MOSFET - Dual, N-Channel, Small Signal, SOT-963, 1.0 mm x 1.0 mm

20 V, 220 mA

Features

- Dual N-Channel MOSFET
- Offers a Low R_{DS(ON)} Solution in the Ultra Small 1.0 x 1.0 mm Package
- 1.5 V Gate Voltage Rating
- Ultra Thin Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics
- This is a Pb-Free Device

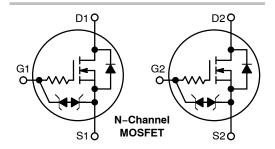
Applications

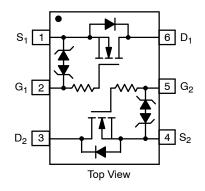
- General Purpose Interfacing Switch
- Optimized for Power Management in Ultra Portable Equipment
- Analog Switch

MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Parameter			Symbol	Value	Unit	
Drain-to-Source Voltage			V _{DSS}	20	V	
Gate-to-Source Voltage			V _{GS}	±8	V	
Continuous Drain	Steady	$T_A = 25^{\circ}C$		220		
Current (Note 1)	State $T_A = 85^{\circ}C$ I_D	I_{D}	160	mA		
	t ≤ 5 s	$T_A = 25^{\circ}C$		280		
Power Dissipation	Steady			125		
(Note 1)	State $T_A = 25^{\circ}C$	P_{D}		mW		
	t ≤ 5 s		200			
Pulsed Drain Current $t_p = 10 \mu s$			I _{DM}	800	mA	
Operating Junction and Storage Temperature		T _J , T _{STG}	-55 to 150	°C		
Source Current (Body Diode) (Note 2)		IS	200	mA		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		T_L	260	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz Cu.
- 2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D Max
	1.5 Ω @ 4.5 V	
20 V	2.0 Ω @ 2.5 V	0.22 A
	3.0 Ω @ 1.8 V	
	4.5 Ω @ 1.5 V	

PINOUT: SOT-963

= Specific Device Code 3

= Date Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	1000	°C/W
Junction-to-Ambient - t = 5 s (Note 3)	ιθЈΑ	600	O/ VV

^{3.} Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz Cu.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS		•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		20			V
Zero Gate Voltage Drain Current		V 0VV 5V	T _J = 25°C			50	nA
	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = 5 \text{ V}$	T _J = 85°C			200	- 1
		V _{GS} = 0 V, V _{DS} = 16 V	T _J = 25°C			100	nA
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±5.0 V				±100	nA
ON CHARACTERISTICS (Note 4)		•					
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2$.50 μΑ	0.4		1.0	V
Drain-to-Source On Resistance		V _{GS} = 4.5 V, I _D = 100 mA			0.75	1.5	
		V _{GS} = 2.5 V, I _D = 50 mA			1.0	2.0	Ω
	R _{DS(ON)}	V _{GS} = 1.8 V, I _D = 20 mA			1.4	3.0	
		V _{GS} = 1.5 V, I _D = 10 mA			1.8	4.5	
		V _{GS} = 1.2 V, I _D = 1.0 m.			2.8		
Forward Transconductance	9FS	V _{DS} = 5.0 V, I _D = 125 mA			0.48		S
Source-Drain Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 10 mA			0.6	1.0	V
CAPACITANCES							
Input Capacitance	C _{ISS}				12.5		
Output Capacitance	C _{OSS}	f = 1.0 MHz, V _{GS} = 0 V V _{DS} = 15 V			3.6		pF
Reverse Transfer Capacitance	C _{RSS}				2.6		
SWITCHING CHARACTERISTICS, V _{GS} =	4.5 V (Note 4)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DD} = 10 V, I_{D} = 200 mA, R_{G} = 2.0 Ω			16.5		- ns
Rise Time	t _r				25.5		
Turn-Off Delay Time	t _{d(OFF)}				142		
Fall Time	t _f				80		

 $^{{\}bf 4.} \ \ {\bf Switching\ characteristics\ are\ independent\ of\ operating\ junction\ temperatures.}$

ORDERING INFORMATION

Device	Package	Shipping [†]
NTUD3170NZT5G	SOT-963 (Pb-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

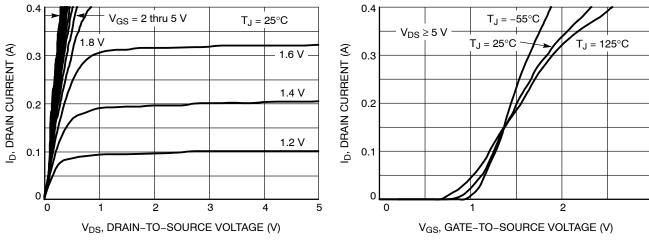


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

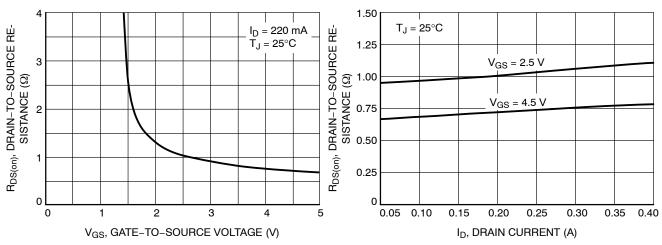


Figure 3. On-Resistance vs. Gate Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

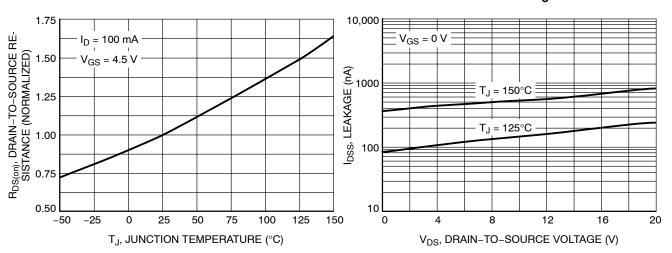


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

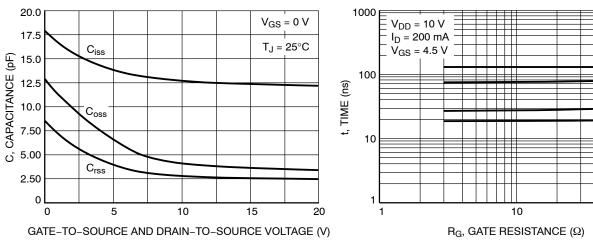


Figure 7. Capacitance Variation

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

100

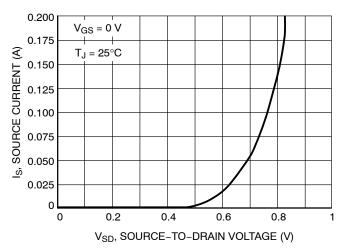
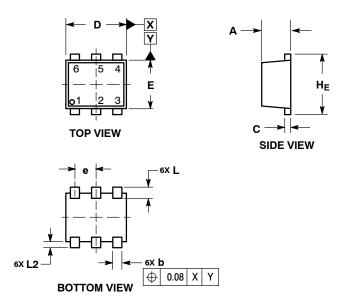
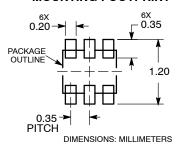



Figure 9. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

SOT-963 CASE 527AD **ISSUE E**



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME
- Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS
 MAXIMUM LEAD THICKNESS INCLUDES LEAD
- FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF
- BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.34	0.37	0.40	
b	0.10	0.15	0.20	
၁	0.07	0.12	0.17	
D	0.95	1.00	1.05	
Е	0.75	0.80	0.85	
е	0.35 BSC			
HE	0.95	1.00	1.05	
L	0.19 REF			
L2	0.05	0.10	0.15	

RECOMMENDED MOUNTING FOOTPRINT

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. Coverage may be accessed at www.onsemi.com/site/par/-atent_-warking.pgr. On Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative