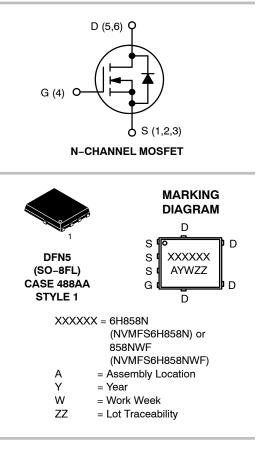
MOSFET – Power, Single N-Channel 80 V, 20.7 mΩ, 32 A

Features


- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS6H858NWF Wettable Flank Option for Enhanced Optical Inspection
- AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	20.7 m Ω @ 10 V	32 A

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	80	V
Gate-to-Source Voltage	e		V _{GS}	±20	V
Continuous Drain		$T_{C} = 25^{\circ}C$	۱ _D	29	А
Current $R_{\theta JC}$ (Notes 1, 3)	Steady	T _C = 100°C		21	
Power Dissipation	State	T _C = 25°C	PD	42	W
R _{θJC} (Note 1)		$T_{C} = 100^{\circ}C$		21	
Continuous Drain		T _A = 25°C	Ι _D	8.4	А
Current R _{θJA} (Notes 1, 2, 3)	Steady	T _A = 100°C		6.0	
Power Dissipation	State	$T_A = 25^{\circ}C$	PD	3.5	W
R _{θJA} (Notes 1, 2)		$T_A = 100^{\circ}C$		1.8	
Pulsed Drain Current	T _A = 25	°C, t _p = 10 μs	I _{DM}	137	А
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to + 175	°C
Source Current (Body Diode)			۱ _S	35	А
Single Pulse Drain-to-Source Avalanche Energy ($I_{L(pk)} = 3.5 A$)			E _{AS}	151	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	3.5	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	42.5	

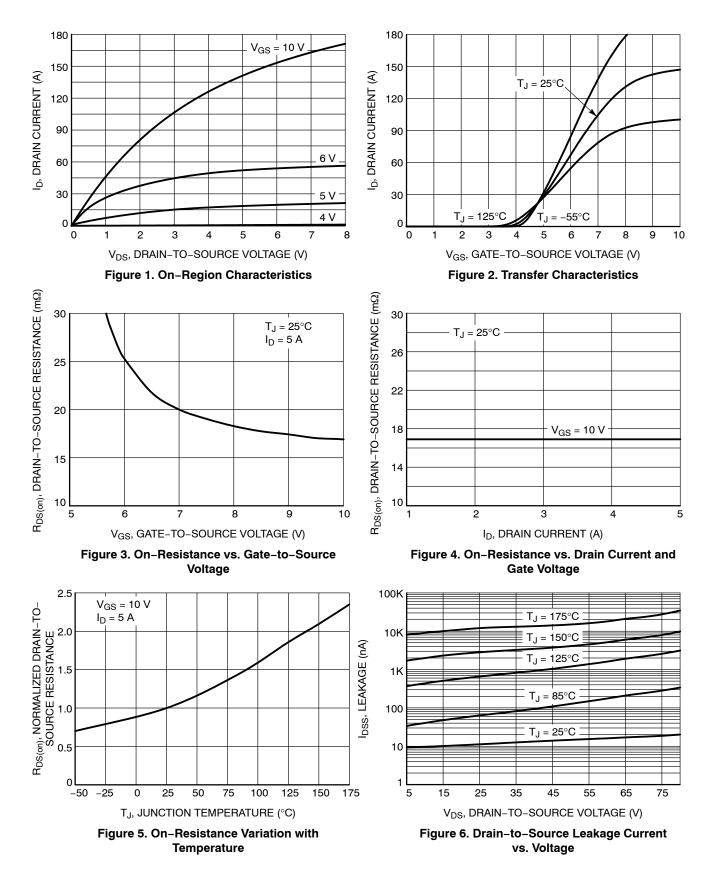
1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

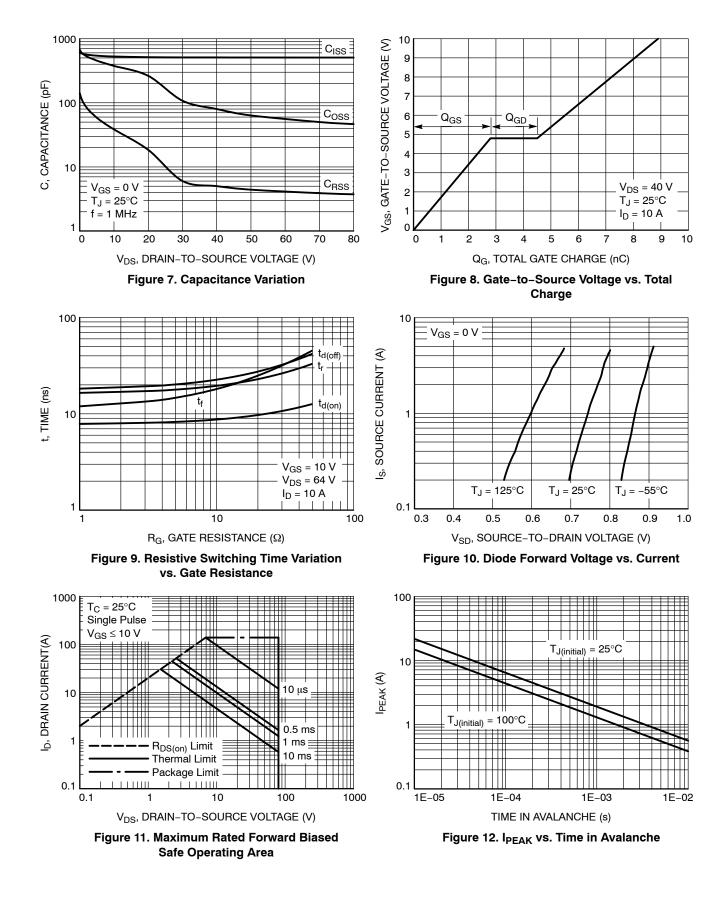
Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
$\begin{array}{ c c c c c c c } \hline Drain-to-Source Breakdown Voltage Temperature Coefficient $V_{13}P_{J}$'' $V_{0S} = 0 V, $V_{0S} = 0 V,$	OFF CHARACTERISTICS				•	•	•	•
$\begin{array}{ c c c c c c c } \hline Drain-to-Source Breakdown Voltage \\ T_{J} (R_{T})^{\prime} (R_{J})^{\prime} ($	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 µA		80			V
$ \begin{array}{ c c c c c } \hline V_{OS} = 0 \ V \\ \hline T_{J} = 125^{\circ} \ C & 250 \\ \hline T_{J} = 125^{\circ} \ C & 100 \ nA \\ \hline \\ $		V _{(BR)DSS} / T _J				44		mV/°C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, T _J = 25 °C				10	
			V _{DS} = 80 V	T _J = 125°C			250	μΑ
$ \begin{array}{ c c c c c } \hline Gate Threshold Voltage & V_{GS}(TH) & V_{GS} = V_{DS}, I_D = 30 \ \mu A & 2.0 & 4.0 & V \\ \hline Threshold Temperature Coefficient & V_{GS}(TH)/T_J & & -7.5 & mV/C \\ \hline Threshold Temperature Coefficient & V_{GS}(TH)/T_J & & I_D = 5 \ A & 16.9 & 20.7 & m\Omega \\ \hline Threshold Temperature Coefficient & Q_{GS}(TH) & V_{GS} = 10 \ V & I_D = 5 \ A & 16.9 & 20.7 & m\Omega \\ \hline Threshold Tansconductance & g_{FS} & V_{DS} = 15 \ V, I_D = 10 \ A & 36 & S \\ \hline CHARGES, CAPACITANCES & GATE RESISTANCE & & & & & & & & \\ \hline Input Capacitance & C_{ISS} & & & & & & & & & & & & & & & \\ \hline Output Capacitance & C_{GSS} & & & & & & & & & & & & & & & & & & $	Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 20 V				100	nA
$ \begin{array}{ c c c c c c c c c } \hline Threshold Temperature Coefficient & V_{GS(TH)}/T_J & & & & & & & & & & & & & & & & & & &$	ON CHARACTERISTICS (Note 4)							
$ \begin{array}{ c c c c } \hline \mbox{Drain-to-Source On Resistance} & R_{DS(on)} & V_{GS} = 10 \ V & I_D = 5 \ A & 16.9 & 20.7 & m\Omega \\ \hline \mbox{Forward Transconductance} & g_{FS} & V_{DS} = 15 \ V, \ I_D = 10 \ A & 36 & S \\ \hline \mbox{CHARGES, CAPACITANCES & GATE RESISTANCE} \\ \hline \mbox{Input Capacitance} & C_{ISS} & V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 40 \ V & 80 & 0 \\ \hline \mbox{Reverse Transfer Capacitance} & C_{RSS} & V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 40 \ V & 80 & 0 \\ \hline \mbox{Reverse Transfer Capacitance} & C_{RSS} & V_{GS} = 10 \ V, \ V_{DS} = 40 \ V, \ I_D = 10 \ A & 8.9 & 0 \\ \hline \mbox{Reverse Transfer Capacitance} & Q_{G(TO)} & V_{GS} = 10 \ V, \ V_{DS} = 40 \ V, \ I_D = 10 \ A & 8.9 & 0 \\ \hline \mbox{Threshold Gate Charge} & Q_{G(TH)} & V_{GS} = 10 \ V, \ V_{DS} = 40 \ V, \ I_D = 10 \ A & 8.9 & 0 \\ \hline \mbox{Reverse Charge} & Q_{G(TH)} & V_{GS} = 10 \ V, \ V_{DS} = 40 \ V, \ I_D = 10 \ A & 8.9 & 0 \\ \hline \mbox{Reverse Charge} & Q_{G(TH)} & V_{GS} = 10 \ V, \ V_{DS} = 40 \ V, \ I_D = 10 \ A & 8.9 & 0 \\ \hline \mbox{Reverse Charge} & Q_{GG} & V_{GF} & V_{GS} = 10 \ V, \ V_{DS} = 40 \ V, \ I_D = 10 \ A & 8.9 & 0 \\ \hline \mbox{Reverse Charge} & Q_{GG} & V_{GF} & V_{GS} = 10 \ V, \ V_{DS} = 64 \ V, \ I_D = 10 \ A, \ R_G = 2.5 \ \Omega & 11.7 & 0 \\ \hline \mbox{Reverse Transfer Capacitance} & t_{T} & V_{GS} = 10 \ V, \ V_{DS} = 64 \ V, \ I_D = 10 \ A, \ R_G = 2.5 \ \Omega & 11.3 & 0 \\ \hline \mbox{Reverse Recovery Time} & t_{d(OFF)} & 110 \ A & R_G = 2.5 \ \Omega & 110 \ A & 110 \ $	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 30 μA	2.0		4.0	V
$ \begin{array}{ c c c c } \hline Forward Transconductance & G_{FS} & V_{DS} = 15 \ V, \ I_D = 10 \ A & 36 & S \\ \hline \mbox{CHARGES, CAPACITANCES & GATE RESISTANCE} \\ \hline \mbox{Input Capacitance} & C_{ISS} & & & & & & & & & & & & & & & & & & $	Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-7.5		mV/°C
$ \begin{array}{ c c c c } \hline \text{CHARGES, CAPACITANCES & GATE RESISTANCE} & & & & & & & & & & & & & & & & & & &$	Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 5 A		16.9	20.7	mΩ
$ \begin{array}{ c c c c c c } \hline Input Capacitance & C_{ISS} \\ \hline Output Capacitance & C_{OSS} \\ \hline Output Capacitance & C_{OSS} \\ \hline V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 40 \ V \\ \hline Meverse Transfer Capacitance & C_{RSS} \\ \hline Total Gate Charge & Q_{G(TOT)} \\ \hline Total Gate Charge & Q_{G(TH)} \\ \hline Gate - to-Source Charge & Q_{GS} \\ \hline Gate - to-Drain Charge & Q_{GS} \\ \hline Gate - to-Drain Charge & Q_{GD} \\ \hline Pataeau Voltage & V_{GP} \\ \hline \\ \hline Merend Dialeau Voltage & V_{GP} \\ \hline \\ $	Forward Transconductance	9 _{FS}	V _{DS} =15 V, I _E	₀ = 10 A		36		S
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CHARGES, CAPACITANCES & GATE RE	SISTANCE			-		-	
$ \begin{array}{ c c c c c } \hline Reverse Transfer Capacitance & C_{RSS} & & & & & & & & & & & & & & & & & & $	Input Capacitance	C _{ISS}				510		pF
$ \begin{array}{ c c c c } \hline \mbox{Total Gate Charge} & Q_G(TOT) & V_{GS} = 10 \ V, \ V_{DS} = 40 \ V; \ I_D = 10 \ A & 8.9 & 10 \ V, \ V_{DS} = 40 \ V; \ I_D = 10 \ A & 8.9 & 10 \ V; \ I_D = 10 \ A & 8.9 & 10 \ V; \ I_D = 10 \ A & 8.9 & 10 \ V; \ I_D = 10 \ A & 1.7 & 10 \ V; \ I_D = 10 \ A & 1.7 & 10 \ V; \ I_D = 10 \ A & 1.7 & 10 \ V; \ I_D = 10 \ A & 1.7 & 10 \ V; \ I_D = 10 \ A & 1.7 & 10 \ V; \ I_D = 10 \ A & 1.7 & 10 \ V; \ I_D = 10 \ A & 1.7 & 10 \ V; \ I_D = 10 \ A & 1.7 & 10 \ V; \ I_D = 10 \ A & 1.7 & 10 \ V; \ I_D = 10 \ A & 1.7 & 10 \ V; \ I_D = 10 \ A & 1.7 & 10 \ I_D & 11 \ I_D & I^2 $	Output Capacitance	C _{OSS}				80		
$ \begin{array}{ c c c c } \hline Threshold Gate Charge & Q_{G(TH)} \\ \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Qagb & \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 40 \ V; \ I_{D} = 10 \ A \\ \hline & 2.2 & \\ \hline & 2.8 & \\ \hline & 1.7 & \\ \hline & 1.8 & \\ \hline & 1.8$	Reverse Transfer Capacitance	C _{RSS}				4.7		
$ \begin{array}{ c c c c c } \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Qab \\ \hline Plateau Voltage & V_{GP} \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 40 \ V; \ I_D = 10 \ A \\ \hline 1.7 & 1.7 \\ \hline 1.7 & 1.7 \\ \hline 4.8 & V \\ \hline V \\ \hline SWITCHING CHARACTERISTICS (Note 5) \\ \hline Turn-On Delay Time & $t_{d(ON)}$ \\ \hline Rise Time & t_r \\ \hline Turn-Off Delay Time & $t_{d(OFF)}$ \\ \hline Fall Time & t_t \\ \hline I 17 & 1.7 \\ \hline 19 & 1.7 \\ \hline 113 & 1.7 \\ \hline I 17 & 1.7 \\ \hline 19 & 1.17 \\ \hline 10 & 1.17 \\ \hline 11 & 1.17 \\ \hline 11$	Total Gate Charge	Q _{G(TOT)}				8.9		
$ \begin{array}{ c c c c c c } \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 40 \ V; \ I_{D} = 10 \ A \\ \hline V \\$	Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 40 V; I _D = 10 A			2.2		
$ \begin{array}{ c c c c c } \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} & & & & & & & & & & & & & & & & & & &$	Gate-to-Source Charge	Q _{GS}				2.8		nC
$\begin{tabular}{ c c c c c c c } \hline Second $	Gate-to-Drain Charge	Q _{GD}				1.7		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Plateau Voltage	V _{GP}				4.8		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SWITCHING CHARACTERISTICS (Note 5)						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(ON)}				8.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time	tr	V_{GS} = 10 V, V_{DS} = 64 V, I_{D} = 10 A, R_{G} = 2.5 Ω			17		ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(OFF)}				19		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	t _f				13		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DRAIN-SOURCE DIODE CHARACTERIS	TICS				•		•
$ \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Forward Diode Voltage	V _{SD}	SD $V_{CS} = 0 V.$ $T_J = 25^{\circ}C$			0.8	1.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			T _J = 125°C		0.7			
Discharge Time t_b $I_s = 10 \text{ A}$ 9.0	Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 10 A			29		ns
Discharge Time t _b I _S = 10 A 9.0	Charge Time	t _a				19		
Reverse Recovery Charge Q _{RR} 23 nC	Discharge Time	t _b				9.0		
	Reverse Recovery Charge	Q _{RR}				23		nC

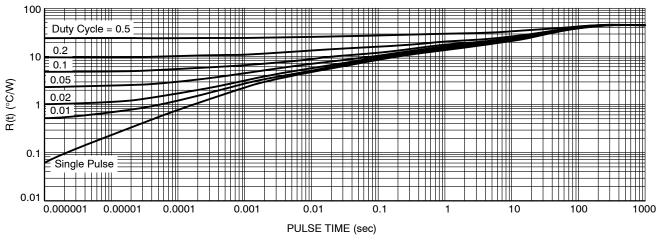

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$.

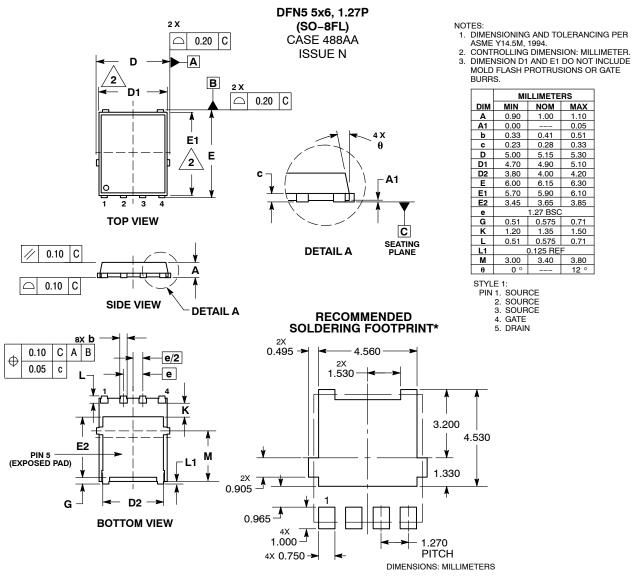
5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS




Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS6H858NT1G	6H858N	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS6H858NWFT1G	858NWF	DFN5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the application of the trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor handles, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless aga

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative