Q0B00ST Module (IGBT Option)

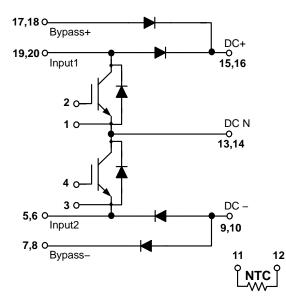
This high-density, integrated power module combines high-performance IGBTs with rugged anti-parallel diodes.

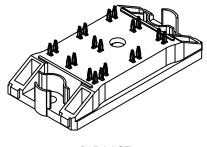
Features

- Extremely Efficient Trench with Fieldstop Technology
- Fast Switching SiC Diode
- Module Design Offers High Power Density
- Low Inductive Layout
- Q0BOOST Package with Press-Fit Pins
- This is a Pb–Free Device

Typical Applications

- Solar Inverters
- Uninterruptable Power Supplies




Figure 1. SNXH160B120L2Q0PG Schematic Diagram

This document contains information on some products that are still under development. ON Semiconductor reserves the right to change or discontinue these products without notice.

ON Semiconductor®

www.onsemi.com

Q0BOOST CASE 180AF

DEVICE MARKING

XXXXX = Specific Device Code YYWW = Year and Work Week Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
BYPASS DIODE (Note 1)			
Peak Repetitive Reverse Voltage	V _{RRM}	1600	V
Continuous Forward Current, $T_J = T_{Jmax}$, $T_h = 80^{\circ}C$	١ _F	52	А
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	420	A
Power Dissipation Per Diode $T_J = T_{Jmax}, T_h = 80^{\circ}C$	P _{tot}	56	W
Maximum Junction Temperature	TJ	150	°C
INPUT BOOST IGBT			
Collector-emitter voltage	V _{CES}	1200	V
Continuous Collector current, $T_J = T_{Jmax}$, $T_h = 80^{\circ}C$	۱ _C	75	А
Pulsed collector current, T _{pulse} limited by T _{jmax}	I _{Cpulse}	300	Α
Power Dissipation Per IGBT $T_J = T_{Jmax}, T_h = 80^{\circ}C$	P _{tot}	167	W
Gate-emitter voltage	V _{GE}	±20	V
Short Circuit Withstand Time V_{GE} = 15 V, V_{CE} = 600 V, T_J \leq 150°C	T _{sc}	10	μs
Maximum Junction Temperature	TJ	175	°C
INPUT BOOST DIODE			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Continuous Forward Current, $T_J = T_{Jmax}$, $T_h = 80^{\circ}C$	١ _F	40	А
Power Dissipation Per Diode $T_J = T_{Jmax}, T_h = 80^{\circ}C$	P _{tot}	90	W
Maximum Junction Temperature	TJ	175	°C
INPUT BOOST IGBT INVERSE DIODE (Note 1)			
Peak Repetitive Reverse Voltage	V _{RRM}	1600	V
Continuous Forward Current, $T_J = T_{Jmax}$, $T_h = 80^{\circ}C$	١ _F	30	А
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	185	A
Power Dissipation Per Diode $T_J = T_{Jmax}, T_h = 80^{\circ}C$	P _{tot}	40	W
Maximum Junction Temperature	TJ	150	°C
THERMAL PROPERTIES			
Operating Temperature under switching condition	T _{VJ OP}	–40 to (T _{jmax} –25)	°C
Storage Temperature Range	T _{stg}	-40 to 125	°C
INSULATION PROPERTIES			
Isolation test voltage, t = 1 sec, 60 Hz	V _{is}	3000	V _{RMS}
Creepage distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. T_{Jmax} rated as per die supplier datasheet and reliability testing completed as per die supplier spec.

ELECTRICAL CHARACTERISTICS

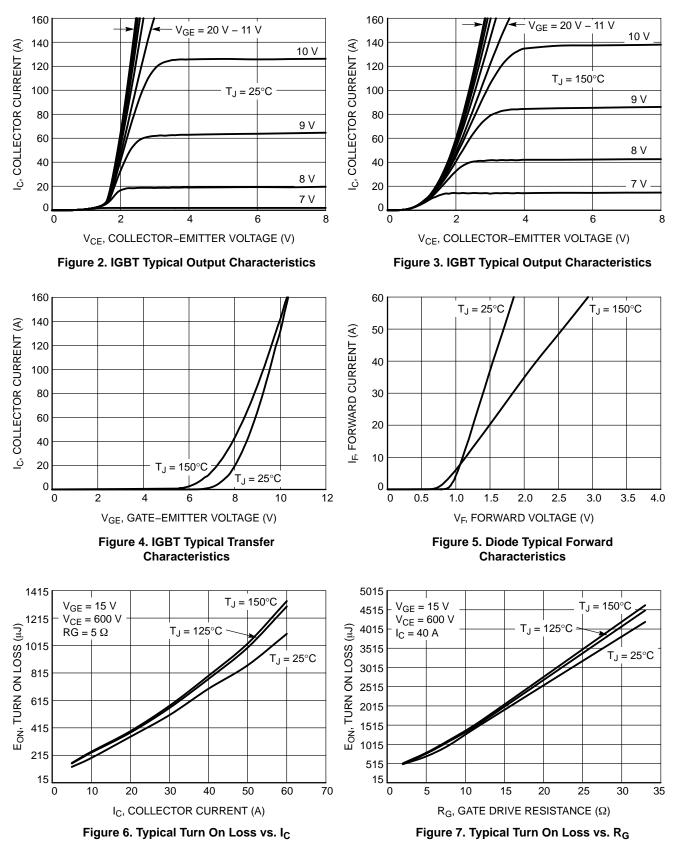
 $(T_J = 25^{\circ}C \text{ unless otherwise specified})$

Parameter	Test Conditions	Symbol	Min	Тур	Мах	Unit
BYPASS DIODE						
Forward voltage	$I_F = 35 \text{ A}, T_J = 25^{\circ}\text{C}$ $I_F = 35 \text{ A}, T_J = 125^{\circ}\text{C}$	V _F	-	1.06 0.97	1.65 —	V
Reverse leakage current	V _R = 1600 V, T _J = 25°C V _R = 1600 V, T _J =125°C	I _R	-		100 1100	μΑ
Thermal Resistance – chip-to- heatsink	Thermal grease, Thickness = 3 Mil \pm 2%, λ = 2.9 W/mK	R _{thJH}	-	1.25	-	K/W
INPUT BOOST IGBT						
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 80 A, T _J = 25°C V _{GE} = 15 V, I _C = 80 A, T _J = 150°C	V _{CE(sat)}	-	2.15 2.28	2.7 -	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_C = 3 \text{ mA}$	V _{GE(TH)}	5.0	5.78	6.5	V
Collector-emitter cutoff current	$V_{GE} = 0 \text{ V}, V_{CE} = 1200 \text{ V}$	I _{CES}	-	-	400	μΑ
Gate leakage current	$V_{GE} = 20 \text{ V}, V_{CE} = 0 \text{ V}$	I _{GES}	-	-	400	nA
Turn-on delay time		t _{d(on)}	-	53	-	ns
Rise time	7	t _r	-	27	-	
Turn-off delay time	$T_J = 25^{\circ}C$	t _{d(off)}	-	188	-	1
Fall time	$V_{CE} = 600$ V, I _C = 40 A V _{GE} = ±15 V, R _G = 5 Ω	t _f	-	74	-	
Turn on switching loss	1	Eon	-	700	-	μJ
Turn off switching loss	1	E _{off}	-	1350	_	
Turn-on delay time		t _{d(on)}	-	49	_	ns
Rise time	1	tr	-	31	-	
Turn-off delay time	$T_{J} = 125^{\circ}C$	t _{d(off)}	-	210	-	
Fall time	$V_{CE} = 600$ V, I _C = 40 A V _{GE} = ±15 V, R _G = 5 Ω	t _f	-	149	-	
Turn on switching loss	1	Eon	-	772	-	μJ
Turn off switching loss	1	E _{off}	-	2700	-	
Input capacitance		Cies	-	16740	-	pF
Output capacitance	V _{CE} = 25 V, VGE = 0 V. f = 10 kHz	C _{oes}	-	344	-	
Reverse transfer capacitance	1	C _{res}	-	276	-	
Gate charge total	V _{CE} = 600 V, IC = 80 A, VGE = 15 V	Qg	-	660	-	nC
Thermal Resistance – chip–to– heatsink	Thermal grease, Thickness = 3 Mil \pm 2%, λ = 2.9 W/mK	R _{thJH}	-	0.568	-	K/W
INPUT BOOST IGBT INVERSE DIODE						
Forward voltage	$I_F = 18 \text{ A}, T_J = 25^{\circ}\text{C}$ $I_F = 18 \text{ A}, T_J = 125^{\circ}\text{C}$	V _F	-	1.095 1.035	1.6 _	V
Thermal Resistance – chip–to– heatsink	Thermal grease, Thickness = 3 Mil \pm 2%, λ = 2.9 W/mK	R _{thJH}	-	1.76	-	K/W
INPUT BOOST DIODE						
Forward voltage	$I_F = 30 \text{ A}, T_J = 25^{\circ}\text{C}$ $I_F = 30 \text{ A}, T_J = 150^{\circ}\text{C}$	V _F	-	1.42 1.85	2.0	V
Reverse leakage current	V _R = 1200 V	I _R	_	_	750	μΑ

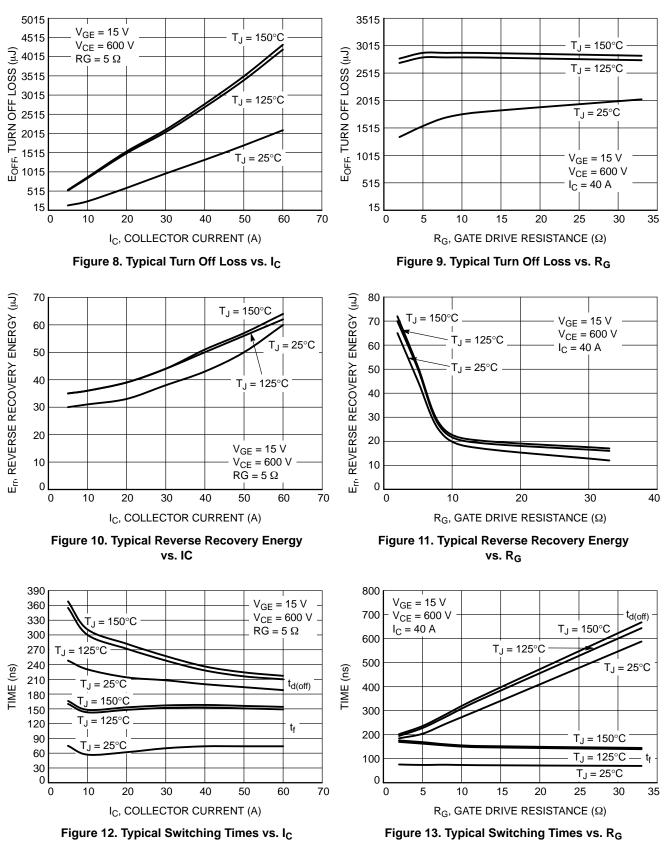
ELECTRICAL CHARACTERISTICS

 $(T_J = 25^{\circ}C \text{ unless otherwise specified})$

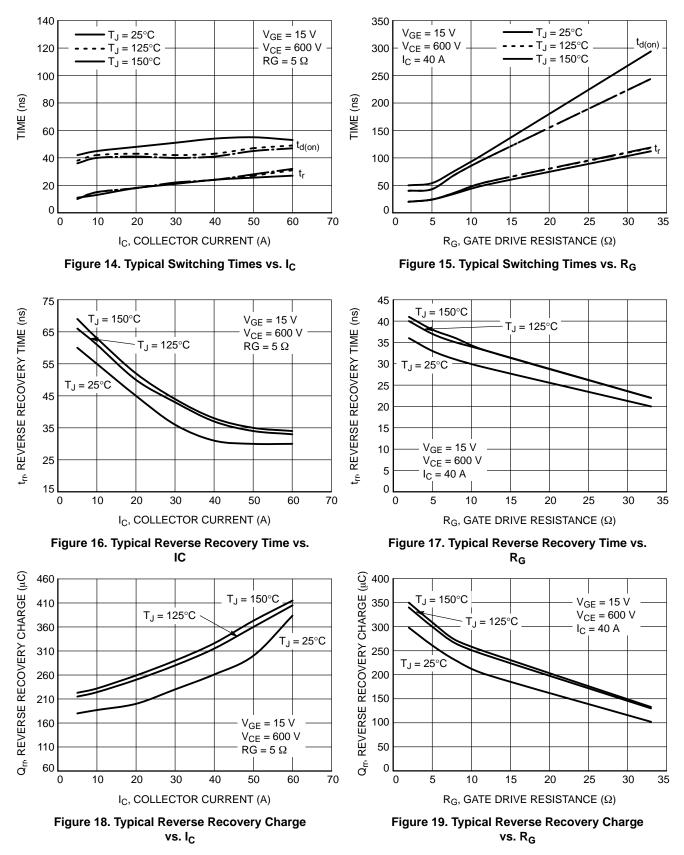
Parameter	Test Conditions	Symbol	Min	Тур	Мах	Unit
INPUT BOOST DIODE	·			•		
Reverse recovery time		t _{rr}	-	31	-	ns
Reverse recovery charge	T _J = 25°C	Q _{rr}	_	261	-	μC
Peak reverse recovery current	$V_R = 600 \text{ V}, I_C = 40 \text{ A}$	I _{RRM}	-	11.8	-	А
Peak rate of fall of recovery current	V_{GE} = ±15 V, R _G = 5 Ω	di/dt	-	255	-	A/μs
Reverse recovery energy	1	Err	-	45	-	μJ
Reverse recovery time		t _{rr}	-	37	-	ns
Reverse recovery charge	T _{.1} = 125°C	Q _{rr}	-	351	-	μC
Peak reverse recovery current	$V_{R} = 600 \text{ V}, I_{C} = 40 \text{ A}$	I _{RRM}	-	12.4	-	А
Peak rate of fall of recovery current	V_{GE} = ±15 V, R_{G} = 5 Ω	di/dt	-	250	-	A/μs
Reverse recovery energy	1	Err	-	50	-	μJ
Thermal Resistance – chip–to– heatsink	Thermal grease, Thickness = 3 Mil \pm 2%, λ = 2.9 W/mK	R _{thJH}	-	1.04	-	K/W


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

THERMISTOR CHARACTERISTICS


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Nominal resistance		R		22		kΩ
Nominal resistance	T = 100°C	R		1468		Ω
Deviation of R25		DR/R	-5		5	%
Power dissipation		PD		200		mW
Power dissipation constant				2		mW/K
B-value	B(25/50), tol ±3%				3950	К
B-value	B(25/100), tol ±3%				3998	К
NTC reference					В	

ORDERING INFORMATION

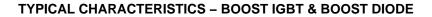

Device	Marking	Package	Shipping	Comment
SNXH160B120L2Q0PG GenII–Q0BOOST (IGBT Option) Press–fit Pin	SNXH160B120L2Q0PG	Q0BOOST – Case 180AF (Pb–Free and Halide–Free)	24 Units / Blister Tray	With ROHM SiC Diode
SNXH160B120L2Q0PG–N GenII–Q0BOOST (IGBT Option) Press–fit Pin (In Development)	SNXH160B120L2Q0PG-N	Q0BOOST – Case 180AF (Pb–Free and Halide–Free)	24 Units / Blister Tray	With ON Semiconductor SiC Diode

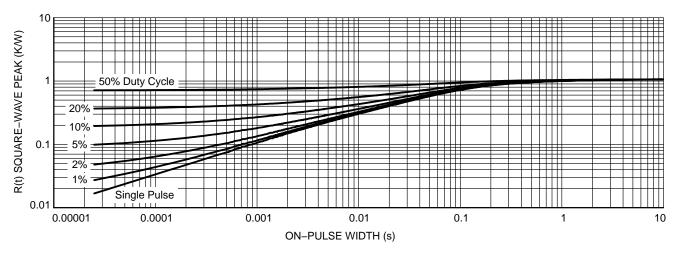
TYPICAL CHARACTERISTICS – BOOST IGBT & BOOST DIODE

TYPICAL CHARACTERISTICS – BOOST IGBT & BOOST DIODE

TYPICAL CHARACTERISTICS – BOOST IGBT & BOOST DIODE

18 18 € T_J = 150°C $T_J = 150^{\circ}C$ REVERSE RECOVERY CURRENT 16 16 T_J = 125°C T_{.1} = 125°C 14 14 T_J = 25°C 12 12 10 10 T_J = 25°C 8 8 6 6 $V_{GE} = 15 V$ 4 $V_{GE} = 15 V$ 4 $V_{CE} = 600 V$ $V_{CE} = 600 V$ 2 2 I_C = 40 A $RG = 5 \Omega$ 0 0 ġ. 10 50 5 35 0 20 30 40 60 70 0 10 15 20 25 30 I_C, COLLECTOR CURRENT (A) R_G , GATE DRIVE RESISTANCE (Ω) Figure 20. Typical Reverse Recovery Peak Figure 21. Typical Reverse Recovery Peak Current vs. I_C Current vs. R_G 400 450 DIODE CURRENT SLOPE (A/µs) T_J = 150°C $V_{GE} = 15 V$ 400 T_J = 150°C 350 T_J = 125°C $V_{CE} = 600 V$ 350 $I_{C} = 40 \text{ A}$ 300 T_J = 25°C T_{.1} = 125°C 300 250 250 200 200 $T_J = 25^{\circ}C$ 150 150 V_{GE} = 15 V 100 100 V_{CE} = 600 V di/dt, 50 $RG = 5 \Omega$ 50 0 0 10 20 30 40 50 60 70 0 5 10 15 20 25 30 35 0 I_C, COLLECTOR CURRENT (A) R_G , GATE DRIVE RESISTANCE (Ω) Figure 22. Typical Diode Current Slope vs. IC Figure 23. Typical Diode Current Slope vs. R_G 10 1 SQUARE-WAVE PEAK (K/W) 1000 1000 1000 50% Duty Cycle 20% 10% 5% 2% 1% Single Pulse 册 0.0001 0.00001 0.0001 0.001 0.1 0.01 1 10 ON-PULSE WIDTH (s)


TYPICAL CHARACTERISTICS – BOOST IGBT & BOOST DIODE


I_{rm}, REVERSE RECOVERY CURRENT (A)

di/dt, DIODE CURRENT SLOPE (A/ μ s)

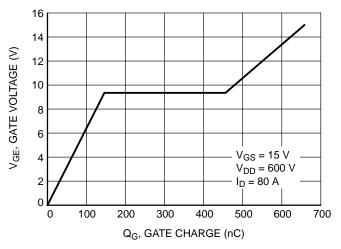

R(t)

Figure 24. IGBT Transient Thermal Resistance

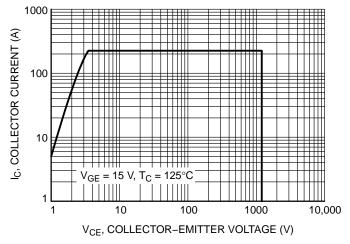
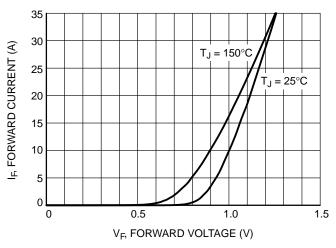



Figure 27. Safe Operating Area

TYPICAL CHARACTERISTICS – IGBT INVERSE DIODE

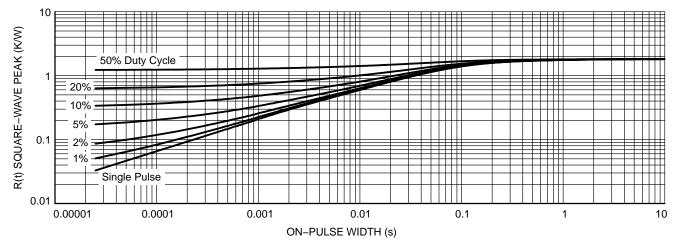
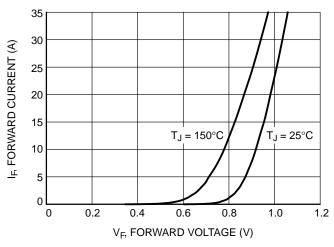



Figure 29. Diode Transient Thermal Impedance

TYPICAL CHARACTERISTICS – BYPASS DIODE

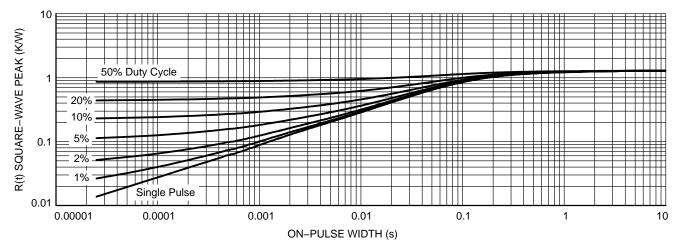
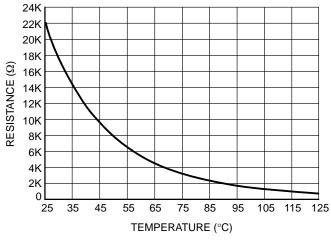
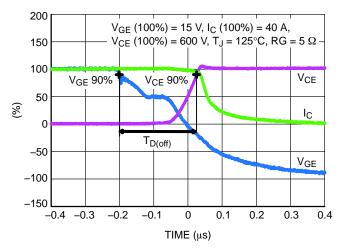
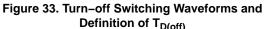




Figure 31. Diode Transient Thermal Impedance


TYPICAL CHARACTERISTICS – THERMISTOR

SWITCHING WAVEFORMS AND DEFINITIONS - BOOST IGBT & BOOST DIODE

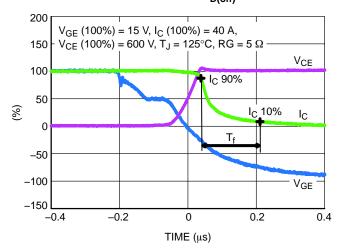
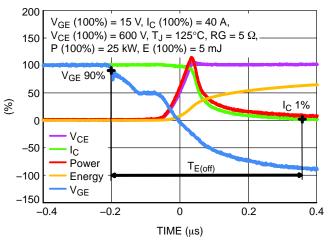
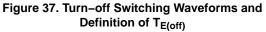
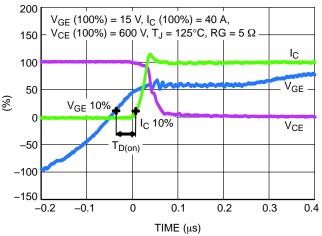
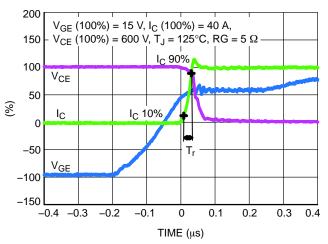
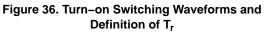
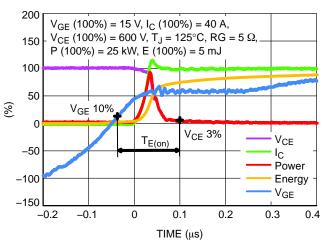
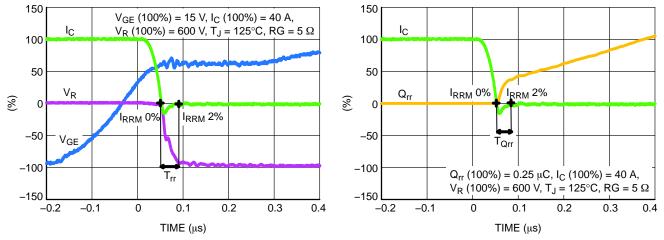




Figure 35. Turn–off Switching Waveforms and Definition of $T_{\rm f}$


Figure 34. Turn-on Switching Waveforms and Definition of T_{D(on)}

SWITCHING WAVEFORMS AND DEFINITIONS - BOOST IGBT & BOOST DIODE

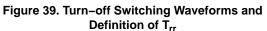


Figure 40. Turn-off Switching Waveforms and Definition of T_{Orr}

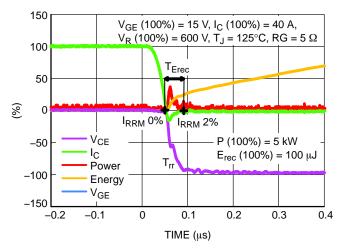
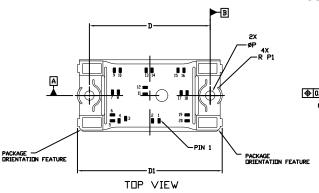
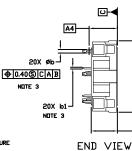



Figure 41. Turn-off Switching Waveforms and Definition of T_{Erec}

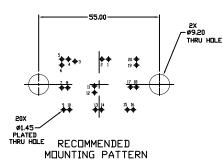
PACKAGE DIMENSIONS


PIM20, 55x32.5 / Q0BOOST CASE 180AF ISSUE O

A1

PACKAGE MARKIN

₩₩₩


	MILLIM	ETERS			
DIM	MIN.	NDM.			
Α	11.70	12.10			
A1	0.00	0.60			
A3	15.50	16.50			
A4	12.88 BSC				
Q	1.61	1.71			
b1	0.75	0.85			
D	54.80	55.20			
D1	65.70	70.10			
Е	32.30	32.70			
Р	4.10	4.50			
P1	4.55	4.95			

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 2009.

2. CONTROLLING DIMENSION: MILLIMETERS

- 2. CUNTRULLING DIMENSION MILLIMETERS
- 3. DIMENSIONS 6 AND 61 APPLY TO THE PLATED TERMINALS AND ARE MEASURED AT DIMENSION A4.
- 4. POSITION OF THE CENTER OF THE TERMINALS IS DETERMINED FROM DATUM B THE CENTER OF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION. POSITIONAL TOLERANCE AS NOTED IN THE DRAVING APPLIES TO EACH TERMINAL IN BOTH DIRECTIONS.
- PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.

SIDE VIEW

UUN

NOTE 4							
	PIN POSITION				PIN P	ISITION	
PIN	X	Y		PIN	х	Y	
1	4.25	-11.50		11	-2.10	0.70	
2	1.25	-11.50		12	-2.10	3.70	
3	-11.00	-10.50		13	-1.65	11.50	
4	-14.00	-11.50		14	1.05	11.50	
5	-17.00	-11.50		15	12.85	11.50	
6	-17.00	-8.80		16	15.55	11.50	
7	-17.00	1.50		17	14.30	1.20	
8	-14.30	1.50		18	17.00	1.20	
9	-16.15	11.50		19	17.00	-8.80	
10	-13.45	11.50		20	17.00	-11.50	

	IOUNTING HOLE POSITIONS								
	HOLE POSITION			HOLE POSITION			HOLE POSITION		
PIN	х	Y		PIN	х	Y			
1	4.25	11.50		11	-2.10	-0.70			
2	1.25	11.50		12	-2.10	-3.70			
3	-11.00	10.50		13	-1.65	-11.50			
4	-14.00	11.50		14	1.05	-11.50			
5	-17.00	11.50		15	12.85	-11.50			
6	-17.00	8.80		16	15.55	-11.50			
7	-17.00	-1.50		17	14.30	-1.20			
8	-14.30	-1.50		18	17.00	-1.20			
9	-16.15	-11.50		19	17.00	8.80			
10	-13.45	-11.50		20	17.00	11.50			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, "ripcical" parameters which may be provided in ON Semiconductor data sheets and/or regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters, including "Typicals" must be validated for each customer applications ustomer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harm

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative