SCY99116

Single-Channel, Rail-to-Rail Output, 3 MHz BW Operational Amplifier

The SCY99116 operational amplifier provides rail-to-rail output operation. This rail-to-rail operation enables the user to make optimal use of the entire supply voltage range while taking advantage of 3 MHz bandwidth. The SCY99116 can operate on supply voltage as low as 2.7 V over the temperature range of $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$. The high bandwidth provides a slew rate of $2.4 \mathrm{~V} / \mu \mathrm{s}$ while consuming low quiescent current. Likewise the SCY99116 can run on a supply voltage as high as 16 V making it ideal for a broad range of battery-operated applications. Since this is a CMOS device it has high input impedance and low bias currents making it ideal for interfacing to a wide variety of signal sensors. In addition it comes in a small SOT23-5 / TSOP-5 package allowing for use in high-density PCB's.

Features

- Rail-To-Rail Output
- Wide Bandwidth: 3 MHz
- High Slew Rate: 2.4 V/us
- Wide Power-Supply Range: 2.7 V to 16 V
- Low Supply Current: $550 \mu \mathrm{~A}$
- Low Input Bias Current: 1 pA
- Wide Temperature Range: $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
- Small Package: 5 Pin SOT-23 (same as TSOP-5)
- These Devices are Pb -Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Notebook Computers
- Portable Instruments

ADH = Specific Device Code
A = Assembly Location
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping †
SCY99116SNT1G	TSOP-5 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
$V_{D D}$	Supply Voltage (Note 1)	16.5	V
$\mathrm{V}_{\text {ID }}$	Input Differential Voltage (Note 2)	\pm Supply Voltage	V
V_{1}	Input Common Mode Voltage Range (Note 1)	$\begin{gathered} -0.2 \mathrm{~V} \text { to }\left(\mathrm{V}_{\mathrm{DD}}+\right. \\ 0.2 \mathrm{~V}) \end{gathered}$	V
1	Maximum Input Current	± 10	mA
10	Output Current Range	± 100	mA
	Continuous Total Power Dissipation (Note 1)	200	mW
T_{J}	Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\theta_{J A}$	Thermal Resistance	333	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {stg }}$	Operating Temperature Range (free-air)	-40 to 105	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
	Mounting Temperature (Infrared or Convection - 20 sec)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Continuous short-circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either $\mathrm{V}+$ or V- will adversely affect reliability.
2. ESD data available upon request.

DC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ (Note 3), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Input Offset Voltage	V_{10}	$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=50 \Omega$			0.5	5	mV
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				7	
Offset Voltage Drift	$\mathrm{ICV}_{\text {OS }}$	$\mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=50 \Omega$			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	CMRR	$0 \mathrm{~V} \leq \mathrm{VIC} \leq \mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	58	87		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		55			
		$0 \mathrm{~V} \leq \mathrm{VIC} \leq \mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	65	120		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		62			
		$0 \mathrm{~V} \leq \mathrm{VIC} \leq \mathrm{V}_{\mathrm{DD}}-1.35 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$	69	132		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		66			
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2$, No Load		70	118		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		65			
Large Signal Voltage Gain	$A_{V D}$	$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	97	110		dB
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		76			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	97	115		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		76			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	100	117		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		86			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$	100	123		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		90			
Input Bias Current	I_{B}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{VIC}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		35	150	pA
			$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$			1000	

3. $\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$ is shorthand for $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS $\left(V_{D D}=2.7 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}\right.$ and $\pm 5 \mathrm{~V}$ (Note 3), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

3. $\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$ is shorthand for $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$.

DC ELECTRICAL CHARACTERISTICS $\left(V_{D D}=2.7 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}\right.$ and $\pm 5 \mathrm{~V}$ (Note 3), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Output Current	Io	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from rail, $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	Positive rail		4		mA
			Negative rail		5		
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from rail, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	Positive rail		7		
			Negative rail		8		
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from rail, $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	Positive rail		13		
			Negative rail		12		
Power Supply Quiescent Current	IDD	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 2$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		470	560	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		475	620	
			$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		480	660	
			$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		490	800	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$				1000	

3. $\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$ is shorthand for $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, 5 \mathrm{~V}\right.$, and $\pm 5 \mathrm{~V}$ (Note 4$), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ unless otherwise noted)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Unity Gain Bandwidth	UGBW	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		3.0		MHz
			$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \text { to } \\ 10 \mathrm{~V} \end{gathered}$		3.2		
Slew Rate at Unity Gain	SR	$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	1.35	2.0		V/uS
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		1			
		$\mathrm{V}_{\text {(pp) }}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	1.45	2.3		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		1.2			
		$\mathrm{V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$	1.8	2.6		
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		1.3			
Phase Margin	θ_{m}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			74		-
Gain Margin		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			17		dB
Settling Time to 0.1\%	$\mathrm{t}_{\text {s }}$	$\begin{aligned} & \mathrm{V} \text {-step }(\mathrm{pp})=1 \mathrm{~V}, \mathrm{AV}=-1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$		2.9		$\mu \mathrm{S}$
		$\begin{aligned} & \mathrm{V}-\text { step }(\mathrm{pp})=1 \mathrm{~V}, \mathrm{AV}=-1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=47 \mathrm{pF} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ \pm 5 \mathrm{~V} \end{gathered}$		2		
Total Harmonic Distortion plus Noise	THD+N	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{f}=10 \mathrm{kHz} \end{aligned}$	$\mathrm{AV}=1$		0.03		\%
			$\mathrm{AV}=10$		0.05		
			AV = 100		0.18		
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}(\mathrm{pp})}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}= \\ & 2 \mathrm{k} \Omega, \mathrm{f}=10 \mathrm{kHz} \end{aligned}$	$\mathrm{AV}=1$		0.02		
			AV $=10$		0.09		
			AV $=100$		0.5		
Input-Referred Voltage Noise	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$			90		$\mathrm{nV} / \sqrt{\text { Hz }}$
		$\mathrm{f}=10 \mathrm{kHz}$			35		
Input-Referred Current Noise	i_{n}	$\mathrm{f}=1 \mathrm{kHz}$			0.6		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$

4. $\mathrm{V}_{\mathrm{DD}}= \pm 5 \mathrm{~V}$ is shorthand for $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$.

TYPICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ single-supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ unless otherwise noted)

Figure 1. CMRR vs. Frequency

Figure 3. VOL OUTPUT SWING

Figure 5. VOL OUTPUT SWING

Figure 2. Input Bias Offset Current

Figure 4. VOH OUTPUT SWING

Figure 6. VOH OUTPUT SWING

TYPICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ single-supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ unless otherwise noted)

Figure 7. VOL OUTPUT SWING

Figure 9. VOL OUTPUT SWING

Figure 11. Peak-to-Peak Output Voltage vs. Frequency

Figure 8. VOH OUTPUT SWING

Figure 10. VOH OUTPUT SWING

Figure 12. Supply Current vs. Supply Voltage

TYPICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ single-supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ unless otherwise noted)

Figure 13. Power Supply Rejection Ratio

Figure 14. Open Loop Gain / Phase vs. Frequency

Figure 15. Gain Bandwidth Product vs. Temperature

Figure 16. Phase Margin vs. Capacitive Load

TYPICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ single-supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ unless otherwise noted)

Figure 17. Slew Rate vs. Supply Voltage

Figure 18. Slew Rate vs. Temperature

Figure 19. Equivalent Input Noise Voltage vs. Frequency

TYPICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ single-supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ unless otherwise noted)

Figure 20. Voltage-Follower Large-Signal Pulse Response ($\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$)

Figure 21. Voltage-Follower Large-Signal Pulse Response ($\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$)

SCY99116

TYPICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ single-supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ unless otherwise noted)

Figure 22. Voltage-Follower Small-Signal Pulse Response

Figure 23. Inverting Large-Signal Pulse Response ($\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$)

TYPICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ single-supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ unless otherwise noted)

Figure 24. Inverting Large-Signal Pulse Response ($\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$)

Figure 25. Inverting Small-Signal Pulse Response

APPLICATIONS

Figure 26. Voltage Reference

Figure 28. Comparator with Hysteresis

Figure 27. Wien Bridge Oscillator

Given: $f_{0}=$ center frequency

$$
\mathrm{A}\left(\mathrm{f}_{\mathrm{o}}\right)=\text { gain at center frequency }
$$

Choose value f_{0}, C_{Q}
Then : $\quad \mathrm{R} 3=\frac{Q}{\pi f_{\mathrm{O}} \mathrm{C}}$
$\mathrm{R} 1=\frac{\mathrm{R} 3}{2 \mathrm{~A}\left(\mathrm{f}_{\mathrm{O}}\right)}$

$$
R 2=\frac{R 1 R 3}{4 Q^{2} R 1-R 3}
$$

For less than 10% error from operational amplifier, $\left(\left(Q_{O} f_{O}\right) / B W\right)<0.1$ where f_{0} and BW are expressed in Hz . If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Figure 29. Multiple Feedback Bandpass Filter

SCY99116

*R-null can be added in series with the output to improve stability when driving capacitive loads. R-null can be optimized by observing the step-response on a scope. A practical starting value can be read from the Phase-Margin vs Capacitive Load plot shown in the Typical Characteristics.

Figure 30. Driving a C-load

PACKAGE DIMENSIONS

TSOP-5

DETAIL Z

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD LEAD FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS THICKNESS IS THE M
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
5. OPTIONAL CONSTRUCTION: AN

ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

DIM	MILLIMETERS	
	MIN	MAX
A	3.00 BSC	
B	1.50	
BSC		
\mathbf{C}	0.90	1.10
\mathbf{D}	0.25	0.50
\mathbf{G}	0.95	BSC
\mathbf{H}	0.01	0.10
\mathbf{J}	0.10	0.26
\mathbf{K}	0.20	0.60
\mathbf{L}	1.25	1.55
\mathbf{M}	0	10°
\mathbf{S}	2.50	3.00

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
 "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

