		
Α	0.80	0.90	1.00		
A1	ı	1	0.05		
A2	ı		0.05		
b	0.31	0.41	0.51		
b1	0.21	0.31	0.41		
С	0.20	0.25	0.30		
D	4.90	5.00	5.10		
D1	4.80	4.90	5.00		
D2	3.67	3.82	3.97		
D3	2.60 REF				
D4	0.86 REF				
Е	6.05	6.15	6.25		
E1	5.70	5.80	5.90		
E2	3.38	3.48	3.58		
E3	3.30 REF				
E4	0.50 REF				
E5	0.34 REF				
E6	0.30 REF				
E7	0.52 REF				
е	1.27 BSC				
1/2e	0.635 BSC				
K	1.30	1.40	1.50		
L	0.56	0.66	0.76		
L1	0.52	0.62	0.72		
Ф	0°	_	12°		

-5.10

3.91

3

3.81

LAND PATTERN RECOMMENDATION

SEATING

0.77

3.75

1.27

1.27

θ

Ċ

1.27

6 61

0.61

KEEP OUT **AREA**

DUAL COOL is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative