Three Phase Inverter Automotive Power MOSFET Module

Product Preview NXV04V120DB1

Features

- Three–Phase Inverter Bridge for Variable Speed Motor Drive
- RC Snubber for Low EMI
- Current Sensing and Temperature Sensing
- Electrically Isolated DBC Substrate for Low Thermal Resistance
- Compact Design for Low Total Module Resistance
- Module Serialization for Full Traceability
- AEC Qualified AQG324
- PPAP Capable
- This Device is Pb-free, RoHS and UL94-V0 Compliant

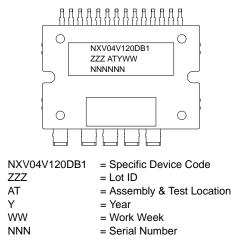
Applications

- 12 V Motor Control
- Electric and Electro-Hydraulic Power Steering
- Electric Water Pump, Oil Pump and Fan

Benefits

- Enable Design of Small, Efficient and Reliable System for Reduced Vehicle Fuel Consumption and CO₂ Emission
- Simplified Vehicle Assembly
- Enable Low Thermal Resistance to Junction-to-Heat Sink by Direct Mounting via Thermal Interface Material between Module Case and Heat Sink

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.


ON Semiconductor®

www.onsemi.com

19LD, APM, PDD STD CASE MODCD

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Package	Pb–Free and RoHS Compliant	Operating Temperature Range	Packing Method
NXV04V120DB1	APM19-CBC	Yes	$-40 \sim 150^{\circ}C$	Tube

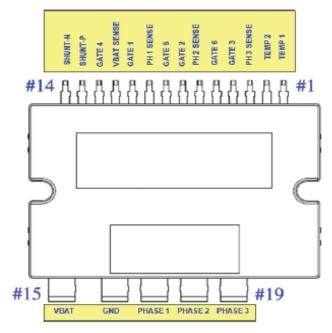


Figure 1. Pin Configuration

PIN DESCRIPTION

Pin Number	Pin Name	Pin Description
1	TEMP 1	NTC Thermistor Terminal 1
2	TEMP 2	NTC Thermistor Terminal 2
3	PHASE 3 SENSE	Source of Q3 and Drain of Q6
4	GATE 3	Gate of Q3, high side Phase 3 MOSFET
5	GATE 6	Gate of Q6, low side Phase 3 MOSFET
6	PHASE 2 SENSE	Source of Q2 and Drain of Q5
7	GATE 2	Gate of Q2, high side Phase 2 MOSFET
8	GATE 5	Gate of Q5, low side Phase 2 MOSFET
9	PHASE 1 SENSE	Source of Q1 and Drain of Q4
10	GATE 1	Gate of Q2, high side Phase 1 MOSFET
11	VBAT SENSE	Sense pin for battery voltage and Drain of high side MOSFETs
12	GATE 4	Gate of Q4, low side Phase 1 MOSFET
13	SHUNT P	Positive CSR sense pin and source connection for low side MOSFETs
14	SHUNT N	Negative CSR sense pin and sense pin for battery return
15	VBAT	Battery voltage power lead
16	GND	Battery return power lead
17	PHASE 1	Phase 1 power lead
18	PHASE 2	Phase 2 power lead
19	PHASE 3	Phase 3 power lead

Schematic Diagram

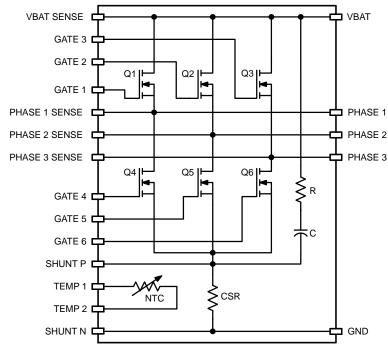


Figure 2. Schematic

Flammability Information

All materials present in the power module meet UL flammability rating class 94V–0 or higher.

Compliance to RoHS Directives

The power module is 100% lead free and RoHS compliant 2000/53/C directive.

ABSOLUTE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Max	Unit
V _{DS}	Drain-to-Source Voltage	40	V
V_{GS}	Gate-to-Source Voltage	±20	V
Ι _D	Drain Current Continuous ($T_C = 25^{\circ}C$, $T_J = 175^{\circ}C$) (Note 1)	160	A
E _{AS}	Single Pulse Avalanche Energy (Note 2)	340	mJ
T _{J(max)}	Maximum Junction Temperature	175	°C
T _{STG}	Storage Temperature Range	150	°C
V _{ISO}	Isolation Voltage	2500	Vrms

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Defined by design, not subject to production testing. The value is the result of the calculation, Min (package limit max current, Silicon limit max current) where the silicon limit current is calculated based on the maximum value which is not to exceed T_J = 175°C on maximum thermal limitation and on resistance.

2. Starting $T_J = 25^{\circ}C$, L = 0.47 mH, $I_{AS} = 50$ A, $V_{DD} = 40$ V during inductor charging and $V_{DD} = 0$ V during time in avalanche.

Solder

Solder used is a lead free SnAgCu alloy.

THERMAL CHARACTERISTICS

Symbol	Parameter	Min	Тур	Max	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case (Note 3)	_	_	1.2	K/W

3. Test method compliant with MIL-STD-883-1012.1, case temperature measured below the package at the chip center. Cosmetic oxidation and discolor on the DBC surface is allowed.

Parameters	Test Conditions	Symbol	Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	B _{VDSS}	40	-	-	V
Drain-to-Source Leakage Current	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	-	-	1	μΑ
Gate-to-Source Leakage Current	V _{GS} = ±20 V	I _{GSS}	-100	-	+100	nA
Gate-to-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	V _{GS(th)}	2.0	-	4.0	V
Body Diode Forward Voltage of MOSFET	$I_{S} = 80 \text{ A}, V_{GS} = 0 \text{ V}$	V _{SD}	-	-	0.955	V
Drain-to-Source On Resistance, Q1		R _{DS(ON)Q1}	-	0.85	1.1	mΩ
Drain-to-Source On Resistance, Q2		R _{DS(ON)Q2}	-	0.9	1.1	mΩ
Drain-to-Source On Resistance, Q3	I _D = 80 A, V _{GS} = 10 V	R _{DS(ON)Q3}	-	1	1.2	mΩ
Drain-to-Source On Resistance, Q4	(Note 4)	R _{DS(ON)Q4}	-	1.1	1.3	mΩ
Drain-to-Source On Resistance, Q5		R _{DS(ON)Q5}	-	1.3	1.5	mΩ
Drain-to-Source On Resistance, Q6		R _{DS(ON)Q6}	-	1.6	1.9	mΩ
VBAT to PHASE 1		R _{DS(ON)MQ1}	-	1.7	2	mΩ
VBAT to PHASE 2		R _{DS(ON)MQ2}	-	1.8	2	mΩ
VBAT to PHASE 3		R _{DS(ON)MQ3}	-	1.9	2.1	mΩ
PHASE1 to GND	I _D = 80 A, V _{GS} = 10 V	R _{DS(ON)MQ4}	-	1.9	2.2	mΩ
PHASE2 to GND	7	R _{DS(ON)MQ5}	-	2.1	2.4	mΩ
PHASE3 to GND	7	R _{DS(ON)MQ6}	-	2.4	2.7	mΩ
Total Loop Resistance $B+ \ge Phase \ge GND$	I _D = 80 A, V _{GS} = 10 V		-	4.15	4.8	mΩ

4. All MOSFETs have same size and on resistance. However, the different values listed due to the different access points available inside the module for on resistance measurement. Q1 has the shortest measurement path in the layout, in this reason, on resistance of Q1 can be used for simple power loss calculation.

COMPONENTS

Symbol	Spec	Quantity	Size
RESISTOR	2.2 Ω	1	142×55 mil
CAPACITOR	50 V, 0.022 μF	1	79 imes 49 mil
CURRENT SENSING RESISTOR	0.5 mΩ	1	250 imes 120 mil
NTC	B57342V5103H060, 10 kΩ	1	63 × 32 mil

ELECTRICAL CHARACTERISTICS

 $(T_J = 25^{\circ}C \text{ unless otherwise noted}, \text{ Reference typical characteristics of FDBL9406-F085, TOLL})$

RACTERISTICS				Тур	Max	Unit			
DYNAMIC CHARACTERISTICS									
Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz		-	7735	-	pF			
Output Capacitance			-	2160	-	pF			
Reverse Transfer Capacitance			-	129	-	pF			
Gate Resistance	f = 1 MHz		-	2.5	-	Ω			
Total Gate Charge	V _{GS} = 0 to 10 V		-	90	112	nC			
Threshold Gate Charge	$V_{GS} = 0$ to 2 V		-	13.5	18	nC			
Gate-to-Source Gate Charge	V _{DD} = 32 V, I _D = 80 A		-	43	-	nC			
Gate-to-Drain "Miller" Charge			-	10	-	nC			
	Output Capacitance Reverse Transfer Capacitance Gate Resistance Total Gate Charge Threshold Gate Charge Gate-to-Source Gate Charge	Output Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0$ Reverse Transfer Capacitancef = 1 MHzGate Resistancef = 1 MHzTotal Gate Charge $V_{GS} = 0 \text{ to } 10 \text{ V}$ Threshold Gate Charge $V_{GS} = 0 \text{ to } 2 \text{ V}$ Gate-to-Source Gate Charge $V_{DD} = 32 \text{ V},$ Gate-to-Drain "Miller" Charge $I_D = 80 \text{ A}$	Output Capacitance $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$ Reverse Transfer Capacitance $f = 1 \text{ MHz}$ Gate Resistance $f = 1 \text{ MHz}$ Total Gate Charge $V_{GS} = 0 \text{ to } 10 \text{ V}$ Threshold Gate Charge $V_{GS} = 0 \text{ to } 2 \text{ V}$ Gate-to-Source Gate Charge $V_{DD} = 32 \text{ V},$ Gate-to-Drain "Miller" Charge $I_D = 80 \text{ A}$	Output Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ -Reverse Transfer Capacitance $f = 1 \text{ MHz}$ -Gate Resistance $f = 1 \text{ MHz}$ -Total Gate Charge $V_{GS} = 0 \text{ to } 10 \text{ V}$ -Threshold Gate Charge $V_{GS} = 0 \text{ to } 2 \text{ V}$ -Gate-to-Source Gate Charge $V_{DD} = 32 \text{ V},$ -Gate-to-Drain "Miller" Charge $I_D = 80 \text{ A}$ -	Output Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ -2160Reverse Transfer Capacitance $f = 1 \text{ MHz}$ -129Gate Resistance $f = 1 \text{ MHz}$ -2.5Total Gate Charge $V_{GS} = 0 \text{ to } 10 \text{ V}$ -90Threshold Gate Charge $V_{GS} = 0 \text{ to } 2 \text{ V}$ -13.5Gate-to-Source Gate Charge $V_{DD} = 32 \text{ V},$ $D = 80 \text{ A}$ -43	Output Capacitance $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{f} = 1 \text{ MHz}$ - 2160 - Reverse Transfer Capacitance $f = 1 \text{ MHz}$ - 129 - Gate Resistance $f = 1 \text{ MHz}$ - 2.5 - Total Gate Charge $V_{GS} = 0 \text{ to } 10 \text{ V}$ - 90 112 Threshold Gate Charge $V_{GS} = 0 \text{ to } 2 \text{ V}$ - 13.5 18 Gate-to-Source Gate Charge $V_{DD} = 32 \text{ V}, I_D = 80 \text{ A}$ - 10 -			

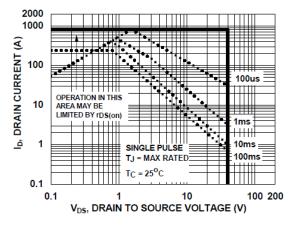
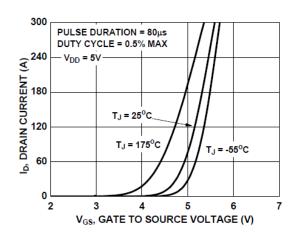
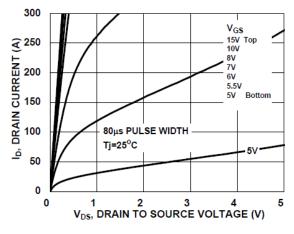
SWITCHING CHARACTERISTICS

t _{on}	Turn–On Time	V _{DD} = 20 V, I _D = 80 A, V _{GS} = 10 V, R _{GEN} = 6 Ω	-	-	102	ns
t _{d(on)}	Turn-On Delay Time		-	33	-	ns
t _r	Turn–On Rise Time		-	40	-	ns
t _{d(off)}	Turn-Off Delay Time		-	47	-	ns
t _f	Turn–Off Fall Time		-	23	-	ns
t _{off}	Turn–Off Time]	_	_	91	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

(Graphs are generated using the die assembled in discrete package for reference purposes only. Datasheet of FDBL9406–F085 is available in the web)

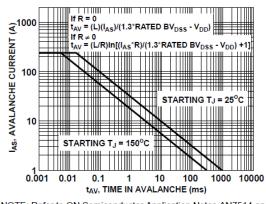

Figure 3. Forward Bias Safe Operating Area

Figure 5. Transfer Characteristics

Figure 7. Saturation Characteristics

NOTE: Refer to ON Semiconductor Application Notes AN7514 and AN7515

Figure 4. Unclamped Inductive Switching Capability

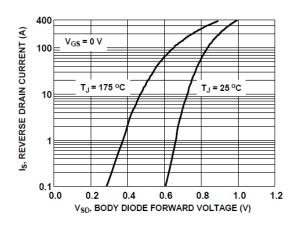
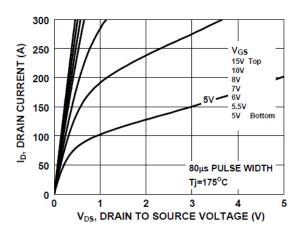



Figure 6. Forward Diode Characteristics

Figure 8. Saturation Characteristics

TYPICAL CHARACTERISTICS (continued)

(Graphs are generated using the die assembled in discrete package for reference purposes only. Datasheet of FDBL9406–F085 is available in the web)

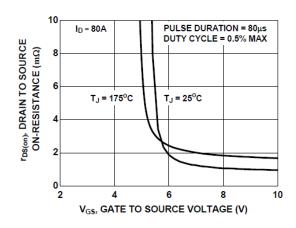


Figure 9. R_{DS(on)} vs. Gate Voltage

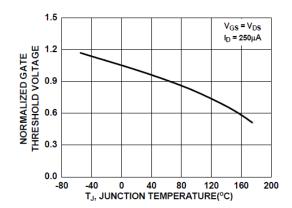


Figure 11. Normalized Gate Threshold Voltage vs. Temperature

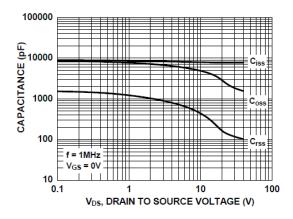


Figure 13. Capacitance vs. Drain-to-Source Voltage

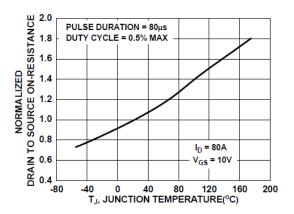


Figure 10. Normalized R_{DS(on)} vs. Junction Temperature

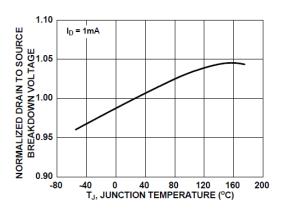


Figure 12. Normalized Drain-to-Source Breakdown Voltage vs. Junction Temperature

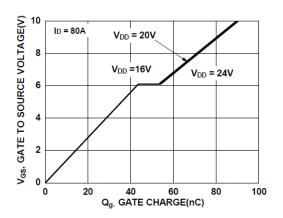


Figure 14. Gate Charge vs. Gate-to-Source Voltage

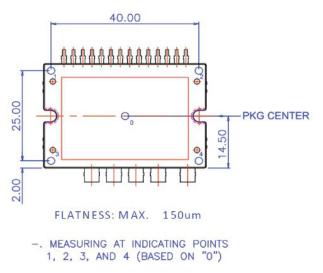
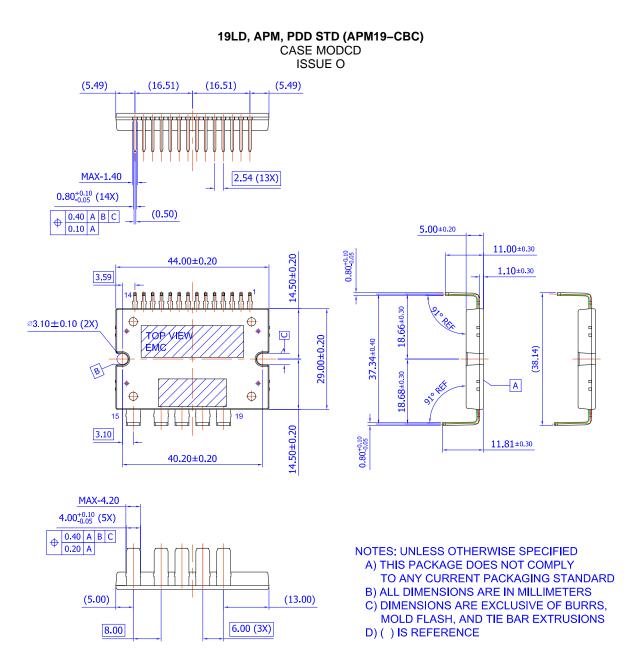



Figure 15. Flatness Measurement Position

MECHANICAL CHARACTERISTICS AND RATINGS

Parameter	Test Conditions	Min.	Тур.	Max.	Units
Device Flatness	Refer to the package dimensions	0	-	150	um
Mounting Torque	Mounting screw: M3, recommended 0.7 N•m	0.4	-	0.8	N∙m
Weight		-	20	-	g

PACKAGE DIMENSIONS

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, "including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor." "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor for such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and re

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative