## Product Preview

# **Power MOSFET**

# 80 V, 2 m $\Omega$ , 229 A, Single N–Channel, PQFN88

## **Features**

- Small Footprint (8x8 mm) for Compact Design
- Low R<sub>DS(on)</sub> to Minimize Conduction Losses
- Low Q<sub>G</sub> and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

## **Typical Applications**

- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- BMS/Storage, Home Automation

## **MAXIMUM RATINGS** (T<sub>J</sub> = 25°C unless otherwise noted)

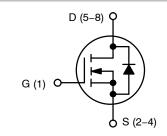
| Parameter                                                                                                     |                                        |                       | Symbol                            | Value          | Unit |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------|-----------------------------------|----------------|------|
| Drain-to-Source Voltage                                                                                       |                                        |                       | $V_{DSS}$                         | 80             | V    |
| Gate-to-Source Voltage                                                                                        |                                        |                       | $V_{GS}$                          | ±20            | V    |
| Continuous Drain<br>Current R <sub>0JC</sub> (Note 2)                                                         | Steady                                 | T <sub>C</sub> = 25°C | I <sub>D</sub>                    | 229            | Α    |
| Power Dissipation $R_{\theta JC}$ (Note 2)                                                                    | State                                  |                       | P <sub>D</sub>                    | 208            | W    |
| $\begin{array}{c} \text{Continuous Drain} \\ \text{Current R}_{\theta JA} \\ \text{(Notes 1, 2)} \end{array}$ | Steady<br>State                        | T <sub>A</sub> = 25°C | I <sub>D</sub>                    | 29             | Α    |
| Power Dissipation R <sub>θJA</sub> (Notes 1, 2)                                                               | State                                  |                       | P <sub>D</sub>                    | 3.3            | W    |
| Pulsed Drain Current                                                                                          | $T_C = 25^{\circ}C$ , $t_p = 10 \mu s$ |                       | I <sub>DM</sub>                   | 3577           | Α    |
| Operating Junction and Storage Temperature Range                                                              |                                        |                       | T <sub>J</sub> , T <sub>stg</sub> | -55 to<br>+150 | °C   |
| Single Pulse Drain-to-Source Avalanche<br>Energy (I <sub>L(pk)</sub> = 29 A, L = 3 mH)                        |                                        |                       | E <sub>AS</sub>                   | 1261.5         | mJ   |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s)                                             |                                        |                       | TL                                | 260            | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

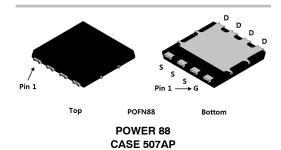
## THERMAL RESISTANCE MAXIMUM RATINGS

| Parameter                                   | Symbol          | Value | Unit |
|---------------------------------------------|-----------------|-------|------|
| Junction-to-Case - Steady State (Note 2)    | $R_{\theta JC}$ | 0.6   | °C/W |
| Junction-to-Ambient - Steady State (Note 2) | $R_{\theta JA}$ | 38    |      |

- 1. Surface-mounted on FR4 board using a 1 in<sup>2</sup> pad size, 1 oz. Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.




## ON Semiconductor®

## www.onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(ON)</sub> MAX | I <sub>D</sub> MAX |  |
|----------------------|-------------------------|--------------------|--|
| 80 V                 | 2 mΩ @ 10 V             | 229 A              |  |
|                      | 5.1 mΩ @ 6 V            | 229 A              |  |



## **N-CHANNEL MOSFET**



## MARKING DIAGRAM



NTMTS002N08MC = Device Code

A = Assembly Location

WL = 2-digit Wafer Lot Code

Y = Year Code

WW = Work Week Code

## **ORDERING INFORMATION**

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

## **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C unless otherwise specified)

| Parameter                                                    | Symbol                                   | Test Condition                                                        |                           | Min | Тур  | Max  | Unit     |
|--------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------|---------------------------|-----|------|------|----------|
| OFF CHARACTERISTICS                                          |                                          |                                                                       |                           |     | •    |      | •        |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                     | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                         |                           | 80  |      |      | V        |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /<br>T <sub>J</sub> | I <sub>D</sub> = 250 μA, ref to 25°C                                  |                           |     | 68   |      | mV/°C    |
| Zero Gate Voltage Drain Current                              | Vpo - 80 V                               | V <sub>GS</sub> = 0 V,                                                | $T_J = 25^{\circ}C$       |     |      | 1    |          |
|                                                              |                                          | T <sub>J</sub> = 125°C                                                |                           |     | 250  | μΑ   |          |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                         | V <sub>DS</sub> = 0 V, V <sub>GS</sub> = ±20 V                        |                           |     |      | ±100 | nA       |
| ON CHARACTERISTICS (Note 3)                                  |                                          |                                                                       |                           |     |      |      |          |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                      | $V_{GS} = V_{DS}, I_D =$                                              | = 540 μA                  | 2.0 | 2.7  | 4.0  | V        |
| Negative Threshold Temperature Coefficient                   | V <sub>GS(TH)</sub> /T <sub>J</sub>      | I <sub>D</sub> = 540 μA, ref                                          | to 25°C                   |     | -7.9 |      | mV/°C    |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                      | V <sub>GS</sub> = 10 V                                                | I <sub>D</sub> = 90 A     |     | 1.3  | 2.0  | mΩ       |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                      | V <sub>GS</sub> = 6 V                                                 | I <sub>D</sub> = 48 A     |     | 1.8  | 5.1  | mΩ       |
| Forward Transconductance                                     | 9 <sub>FS</sub>                          | V <sub>DS</sub> = 5 V, I <sub>D</sub>                                 | = 90 A                    |     | 214  |      | S        |
| Gate Resistance                                              | $R_{G}$                                  | T <sub>A</sub> = 25°                                                  | С                         |     | 0.8  |      | Ω        |
| CHARGES, CAPACITANCES & GATE RESIST                          | ANCE                                     |                                                                       |                           |     |      |      |          |
| Input Capacitance                                            | C <sub>ISS</sub>                         |                                                                       |                           |     | 6350 | 8900 |          |
| Output Capacitance                                           | C <sub>OSS</sub>                         | V <sub>GS</sub> = 0 V, f = 1 MHz                                      | z, V <sub>DS</sub> = 40 V |     | 2100 | 3000 | pF       |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                         |                                                                       |                           |     | 93   | 130  | 1        |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                      |                                                                       |                           |     | 89   | 125  |          |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                       | V <sub>GS</sub> = 10 V, V <sub>DS</sub> = 40 V; I <sub>D</sub> = 90 A |                           |     | 16   | 22   | nC       |
| Gate-to-Source Charge                                        | $Q_{GS}$                                 |                                                                       |                           |     | 25   |      |          |
| Gate-to-Drain Charge                                         | $Q_{GD}$                                 |                                                                       |                           |     | 19   |      |          |
| Output Charge                                                | Q <sub>OSS</sub>                         |                                                                       |                           |     | 117  |      |          |
| Sync Charge                                                  | Q <sub>sync</sub>                        |                                                                       |                           |     | 72   |      |          |
| Plateau Voltage                                              | V <sub>plateau</sub>                     |                                                                       |                           |     | 4    |      | V        |
| SWITCHING CHARACTERISTICS, $V_{GS}$ = 10 $V$                 | (Note 3)                                 |                                                                       |                           |     |      |      |          |
| Turn-On Delay Time                                           | t <sub>d(ON)</sub>                       |                                                                       |                           |     | 26   |      |          |
| Rise Time                                                    | t <sub>r</sub>                           | V <sub>GS</sub> = 10 V, V <sub>DS</sub>                               | s = 40 V,                 |     | 20   |      | ns       |
| Turn-Off Delay Time                                          | t <sub>d(OFF)</sub>                      | $I_D = 90 \text{ A}, R_G$                                             | = 6 Ω                     |     | 65   |      |          |
| Fall Time                                                    | t <sub>f</sub>                           |                                                                       |                           |     | 29   |      | <u> </u> |
| DRAIN-SOURCE DIODE CHARACTERISTICS                           | 3                                        |                                                                       |                           |     |      |      |          |
| Forward Diode Voltage                                        | $V_{SD}$                                 | $V_{GS} = 0 \text{ V}, I_{S} = 2 \text{ A}$                           |                           | 0.7 | 1.2  | \/   |          |
|                                                              |                                          | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 90 A                          |                           |     | 0.8  | 1.3  | V        |
| Reverse Recovery Time                                        | t <sub>RR</sub>                          | I <sub>F</sub> = 45 A, di/dt = 300 A/μs                               |                           |     | 34   | 54   |          |
| Reverse Recovery Charge                                      | $Q_{RR}$                                 |                                                                       |                           |     | 71   | 114  | ns       |
| Reverse Recovery Time                                        | t <sub>RR</sub>                          | I <sub>F</sub> = 45 A, di/dt = 1000 A/μs                              |                           |     | 27   | 43   |          |
| Reverse Recovery Charge                                      | Q <sub>RR</sub>                          |                                                                       |                           |     | 177  | 283  | nC       |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

## **TYPICAL CHARACTERISTICS**

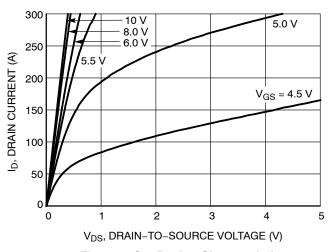



Figure 1. On-Region Characteristics

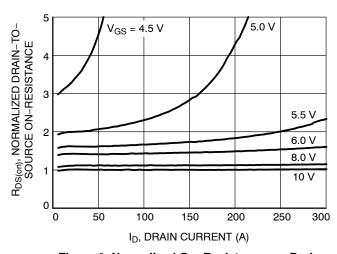



Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

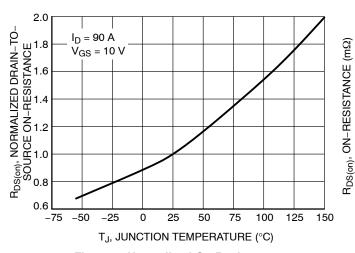



Figure 3. Normalized On Resistance vs. Junction Temperature

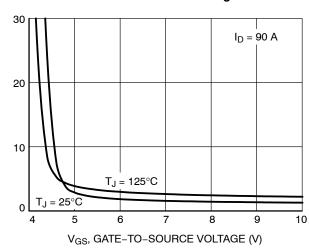



Figure 4. On-Resistance vs. Gate-to-Source Voltage

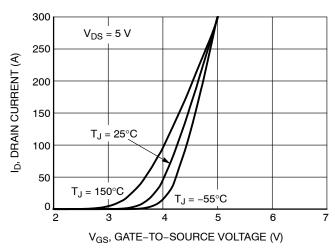



Figure 5. Transfer Characteristics

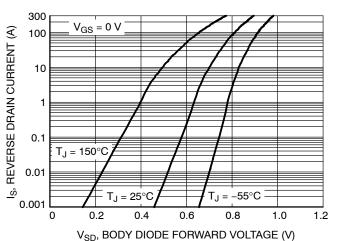



Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current

## **TYPICAL CHARACTERISTICS**

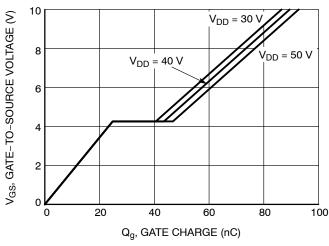
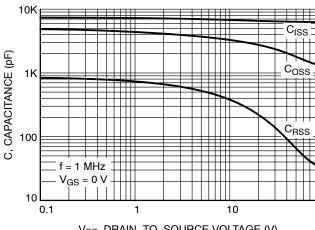




Figure 7. Gate Charge Characteristics



V<sub>DS</sub>, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 8. Capacitance vs. Drain-to-Source Voltage

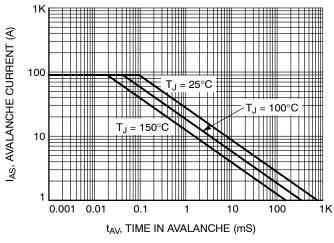



Figure 9. Unclamped Inductive Switching Capability

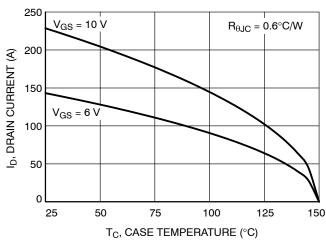



Figure 10. Maximum Continuous Drain **Current vs. Case Temperature** 

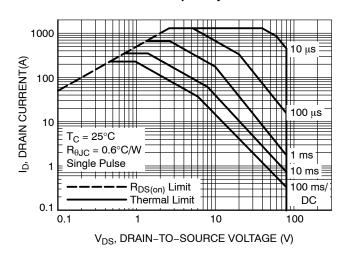



Figure 11. Forward Biased Safe Operating Area

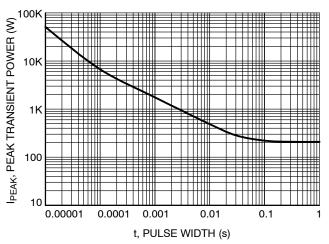
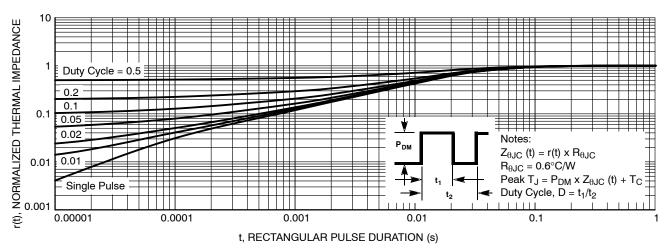
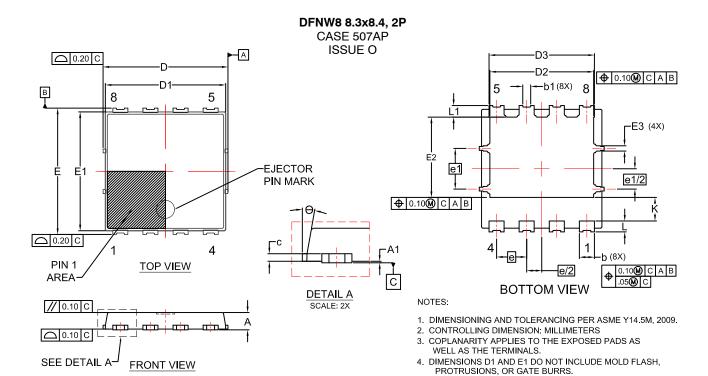
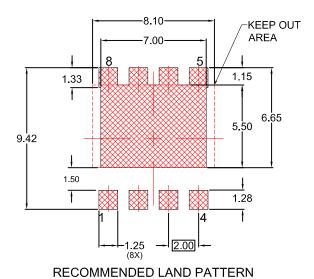



Figure 12. Single Pulse Maximum Power Dissipation

## **TYPICAL CHARACTERISTICS**





Figure 13. Transient Thermal Impedance


## **DEVICE ORDERING INFORMATION**

| Device        | Marking           | Package               | Shipping <sup>†</sup> |
|---------------|-------------------|-----------------------|-----------------------|
| NTMTS002N08MC | NTMTS<br>002N08MC | POWER 88<br>(Pb-Free) | 3000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## **PACKAGE DIMENSIONS**





FRONT VIEW

SEE DETAIL A

| DIM  | MILLIMETERS |      |      |  |
|------|-------------|------|------|--|
| Divi | MIN.        | NOM. | MAX. |  |
| Α    | 1.00        | 1.10 | 1.20 |  |
| A1   | 0.00        | i    | 0.05 |  |
| р    | 0.90        | 1.00 | 1.10 |  |
| b1   | 0.43        | 0.53 | 0.63 |  |
| C    | 0.23        | 0.28 | 0.33 |  |
| D    | 8.20        | 8.30 | 8.40 |  |
| D1   | 7.90        | 8.00 | 8.10 |  |
| D2   | 6.80        | 6.90 | 7.00 |  |
| D3   | 6.90        | 7.00 | 7.10 |  |
| Е    | 8.30        | 8.40 | 8.50 |  |
| E1   | 7.80        | 7.90 | 8.00 |  |
| E2   | 5.24        | 5.34 | 5.44 |  |
| E3   | 0.25        | 0.35 | 0.45 |  |
| Ф    | 2.00 BSC    |      |      |  |
| e/2  | 1.00 BSC    |      |      |  |
| e1   | 2.70 BSC    |      |      |  |
| e1/2 | 1.35 BSC    |      |      |  |
| K    | 1.50        | 1.57 | 1.70 |  |
| ٦    | 0.64        | 0.74 | 0.84 |  |
| L1   | 0.67        | 0.77 | 0.87 |  |
| θ    | 0°          |      | 12°  |  |

5. SEATING PLANE IS DEFINED BY THE TERMINALS.

"A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

## **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative