MOSFET, N-Channel, Shielded Gate, POWERTRENCH®

100 V, 50 A, 10.6 mΩ

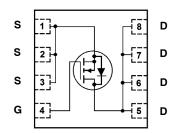
General Description

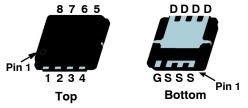
This N-Channel POWETRENCH® MOSFET is produced using ON Semiconductor's advanced POWERTRENCH® process that incorporates Shielded Gate technology. This process has been optimized to minimize on-state resistance and yet maintain superior switching performance with best in class soft body diode.

Features

- Shielded Gate MOSFET Technology
- Max $r_{DS(on)} = 10.6 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 15 \text{ A}$
- Max $r_{DS(on)} = 15.9 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 12 \text{ A}$
- 50% Lower Qrr than Other MOSFET Suppliers
- Lowers Switching Noise/EMI
- MSL1 Robust Package Design
- 100% UIL Tested
- RoHS Compliant

Applications


- Primary DC-DC MOSFET
- Synchronous Rectifier in DC-DC and AC-DC
- Motor Drive


ON Semiconductor®

www.onsemi.com

ELECTRICAL CONNECTION

N-Channel MOSFET

WDFN8 (3.3x3.3, 0.65 P) CASE 511DY

MARKING DIAGRAM

N10L = Device Code
A = Assembly Location
Y = Year Code
WW = Work Week Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter				Ratings	Unit
V _{DS}	Drain to Source Voltage				100	V
V _{GS}	Gate to Source Voltage				±20	V
I _D	Drain Current	-Continuous	T _C = 25°C	(Note 5)	50	Α
		-Continuous	T _C = 100°C	(Note 5)	32	1
		-Continuous	T _A = 25°C	(Note 1a)	10.7	1
		-Pulsed		(Note 4)	250	1
E _{AS}	Single Pulse Ava	lanche Energy		(Note 3)	73	mJ
P _D	Power Dissipation $T_C = 25^{\circ}C$			52	W	
	Power Dissipatio	n	T _A = 25°C	(Note 1a)	2.3	1
T _J , T _{STG}	Operating and St	Operating and Storage Junction Temperature Range				°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

 $R_{G} \\$

Symbol	Parameter	Ratings	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	2.4	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	53	

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package	Reel Size	Tape Width	Quantity
NTTFS010N10MCL	N10L	WDFN8 (3.3x3.3)	7"	12 mm	1500 Units

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Gate Resistance

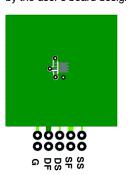
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
FF CHARACT	ERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, referenced to 25°C		64		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
N CHARACTE	RISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 85 \mu A$	1.0	1.5	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 85 μA, referenced to 25°C		-5.3		mV/°C
r _{DS(on)}	Static Drain to Source On	V _{GS} = 10 V, I _D = 15 A		9.1	10.6	mΩ
	Resistance	V _{GS} = 4.5 V, I _D = 12 A		13.5	15.9	1
		V _{GS} = 10 V, I _D = 15 A, T _J = 125°C		15.3	17.8	
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 15 A		54		S
YNAMIC CHA	RACTERISTICS					
C _{ISS}	Input Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V},$		1530	2150	pF
C _{OSS}	Output Capacitance	f = 1 MHz		625	875	1
C _{RSS}	Reverse Transfer Capacitance			10	18	

0.1

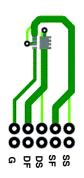
1.1

2.1

Ω


ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted) (continued)

Symbol	Parameter	Test Condit	ions	Min	Тур	Max	Units
WITCHING CI	HARACTERISTICS		•			•	
t _{d(ON)}	Turn – On Delay Time	V _{DD} = 50 V, I _D = 15 A			9	19	ns
t _{rd(ON)}	Rise Time	V _{GS} = 10 V, R _{GEN} =	6 Ω		3	10	
t _{d(OFF)}	Turn – Off Delay Time	1			28	45	
t _f	Fall Time	1			5	10	
Qg	Total Gate Charge	V _{GS} = 0V to 10 V			22	30	nC
Qg	Total Gate Charge	V _{GS} = 0V to 4.5 V			10		1
Q _{gs}	Gate to Source Charge		V _{DD} = 50 V		4		1
Q_{gd}	Gate to Drain "Miller" Charge	1	I _D = 15 A		3		1
Q _{oss}	Output Charge	V _{DD} = 50 V, V _{GS} = 0 V			41		nC
Q _{sync}	Total Gate Charge Sync	V _{DS} = 0 V, V _{GS} = 0 to 10 V			19		1
	CE DIODE CHARACTERISTICS						
V_{SD}	Source to Drain Diode Forward	$V_{GS} = 0 \text{ V}, I_{S} = 2 \text{ A}$	(Note 2)		0.7	1.2	V
	Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 15 \text{ A}$	(Note 2)		0.8	1.3	1
t _{rr}	Reverse Recovery Time	I _F = 8 A, di/dt = 300	A/μs		22	36	ns
Q _{rr}	Reverse Recovery Charge	1			35	56	nC
t _{rr}	Reverse Recovery Time	$I_F = 8 \text{ A}, \text{ di/dt} = 1000$) A/μs		17	30	ns


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 Q_{rr}

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 \times 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.

a) 53°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 125°C/W when mounted on a minimum pad of 2 oz copper. nC

126

- 2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.
- 3. E_{AS} of 73 mJ is based on starting $T_J = 25^{\circ}C$; L = 3 mH, $I_{AS} = 7$ A, $V_{DD} = 100$ V, $V_{GS} = 10$ V. 100% test at L = 0.5 mH, $I_{AS} = 13$ A.

Reverse Recovery Charge

 EAS of Young is based on statisting 13 = 25 or, 2 = 3 min, 13.3
 Pulsed I_D please refer to Figure 11 SOA graph for more details.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

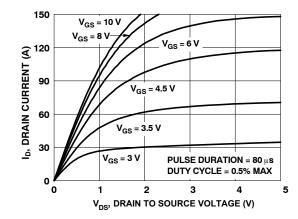


Figure 1. On Region Characteristics

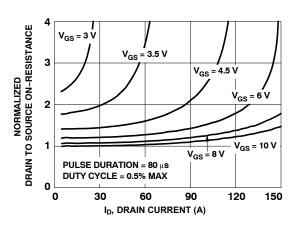


Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

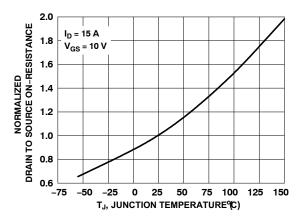


Figure 3. Normalized On Resistance vs. Junction Temperature

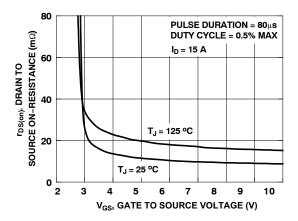


Figure 4. On-Resistance vs. Gate to Source Voltage

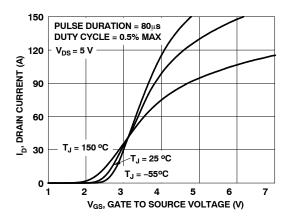


Figure 5. Transfer Characteristics

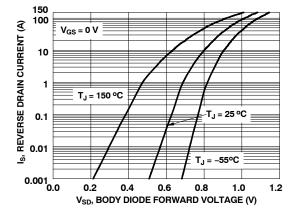


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

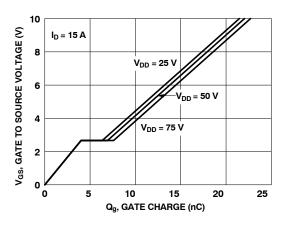


Figure 7. Gate Charge Characteristics

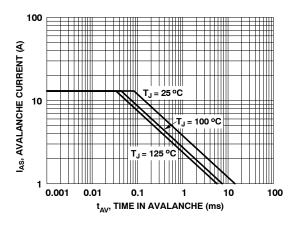


Figure 9. Unclamped Inductive Switching Capability

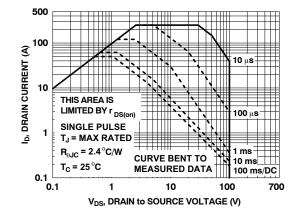


Figure 11. Forward Bias Safe Operating Area

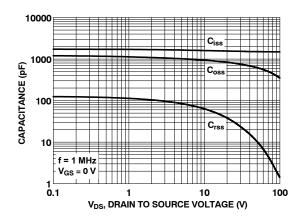


Figure 8. Capacitance vs. Drain to Source Voltage

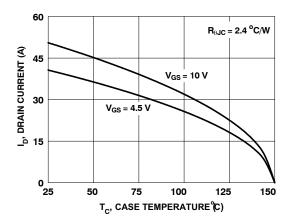


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

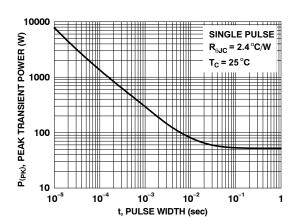


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

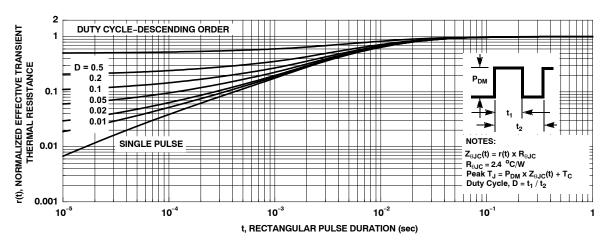
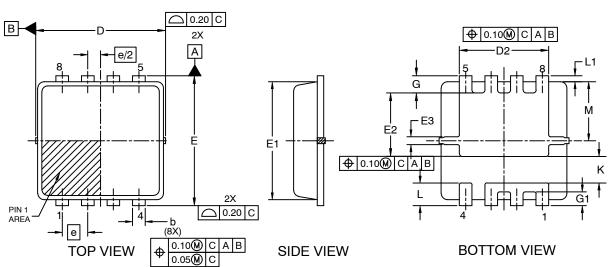
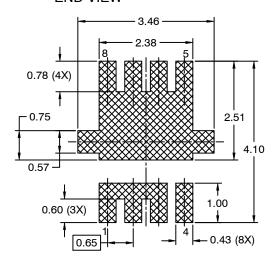



Figure 13. Junction-to-Case Transient Thermal Response Curve


PACKAGE DIMENSIONS

WDFN8 3.3x3.3, 0.65P CASE 511DY ISSUE A

(4X) θ // 0.10 C // 0.10

END VIEW

RECOMMENDED LAND PATTERN

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETERS
- 2. DIMENSIONS D1 & E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS NOR GATE BURRS.

DIM	MILLIMETERS				
וווט	MIN	NOM	MAX		
Α	0.70	0.75	0.80		
A1	0.00	-	0.05		
b	0.23	0.33	0.43		
С	0.15	0.20	0.25		
D	3.20	3.30	3.40		
D1	2.95	3.13	3.30		
D2	1.98	2.20	2.40		
Е	3.20	3.30	3.40		
E1	2.80	3.00	3.15		
E2	1.40	1.60	1.80		
E3	0.15	0.25	0.40		
е	0.65 BSC				
G	0.30	0.43	0.55		
G1	0.25	0.35	0.45		
K	0.55	0.75	0.95		
L	0.35	0.52	0.65		
L1	0.06	0.15	0.30		
М	1.35	1.50	1.60		
θ	0	-	12		

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative