PCFG75T120SQF

IGBT Die

Trench Ultra Field Stop IGBT Die optimized for UPS and Solar applications.

Features

- Extremely Efficient Trench with Field Stop Technology
- Low V_{CE(sat)} Loss Reduces System Power Dissipation
- Optimized for High Speed Switching

Typical Applications

- Solar Inverters
- UPS Systems

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector–Emitter Voltage, $T_J = 25^{\circ}C$	V _{CE}	1200	V
DC Collector Current, limited by max $T_{J(max)}$	Ι _C	(Note 1)	Α
Pulsed Collector Current (Note 2)	I _{C, pulse}	300	А
Gate-Emitter Voltage	V _{GE}	±20	V
Maximum Junction Temperature	ТJ	-55 to +175	°C

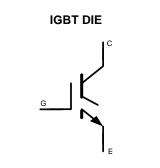
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

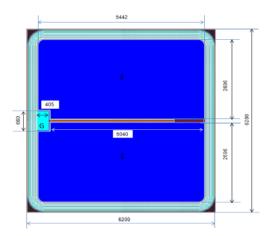
1. Depending on thermal properties of assembly. 2. T_{pulse} limited by T_{jmax} , 10 µSec pulse $V_{GE} = 15$ V.

MECHANICAL DATA

Parameter	Value	Unit	
Die Size	6200 x 6200	μm ²	
Emitter Pad Size	See die layout	μm ²	
Gate Pad Size	405 x 660	μm ²	
Die Thickness	112	μm	
Wafer Size	150	mm ²	
Top Pad Metal	5 μm AlCu		
Back Metal	2 µm AlTiNiAg		
Passivation	1.5 μm HR NIT		
Max possible chips per wafer	310		
Reject Ink dot size	25 mils		
Recommended storage environment: In original container, in dry nitrogen, or temperature of 18–28°C, 30–65% RH	Type: Sawn wafer on tape. Storage time: <3 months		

ORDERING INFORMATION

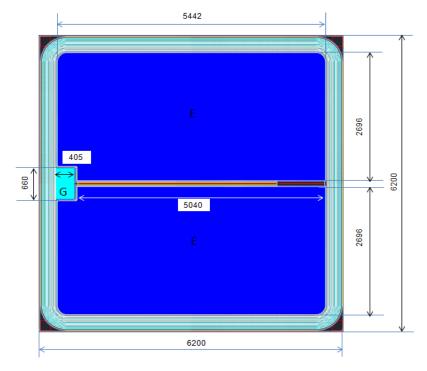

Device	Inking?	Shipping
PCFG75T120SQF	Yes	Sawn Wafer on Tape


ON Semiconductor®

www.onsemi.com

 $V_{CE} = 1200 V$ I_{C} = Limited by $T_{J(max)}$

DIE OUTLINE



PCFG75T120SQF

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$, unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Units
STATIC CHARACTERISTICS			•			
Collector-Emitter Breakdown Voltage	V_{GE} = 0 V, I _C = 500 μ A	V _{(BR)CES}	1200	-	-	V
Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 40 A	V _{CE(sat)}	-	1.7	1.95	V
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}, I_C = 400 \ \mu A$	V _{GE(TH)}	4.5	5.5	6.5	V
Collector-Emitter Cutoff Current	$V_{GE} = 0 V, V_{CE} = 1200 V$	I _{CES}	-	-	400	μA
Gate Leakage Current	$V_{GE} = \pm 20 \text{ V}, \text{V}_{CE} = 0 \text{ V}$	I _{GES}	-	-	±200	nA
DYNAMIC CHARACTERISTICS						
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	Cies	-	9060	-	pF
Output Capacitance		C _{oes}	-	242	-	
Reverse Transfer Capacitance		C _{res}	-	137	-	
Gate Charge Total		Qg	-	399	-	nC
Gate-Emitter Charge	$V_{CE} = 600 \text{ V}, \text{ V}_{GE} = 15 \text{ V},$ $I_{C} = 75 \text{ A}$	Q _{ge}	-	74	-	1
Gate-Collector Charge		Q _{gc}	_	192	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DIE LAYOUT

E = Emitter Pad G = Gate Pad All dimensions in μm

PCFG75T120SQF

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdi/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

cal Support: Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

ON Semiconductor Website: www.onsemi.com