Product Preview

Custom Clock Generator for Display Systems

Description

PCS3P7100A is a versatile spread spectrum modulator designed specifically for a wide range of clock frequencies. The device addresses the need of a low EMI clock generator for use in display systems covering wide choice of pixel frequencies.

PCS3P7100A reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of all clock dependent signals. PCS3P7100A allows significant system cost savings by reducing the number of circuit board layers, ferrite beads, shielding that are traditionally required to pass EMI regulations.

The Supply Voltage of the Device is 3.3 V/2.5 V. It has two Spread Selection Pins, SS1% and SS2%. Refer to the *Spread Deviation Selection Table* for details. The Device is available in 6 Pin TSOT–26 Package, in Commercial and Industrial Temperature grade.

Application

PCS3P7100A is targeted for use in Display Systems.

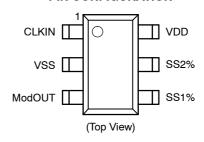
Features

- Custom Clock Generator for Display Systems
- Wide Operating Frequency Range Covering Most of the Pixel Frequencies
- Generates a Low EMI 1x Output
- 4 Spread Deviation Selection Options
- Supply Voltage: $3.3 \text{ V} \pm 0.3 \text{ V}$ $2.5 \text{ V} \pm 0.125 \text{ V}$
- Frequency Range:

3.3 V: 20 MHz – 130 MHz 2.5 V: 30 MHz – 130 MHz

- 6 Pin TSOT-26 Package
- Commercial and Industrial Temperature Range
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.


ON Semiconductor®

http://onsemi.com

TSOT-6 J SUFFIX CASE 419AF

PIN CONFIGURATION

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

1

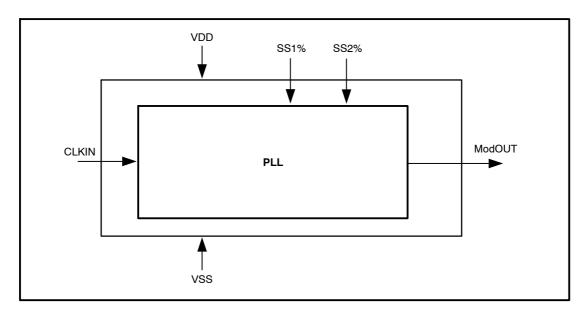


Figure 1. Block Diagram

Table 1. PIN DESCRIPTION

Pin#	Pin Name	Туре	Description
1	CLKIN	ı	External Reference Input frequency.
2	VSS	Р	Ground to entire chip.
3	ModOUT	0	Modulated Frequency Output.
4	SS1%	I	Spread Deviation Selection Pin-1. Refer to <i>Spread Deviation Selection Table</i> for details. Has an Internal pull-up resistor.
5	SS2%	I	Spread Deviation Selection Pin-2. Refer to <i>Spread Deviation Selection Table</i> for details. Has an Internal pull-up resistor.
6	VDD	Р	Power to entire chip.

Table 2. SPREAD DEVIATION SELECTION TABLE

SS2% Pin	SS1% Pin	Spread Deviation @ 72 MHz
L	L	±1.50%
L	Н	±1.25%
Н	L	±0.75%
Н	Н	±1.00%

Table 3. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Rating	Unit
V_{DD} , V_{IN}	Voltage on any pin with respect to Ground	-0.5 to +4.6	V
T _{STG}	Storage temperature	-65 to +125	°C
T _s	Max. Soldering Temperature (10 sec)	260	°C
T_J	Junction Temperature	150	°C
T _{DV}	Static Discharge Voltage (As per JEDEC STD22- A114-B)	2	KV

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. OPERATING CONDITIONS FOR 2.5 V AND 3.3 V SUPPLY VOLTAGE

Parameter	Description	Min	Max	Unit
V _{DD(2.5)}	Supply Voltage	2.375	2.625	V
V _{DD(3.3)}		3.0	3.6	
T _A	Operating Temperature (Ambient Temperature)	-40	+85	°C
C _L	Load Capacitance		15	pF

Table 5. DC ELECTRICAL CHARACTERISTICS FOR 2.5 V SUPPLY

Symbol	Parameter	Min	Тур	Max	Unit
V _{IL}	Input low voltage	VSS - 0.3		0.7	V
V _{IH}	Input high voltage	1.7		VDD + 0.3	V
I _{IL}	Input low current			-35	μΑ
I _{IH}	Input high current			35	μΑ
V _{OL}	Output low voltage (VDD = 2.5 V, I _{OL} = 8 mA)			0.6	V
V _{OH}	Output high voltage (VDD = 2.5 V, I _{OH} = -8 mA)	1.8			V
I _{DD}	Static supply current (Note 1)			4	mA
I _{CC}	Dynamic supply current (2.5 V and no load)		11		mA
V_{DD}	Operating voltage	2.375	2.5	2.625	V
t _{ON}	Power-up time (first locked cycle after power-up)			5	mS
C _{IN}	Input Capacitance		5		pF
Z _{OUT}	Output Impedance		40		Ω

^{1.} CLKIN pin is pulled low.

Table 6. AC ELECTRICAL CHARACTERISTICS FOR 2.5 V SUPPLY

Symbol	Parameter	Min	Тур	Max	Unit
CLKIN	Input frequency	30		130	MHz
ModOUT	Output frequency	30		130	MHz
t _{LH} (Note 2)	Output rise time (measured from 0.7 V to 1.7 V)		2.2		nS
t _{HL} (Note 2)	Output fall time (measured from 1.7 V to 0.7 V)		1.2		nS
tuc	Jitter (Cycle-to-cycle)		±250		pS
t _D	Output duty cycle	40	50	60	%

^{2.} t_{LH} and t_{HL} are measured into a capacitive load of 15 pF.

Table 7. DC ELECTRICAL CHARACTERISTICS FOR 3.3 V SUPPLY

Symbol	Parameter	Min	Тур	Max	Unit
V _{IL}	Input low voltage	VSS - 0.3		0.8	V
V _{IH}	Input high voltage	2.0		VDD + 0.3	V
I _{IL}	Input low current			-35	μΑ
I _{IH}	Input high current			35	μΑ
V _{OL}	Output low voltage (VDD = 3.3 V, I _{OL} = 8 mA)			0.4	V
V _{OH}	Output high voltage (VDD = 3.3 V, I _{OH} = -8 mA)	2.5			V
I _{DD}	Static supply current (Note 3)			4.5	mA
I _{CC}	Dynamic supply current, Unloaded Output		14		mA
V_{DD}	Operating voltage	3.0	3.3	3.6	V
t _{ON}	Power-up time (first locked cycle after power-up)			5	mS
C _{IN}	Input Capacitance		5		pF
Z _{OUT}	Output Impedance		40		Ω

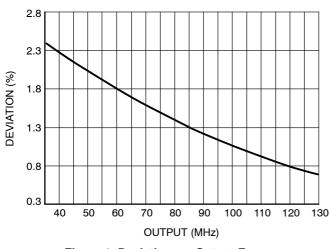

^{3.} CLKIN pin is pulled low.

Table 8. AC ELECTRICAL CHARACTERISTICS FOR 3.3 V SUPPLY

Symbol	Parameter	Min	Тур	Max	Unit
CLKIN	Input frequency	20		130	MHz
ModOUT	Output frequency	20		130	MHz
t _{LH} (Note 4)	Output rise time (measured from 0.8 V to 2.0 V)		1.5		nS
t _{HL} (Note 4)	Output fall time (measured at 2.0 V to 0.8 V)		1.1		nS
tuc	Jitter (Cycle-to-cycle)		±225		pS
t _D	Output duty cycle	45	50	55	%

^{4.} t_{LH} and t_{HL} are measured into a capacitive load of 15 pF.

DEVIATION CHARTS

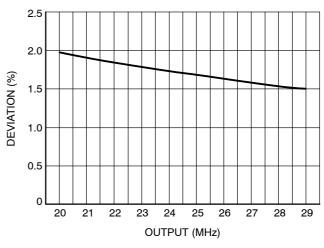


Figure 2. Deviation vs. Output Frequency (35 MHz to 130 MHz) at 25°C for VDD = 2.5 V

Figure 3. Deviation vs. Output Frequency (20 MHz to 29 MHz) at 25°C for VDD = 3.3 V

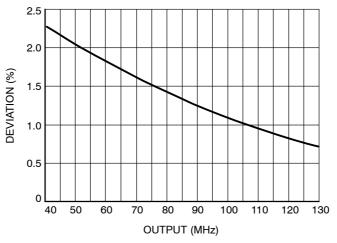
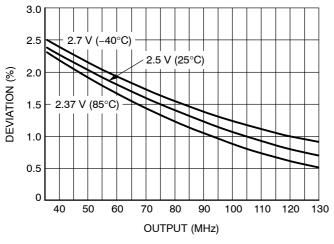



Figure 4. Deviation vs. Output Frequency (40 MHz to 130 MHz) at 25°C for VDD = 3.3 V

NOTE: Transition band is 30 MHz to 34 MHz for VDD = 2.5 V at 25°C. Deviation in this band is $2.5\% \pm 4\%$. Transition band is 30 MHz to 39 MHz for VDD = 3.3 V at 25°C. Deviation in this band is $1.8\% \pm 30\%$.

DEVIATION CHARTS

2.5 3.6 V (-40°C) 3.3 V (25°C) 2.0 **DEVIATION** (%) 3.0 V (85°C) 1.5 1.0 0.5 20 21 22 23 24 25 26 27 28 29 OUTPUT (MHz)

Figure 5. Deviation vs. Output Frequency (35 MHz to 130 MHz) across Temperature for VDD = $2.5 \text{ V} \pm 5\%$

Figure 6. Deviation vs. Output Frequency (20 MHz to 29 MHz) across Temperature for VDD = 3.3 V \pm 0.3 V

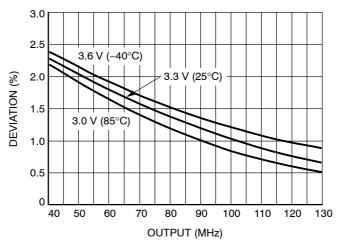
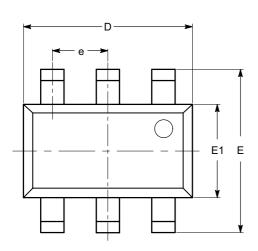


Figure 7. Deviation vs. Output Frequency (40 MHz to 130 MHz) across Temperature for VDD = 3.3 V \pm 0.3 V


NOTE: Transition band is 30 MHz to 34 MHz for VDD = $2.5 \text{ V} \pm 5\%$, across -40°C to $+85^{\circ}\text{C}$. Deviation in this band is $1.93\% \pm 37\%$. Transition band is 30 MHz to 39 MHz for VDD = $3.3 \text{ V} \pm 0.3 \text{ V}$, across -40°C to $+85^{\circ}\text{C}$. Deviation in this band is $1.8\% \pm 45\%$.

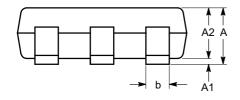
PACKAGE DIMENSIONS

TSOT-23, 6 LEAD CASE 419AF-01 ISSUE O

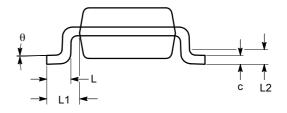
SYMBOL

Α

A1	0.01 0.05		0.10		
A2	0.80 0.87		0.90		
b	0.30		0.45		
С	0.12	0.15	0.20		
D		2.90 BSC			
Е	2.80 BSC				
E1	1.60 BSC				
е	0.95 TYP				
L	0.30 0.40		0.50		
L1	0.60 REF				
L2	0.25 BSC				
θ	00 8				


MIN

NOM


MAX

1.00

SIDE VIEW

END VIEW

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.(2) Complies with JEDEC MO-193.

Table 9. ORDERING INFORMATION

Part Number	Marking*	Package Type	Temperature
PCS3P7100AG-06JT	AA4LL	6-Pin TSOT-26, TUBE, Green	Commercial
PCS3P7100AG-06JR	AA4LL	6-Pin TSOT-26, TAPE & REEL, Green	Commercial
PCS3I7100AG-06JT	AA2LL	6-Pin TSOT-26, TUBE, Green	Industrial
PCS3I7100AG-06JR	AA2LL	6-Pin TSOT-26, TAPE & REEL, Green	Industrial

^{*} LL = 2 Character LOT #

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make triangles without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative