Advance Information

2-in-1 PFC and Inverter Intelligent Power Module (IPM), 600 V, 8 A

The STK5DFU350D-E is a fully-integrated PFC and inverter power stage consisting of a high-voltage driver, six motor drive IGBT's, one PFC IGBT, one PFC rectifier and a thermistor, suitable for driving permanent magnet synchronous (PMSM) motors, brushless-DC (BLDC) motors and AC asynchronous motors. The IGBT's are configured in a 3-phase bridge with an integrated single shunt which is connected to an internal overcurrent protection comparator. A second comparator is used for detecting faults in the combined PFC and inverter circuit.

The intelligent power module has a full range of protection functions including cross-conduction protection, external shutdown and undervoltage lockout functions.

Features

- Simple thermal design with PFC and inverter stage in one package.
- PFC operating frequency up to 40 kHz
- Cross-conduction protection
- Internal inverter shunt for compact design
- PFC and inverter fault detection with negative reference voltage
- Integrated bootstrap diodes and resistors
- Multiplexed fault and thermistor pin (FAULT/TH)

Typical Applications

- Industrial Pumps
- Industrial Fans
- Industrial Automation
- Home Appliances

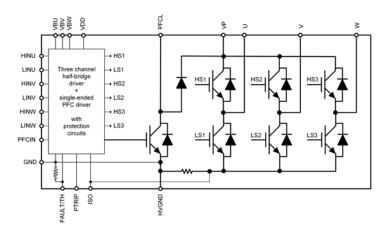


Figure 1. Functional Diagram

ON Semiconductor®

www.onsemi.com

PACKAGE PICTURE

32-pin DIP05 with exposed pad

MARKING DIAGRAM

TBD

STK5DFU350D = Specific Device Code

A = Year

B = Month

C = Production Site

DD = Factory Lot Code

Device marking is on package underside

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
STK5DFU350D-E	DIP32 44 x 26.5 (Pb-Free)	11 / Tube

This document contains information on a new product. Specifications and information herein are subject to change without notice.

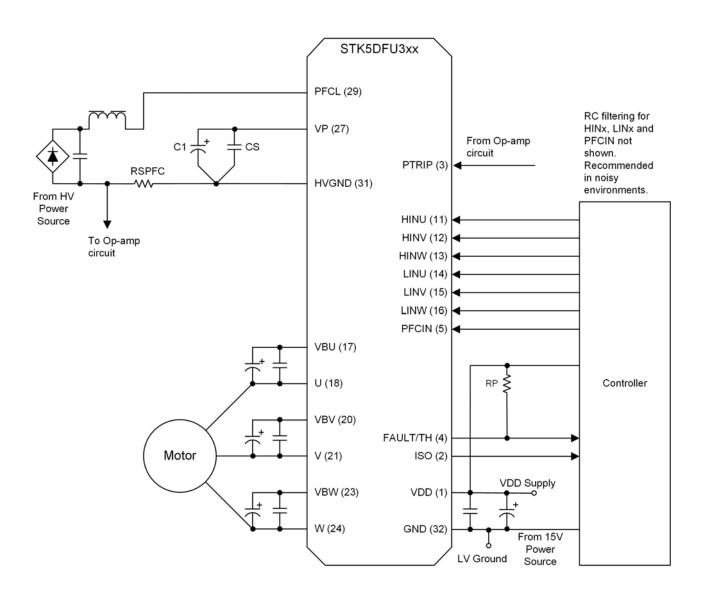


Figure 2. Application Schematic

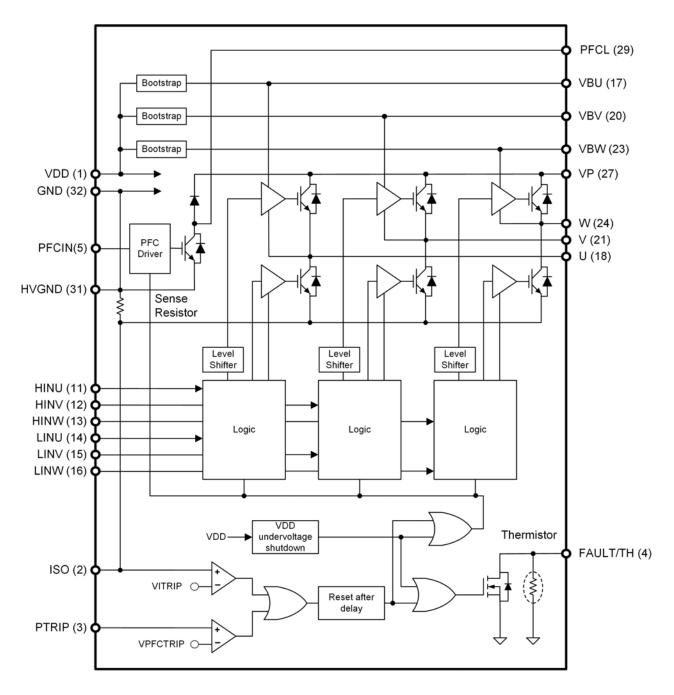


Figure 3. Simplified Block Diagram

PIN FUNCTION DESCRIPTION

Pin	Name	Description
1	VDD	+15 V Main Supply
2	ITRIP	Current protection for inverter, connected to internal shunt
3	PTRIP	Current protection for PFC
4	FAULT/TH	Fault pin connected to thermistor
5	PFCIN	Logic Input PFC Gate Driver
11	HINU	Logic Input High Side Gate Driver - Phase U
12	HINV	Logic Input High Side Gate Driver - Phase V
13	HINW	Logic Input High Side Gate Driver - Phase W
14	LINU	Logic Input Low Side Gate Driver - Phase U
15	LINV	Logic Input Low Side Gate Driver - Phase V
16	LINW	Logic Input Low Side Gate Driver - Phase W
17	VBU	High Side Floating Supply voltage for U phase
18	U	U phase output. Internally connected to U phase high side driver ground
20	VBV	High Side Floating Supply voltage for V phase
21	V	V phase output. Internally connected to V phase high side driver ground
23	VBW	High Side Floating Supply Voltage for W phase
24	W	W phase output. Internally connected to W phase high side driver ground
27	VP	Positive PFC Output Voltage
29	PFCL	PFC Inductor Connection to IGBT and Rectifier node
31	HVGND	Negative PFC Output Voltage
32	GND	Negative Main Supply

Note: Pins 6, 7, 8, 9, 10, 19, 22, 25, 26, 28, 30 are not present

ABSOLUTE MAXIMUM RATINGS at Tc = 25°C (Notes 1, 2)

Rating		Symbol Conditions		Value	Unit
PFC Se	ction				
	Collector-emitter voltage	VCE	PFCL to HVGND	600	V
PFC	Repetitive peak collector current	ICP	Duty cycle 10%, pulse width 100 μs	24	Α
IGBT	Collector current	IC		11.3	Α
	Power dissipation	PC		39.1	W
	Diode reverse voltage	VRM	VP to PFCL	600	V
PFC	Repetitive peak forward current	IFP1	Duty cycle 10%, pulse width 100 μs	24	Α
Diode	Diode forward current	IF1		11.3	Α
	Power dissipation	PD1		27.2	W
Maximu	m AC input voltage	VAC	Single-phase Full-rectified	264	V
Maximu	m output voltage	Vo	In the Application Circuit	424	V
Maximu	m output power	Wo	(Vac = 200 V, Vout = 380 V,	1.8	kW
Input AC	C current (steady state)	lin	fc = 40 kHz)	9.5	Arms
Inverter	Section				
Supply	Supply voltage		VP to HVGND surge < 500 V (Note 3)	450	V
Collector-emitter voltage		VCE	VP to U, V, W or U, V, W to HVGND	600	V
	Output current		VP, HVGND, U, V, W terminal current	±8	А
Output o			VP, HVGND, U, V, W terminal current at Tc = 100°C	±3.7	Α
Output p	Output peak current		VP, HVGND, U, V, W terminal current for a Pulse width of 1 ms	±16	А
Maximu	m power dissipation	Pd	IGBT per 1 channel	16.0	W
Gate dr	iver section				
Gate dri	ver supply voltage	VD1,2,3,4	VBU to U, VBV to V, VBW to W, V _{DD} to GND (Note 4)	-0.3 to 20	V
Input sig	gnal voltage	VIN	HINX, LINX, PFCIN (x = U, V, W)	-0.3 to $V_{\mbox{\scriptsize DD}}$	V
FAULT	terminal voltage	VFAULT	FAULT terminal	-0.3 to $V_{\mbox{\scriptsize DD}}$	V
PFCTRI	PFCTRIP terminal voltage		PTRIP terminal	−1.5 to 2.0	V
Intellige	ent Power Module	_			
Junction temperature		Tj	IGBT, FRD	150	°C
Storage temperature		Tstg		-40 to +125	°C
Operatir	ng Case temperature	Tc	IPM case temperature	-20 to +100	°C
Tighteni	ng torque	MT	Case mounting screws	0.9	Nm
Isolation voltage		Vis	50 Hz sine wave AC 1 minute (Note 5) 2000		VRMS

- Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for 1.
- 2. Safe Operating parameters.

 This surge voltage developed by the switching operation due to the wiring inductance between VP and HVGND terminals.

 VBS = VBU to U, VBV to V, VBW to W

 Test conditions: AC 2500 V, 1 s
- 3.

RECOMMENDED OPERATING RANGES (Note 6)

Rating	Symbol		Min	Тур	Max	Unit	
Supply voltage	VCC	VP to HVGND	0		450	V	
Cata driver augustu valtage	V _{BS}	VBU to U, VBV to V, VBW to W	12.5	15	17.5	V	
Gate driver supply voltage	V _{DD}	V _{DD} to GND (Note 6)	13.5	15	16.5		
ON-state input voltage	VIN(ON)	HINU, HINV, HINW, LINU, LINV, LINW,PFCIN	3.0		5.0	V	
OFF-state input voltage	VIN(OFF)		0		0.3	•	
PWM frequency	fPWM		1		20	kHz	
Dead time	DT	Turn-off to turn-on (external)	1.5			μs	
Allowable input pulse width	PWIN	ON and OFF	1			μs	
Package mounting torque		'M3' type screw	0.6		0.9	Nm	

^{6.} Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS at Tc = 25°C, VD1, VD2, VD3, VD4=15V (Note 7)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
PFC Section							
Collector-emitter cut-off current	V _{CE} = 600 V	ICE	-	-	100	μA	
Reverse leakage current (PFC Diode)	VR = 600 V	IR	-	-	100	μΑ	
Collector emitter acturation valtage	Ic = 12 A, Tj = 25°C	V _{CE} (sat)	-	1.8	2.2	V	
Collector-emitter saturation voltage	Ic = 6 A, Tj = 100°C			1.5	-		
Diode forward voltage (PFC Diode)	IF = 12 A, Tj = 25°C	VF1	-	2.5	3.0	V	
Diode forward voltage (F1 C Diode)	IF = 6 A, Tj = 100°C		-	1.9	-		
Junction to case thermal resistance	IGBT(Q1)	θј-с(Т)		-	3.2	°C/W	
Juniction to case thermal resistance	FRD1(D1)	θj-c(D)	-	-	4.6	C/VV	
Switching characteristics							
Switching time		tON		0.5	-	μs	
Switching time	Ic = 12 A, VP = 300 V, Tj = 25°C	tOFF	-	1.1	-	μs	
Diode reverse recovery time		trr	-	180	-	ns	
Inverter section	•						
Collector-emitter leakage current	V _{CE} = 600 V	ICE	-	-	100	μA	
Bootstrap diode reverse current	VR(BD) = 600 V	IR(BD)	-	-	100	μΑ	
	Ic = 8 A, Tj = 25°C	Vo=(sat)	-	2.1	2.6	V	
Collector to emitter saturation voltage	Ic = 4 A, Tj = 100°C	V _{CE} (sat)	-	1.8	-	V	
Die de femane de la la cons	IF = 8 A, Tj = 25°C		-	2.0	2.5	V	
Diode forward voltage	IF = 4 A, Tj = 100°C	VF	-	1.6	-	V	
Junction to case thermal resistance	IGBT	θј-с(Т)	-	-	7.8	°C/W	
		t _{ON}	-	0.7	-	μs	
Switching time	Ic = 8 A, VP = 300 V, Tj = 25°C	t _{OFF}	-	0.9	-	μs	
Turn-on switching loss		Eon	-	770	-	μJ	
Turn-off switching loss	Ic = 8 A, V _{CC} = 300 V, Tj = 25°C	E _{OFF}	-	200	-	μJ	
Total switching loss		Етот	-	970	-	μJ	
Turn-on switching loss		Eon	-	350	-	μJ	
Turn-off switching loss	Ic = 4 A, V _{CC} = 300 V, Tj = 100°C	E _{OFF}	-	110	-	μJ	
Total switching loss		Етот	-	460	-	μJ	
Diode reverse recovery energy	Ic = 8 A, V _{CC} = 300 V, Tj = 25°C	E _{REC}	-	130	-	μJ	
Diode reverse recovery time	(di/dt set by internal driver)	trr	-	180	-	ns	
Reverse bias safe operating area	Ic = 16 A, V _{CE} = 450 V	RBSOA	Full Square	-			
Short circuit safe operating area	V _{CE} = 400 V	SCSOA	4	-	-	μs	

^{7.} Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS at $Tc = 25^{\circ}C$, $V_{BS} = 15 \text{ V}$, $V_{DD} = 15 \text{ V}$ (Note 8)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit		
Driver Section								
Out of the delice of the control of	V _{BS} = 15 V (Note 4), per driver	ID	-	0.08	0.4	mA		
Gate driver consumption current	V _{DD} = 15 V, total	ID	-	0.85	2.4	mA		
High level Input voltage	HINU, HINV, HINW, LINU, LINV, LINW	Vin H	2.5	-	-	V		
Low level Input voltage	to GND	Vin L	-	-	0.8	V		
Logic 1 input current	VIN = +3.3 V	I _{IN+}	-	100	143	μΑ		
Logic 0 input current	VIN = 0 V	I _{IN-}	-	-	2	μΑ		
Bootstrap diode forward voltage	IF = 0.1 A	VF(DB)	-	0.8	-	V		
Bootstrap circuit resistance		RBC	-	2	-	Ω		
FAULT/TH terminal sink current	FAULT : ON / VFAULT = 0.1 V	IoSD	-	2	-	mA		
FAULT clearance delay time		FLTCLR	1	2	3	ms		
Over current protection for inverter stage	VN to HVGND current	OCP	8.7	9.8	10.9	Α		
ISO terminal Output voltage	lo = 8 A, ISO to GND voltage	VISO	0.38	0.40	0.42	V		
PTRIP threshold voltage	PTRIP to GND	VPTRIP	-0.37		-0.26	V		
PTRIP to shutdown propagation delay		t _{PTRIP}	(790)	(900)	(1150)	ns		
PTRIP blanking time		t _{PTRIPBL}	290	350	-	ns		
V _{DD} and V _{BS} supply undervoltage positive going input threshold		$V_{\text{DDUV+}} \ V_{\text{BSUV+}}$	10.5	11.1	11.7	V		
V _{DD} and V _{BS} supply undervoltage negative going input threshold		V _{DDUV-} V _{BSUV-}	10.3	10.9	11.5	V		
V _{DD} and V _{BS} supply undervoltage I _{lockout} hysteresis		V_{DDUVH} V_{BSUVH}	-	0.2	-	٧		

^{8.} Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS PFC SECTION

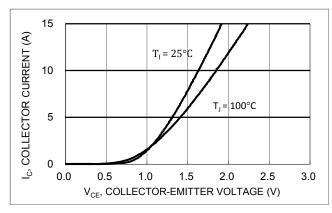


Figure 4 V_{CE} versus ID for different temperatures (V_{DD} = 15 V)

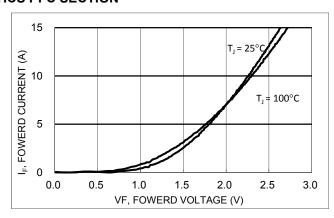


Figure 5 PFC Diode VF versus IF for different temperatures

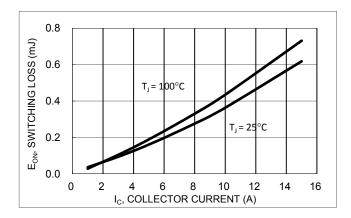


Figure 6 IGBT EON versus ID for different temperatures

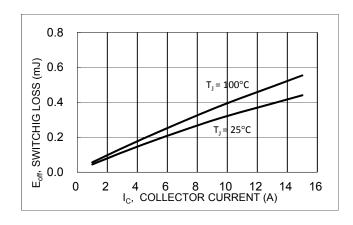
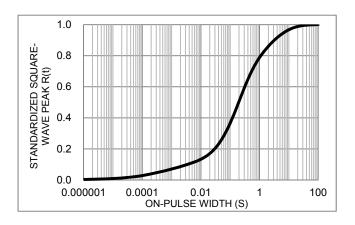



Figure 4 IGBT EOFF versus ID for different temperatures

Figure 8 Thermal Impedance Plot

TYPICAL CHARACTERISTICS INVERTER SECTION

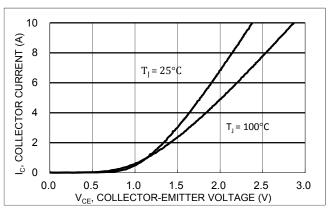


Figure 9 V_{CE} versus ID for different temperatures $(V_{DD} = 15 V)$

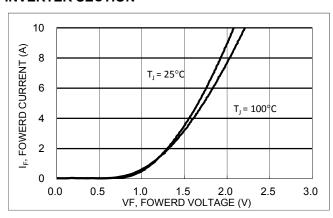


Figure 10 VF versus ID for different temperatures

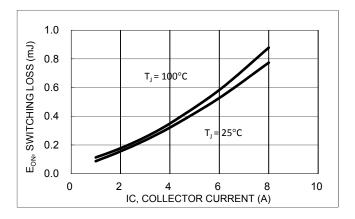


Figure 11 EON versus ID for different temperatures

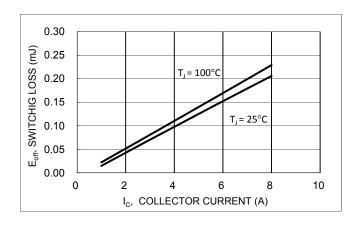


Figure 12 EOFF versus ID for different temperatures



Figure 13 Thermal Impedance Plot

APPLICATIONS INFORMATION

Input / Output Timing Chart

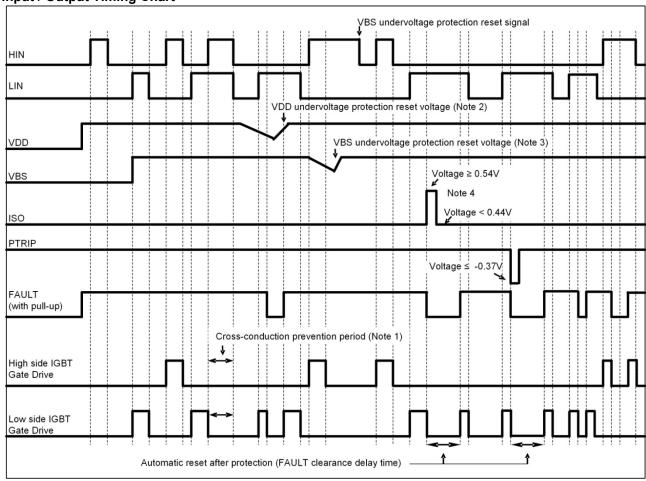


Figure 14. Input/Output Timing Chart

Notes

- This section of the timing diagram shows the effect of cross-conduction prevention.
- 2. This section of the timing diagram shows that when the voltage on V_{DD} decreases sufficiently all gate output signals will go low, switching off all six IGBTs. When the voltage on V_{DD} rises sufficiently, normal operation will resume.
- 3. This section shows that when the bootstrap voltage V_{BS} drops, the corresponding high side output (U or V or W) is switched off. When V_{BS} rises sufficiently, normal operation will resume.
- 4. This section shows that when the voltage on ITRIP exceeds the threshold, all IGBT's are turned off. Normal operation resumes later after the over-current condition is removed.

Input / Output Logic Table

	II	NPUT		ОИТРИТ				
HIN	LIN	Itrip	Enable	High side IGBT	Low side IGBT	U,V,W	FAULT	
Н	L	L	Н	ON (Note 5)	OFF	VP	OFF	
L	Н	L	Н	OFF	ON	NU,NV,NW	OFF	
L	L	L	Н	OFF	OFF	High Impedance	OFF	
Н	Н	L	Н	OFF	OFF	High Impedance	OFF	
Х	Х	Н	Н	OFF	OFF	High Impedance	ON	
Х	Х	Х	L	OFF	OFF	High Impedance	OFF	

Thermistor characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Resistance	R ₂₅	Tc = 25°C	99	100	101	kΩ
Resistance	R ₁₀₀	Tc = 100°C	5.18	5.38	5.60	kΩ
B-Constant (25 to 50°C)	В		4208	4250	4293	K
Temperature Range			-40		+125	°C

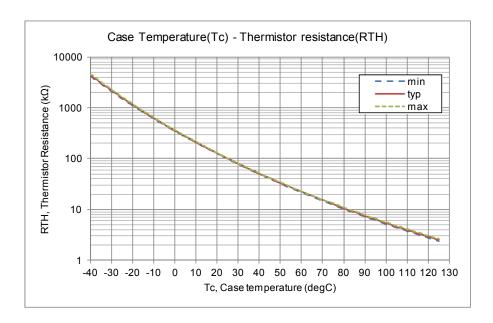


Figure 5 Thermistor Resistance versus Case Temperature

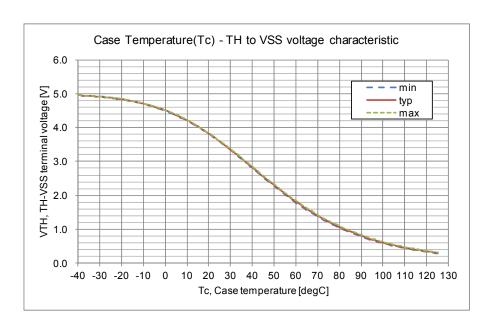


Figure 8 Thermistor Voltage versus Case Temperature Conditions: RTH = 39 k Ω , pull-up voltage 5.0 V

(see

Figure 2)

Signal inputs

Each signal input has a pull-down resistor. An additional pull-down resistor of between 2.2 k Ω and 3.3 k Ω is recommended on each input to improve noise immunity

FAULT/TH pin

The FAULT/TH pin is connected to an open-drain FAULT output requiring a pull-up resistor. If the pull-up voltage is 5 V, use a pull-up resistor with a value of 6.8 k Ω or higher. If the pull-up voltage is 15 V, use a pull-up resistor with a value of 20 k Ω or higher. The pulled up voltage in normal operation for the FLTEN pin should be above 2.5 V. The FAULT output is triggered if there is a VCC undervoltage or an overcurrent condition on either the PFC or inverter stages.

The terminal has a function of thermistor output, which is connected between GND and this terminal.

Overcurrent protection

An over-current condition is detected if the voltage on the PTRIP pin is larger than the reference voltage. There is a blanking time of typically 350 ns to improve noise immunity. After a shutdown propagation delay of typically 0.55 µs, the FAULT output is switched on.

The over-current protection threshold should be set to be equal or lower to the absolute maximum current.

An additional fuse is recommended to protect against system level or abnormal over-current fault conditions.

Capacitors on High Voltage and V_{DD} supplies

Both the high voltage and V_{DD} supplies require an electrolytic capacitor and an additional high frequency capacitor. The recommended value of the high frequency capacitor is between 100 nF and 10 μ F.

Minimum input pulse width

When input pulse width is less than 1µs, an output may not react to the pulse. (Both ON signal and OFF signal)

Input terminal Zener Diode

The inputs are protected with 10 V Zener diodes. If the input voltage exceeds 5 V, a current limiting resistor which limits the input current to less than 0.5 mA must be added to the input. This also helps with improving noise immunity.

Calculation of bootstrap capacitor value

The bootstrap capacitor value CB is calculated using the following approach. The following parameters influence the choice of bootstrap capacitor:

- VBS: Bootstrap power supply. 15 V is recommended.
- QG: Total gate charge of IGBT at VBS = 15 V. 42nC
- UVLO: Falling threshold for UVLO. Specified as 12 V.
- ID_{MAX}: High side drive consumption current. Specified as 95 μA
- t_{ONMAX}: Maximum ON pulse width of high side IGBT.

Capacitance calculation formula:

$$CB = (QG + I_{DMAX} * t_{ONMAX}) / (VBS - UVLO)$$

CB is recommended to be approximately 3 times the value calculated above. The recommended value of CB is in the range of 1 to 47 μ F, however, the value needs to be verified prior to production. When not using the bootstrap circuit, each high side driver power supply requires an external independent power supply.

The internal bootstrap circuit uses a MOSFET. The turn on time of this MOSFET is synchronized with the turn on of the low side IGBT. The bootstrap capacitor is charged by turning on the low side IGBT.

If the low side IGBT is held on for a long period of time (more than one second for example), the bootstrap voltage on the high side MOSFET will slowly discharge.

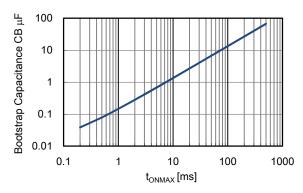


Figure 97: Bootstrap capacitance versus tonmax

Mounting Instructions

Item	Recommended Condition
Pitch	41 ±0.1 mm (Please refer to Package Outline Diagram)
Screw	Diameter: M3 Screw head types: pan head, truss head, binding head
Washer	Plane washer dimensions (Figure 14) D = 7 mm, d = 3.2 mm and t = 0.5 mm JIS B 1256
Heat sink	Material: Aluminum or Copper Warpage (the surface that contacts IPM): –50 to 50 μm Screw holes must be countersunk. No contamination on the heat sink surface that contacts IPM.
Torque	Temporary tightening: 50 to 60% of final tightening on first screw Temporary tightening: 50 to 60% of final tightening on second screw Final tightening: 0.4 to 0.6 Nm on first screw Final tightening: 0.4 to 0.6 Nm on second screw
Grease	Silicone grease. Thickness: 50 to 100 µm Uniformly apply silicone grease to whole back. Thermal foils are only recommended after careful evaluation. Thickness, stiffness and compressibility parameters have a strong influence on performance.

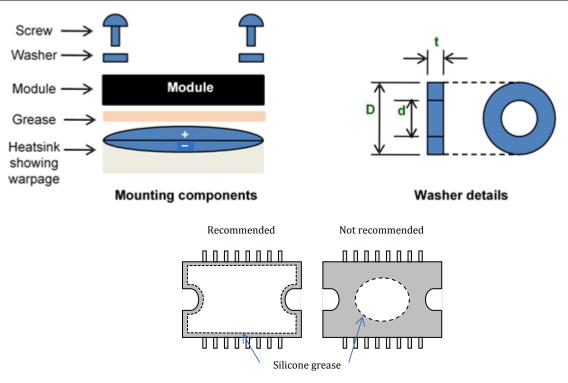
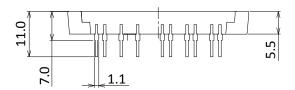
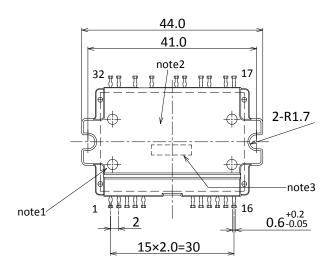
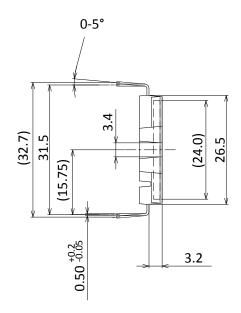
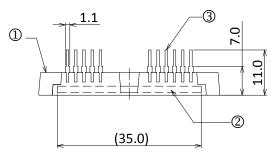



Figure 108: Module Mounting details: components; washer drawing; need for even spreading of thermal grease


Package Dimensions


unit: mm


The tolerances of length are +/- 0.5 mm unless otherwise specified.

missing pin: 6,7,8,9,10,19,22,25,26,28,30

note1: Mark of mirror surface for No.1 pin identification.

note2 : The form of a character in this drawing differs from that of IPM.

note3: This indicates the lot code.

The form of a character in this
drawing differs from that of IPM.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer