Power MOSFET, N-Channel, 80 V, Die

Features

- 175°C Operating Temperature Rated
- AEC-Q101 Qualified

V _{DSS} (Max)	80 V
R _{DS(on)} Typ	0.41 mΩ
Die Size	63 mm ²
Die Thickness	200 μm

ABSOLUTE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Rating	Value	Unit
V _{DSS}	Drain-to-Source Voltage	80	V
V _{GS}	Gate-to-Source Voltage ±20		V
I _D	Continuous Drain Current $R_{\Theta JC} T_A = 25^{\circ}C \text{ (Note 1)}$ 620		
I _{DM}	Pulsed Drain Current ($T_A = 25^{\circ}C$, tp = 10 μ s) (Note 2)	2660	Α
T _{J(max)} , T _{STG} Operating Junction and Storage Temperature		-55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Current may be limited by source bond wire; calculated with an $R_{\Theta JC}$ = 0.3°C/W.
- 2. Calculated with an $R_{\Theta JC} = 0.016^{\circ}C/W$

ON Semiconductor®

www.onsemi.com

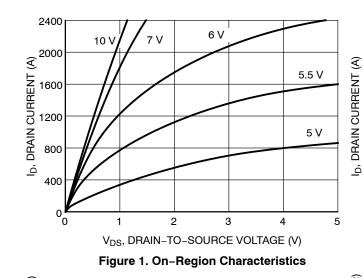
ORDERING INFORMATION

SVC6H890N

Consult die distributor or factory before ordering to verify long-term availability of these die products.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
FF CHARACT	TERISTICS			•		•
V _{(BR)DSS}	Drain-source Breakdown Voltage	V _{GS} = 0 V, I _D = 1 mA	80			V
V _{(BR)DSS} / T _J	Drain-to-Source Breakdown Voltage Temperature Coefficient			114		mV/°C
I _{DSS}	Drain-to-Source Leakage Current	V _{GS} = 0 V, V _{DS} = 80 V, T _J = 25°C			20	μΑ
		V _{GS} = 0 V, V _{DS} = 80 V, T _J = 125°C			615	
I _{GSS}	Gate-to-Source Leakage Current	V _{DS} = 0 V, V _{GS} = +20 V, -16 V			±100	nA
ON CHARACTE	ERISTICS					
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 1.4 \text{ mA}$	2.3		3.7	V
V _{GS(TH})/T _J	Gate Threshold Voltage Temperature Coefficient			-7.75		mV/°C
R _{DS(on)}	Drain-to-Source On Resistance (Note 3)	V _{GS} = 10 V, I _D = 50 A		0.41	0.53	mΩ
CHARGES AND	CAPACITANCES (Note 4)			•	•	
C _{iss}	Input Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 48 V		23	31	nF
C _{oss}	Output Capacitance			3.1	4.2	
C _{rss}	Reverse Transfer Capacitance			0.175	0.350	
Q _{G(TOT)}	Total Gate Charge	V _{DS} = 64 V, I _D = 50 A V _{GS} = 10 V		373	485	nC
Q_{GS}	Gate-to-Source Charge			104	147	
Q_{GD}	Gate-to-Drain Charge			80	160	
V _{GP}	Plateau Voltage			4.4		٧
DRAIN-SOURC	E DIODE CHARACTERISTICS	<u>.</u>				
V_{SD}	Forward Diode Voltage	V _{GS} = 0 V, I _S = 50 A		0.79		V


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Maximum defined on historical data; not subject to production test.

4. Defined by design based on limited amount of data for reference purposes only; not subject to production test.

TYPICAL CHARACTERISTICS

Figures 1 - 5 are from Simulation

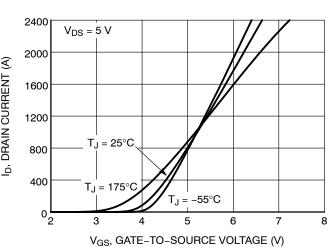


Figure 2. Transfer Characteristics

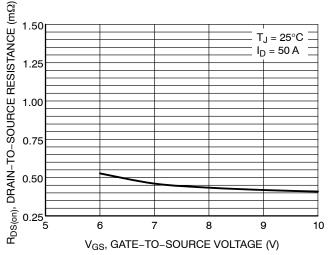


Figure 3. On-Resistance vs. Gate-to-Source Voltage

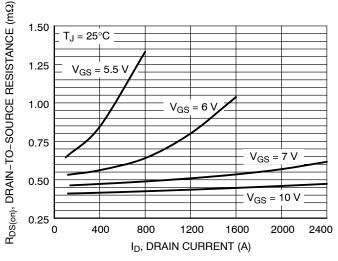
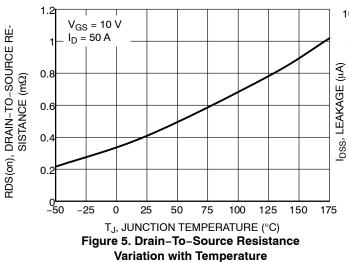



Figure 4. On-Resistance vs. Drain Current and Gate Voltage

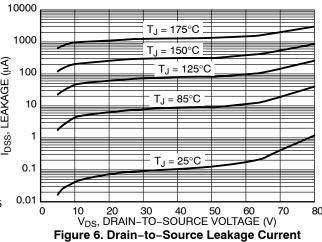
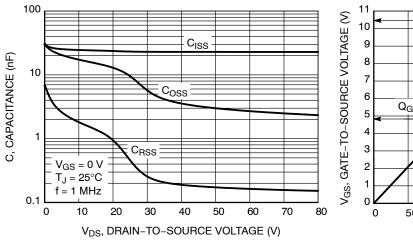
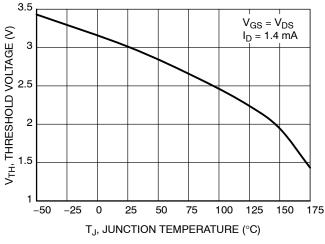



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS


Figures 7, 10, 11 are from Simulation

Qт Q_{GS} Q_{GD} $V_{DS} = 64 V$ I_D = 50 A $T_J = 25^{\circ}C$ 50 250 300 350 400 150 200 Q_G, TOTAL GATE CHARGE (nC)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total Charge

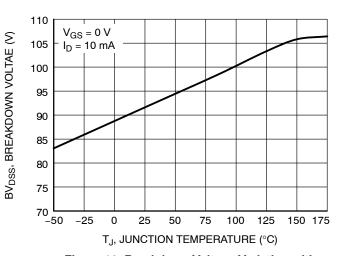
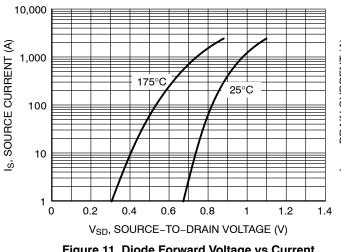



Figure 9. Threshold Voltage Variation with Temperature

Figure 10. Breakdown Voltage Variation with Temperature

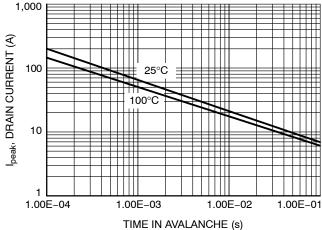
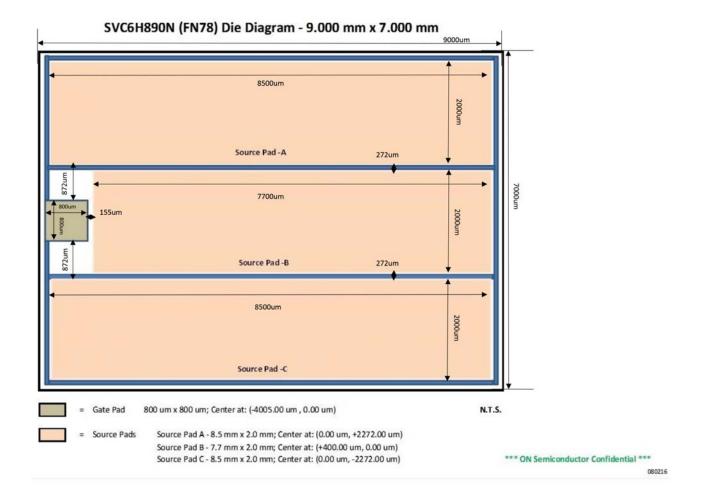


Figure 11. Diode Forward Voltage vs Current


Figure 12. Maximum Drain Current vs Time in **Avalanche**

DIE CONSTRUCTION PARAMETERS

Table 1. DIE CONSTRUCTION PARAMETERS

Parameter	Value		
Die Thickness	200 μm		
Saw Street Width	80 μm		
Passivation Front Side	Polymide		
Metallization Front Side	AlCu 4 μm		
Metallization Back Side	TiNiAg 1.15/2/8 kÅ (Evaporation)		

DIE LAYOUT

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative