Product Preview Antenna Tuner

INTRODUCTION

ON Semiconductor's TCT-102BB antenna tuner combines a Passive Tunable Integrated Circuit (PTIC) and an SPST switch in a single package to create a product which can be used in advanced antenna tuning designs. The high Q and wide tuning range of the PTIC give premium performance, and the SPST gives flexibility to design a variety of optimized tuner networks.

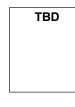
Features

- PTIC:
 - High Quality Factor (Q) for Low Loss
 - Wide Tuning Range from 2.7 pF to 0.53 pF
 - High Power Handling Capability
 - Compatible with PTIC Control ICs from ON Semiconductor
- SPST:
 - Very Low $R_{ON} = 1.3 \Omega$
 - Very Low $C_{OFF} = 130 \text{ fF}$
 - + High RF Handling Peak Voltage: 60 V

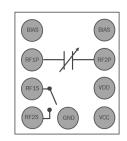
Typical Applications

- Tunable Antenna Matching Networks
- Antenna Tuning for GSM, EDGE, WDCMA, LTE and 5 G Smartphones
- Main and Diversity Antenna Tuning
- Aperture and Impedance Tuning

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.



ON Semiconductor®


www.onsemi.com

MARKING DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
TCT-102BB-FT	ECP9	

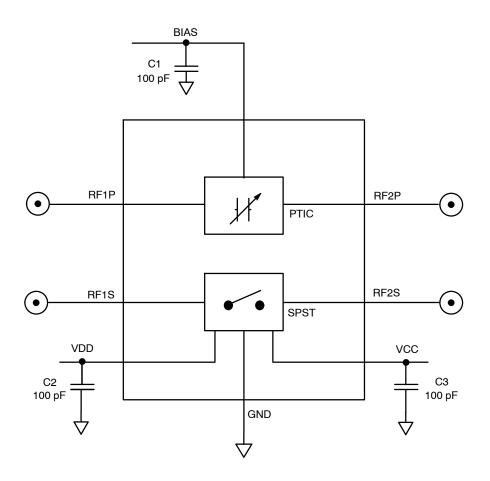


Figure 1. Application Schematic

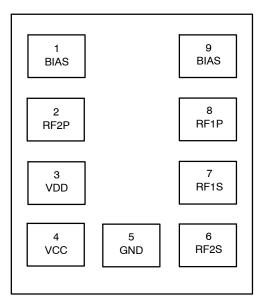


Figure 2. Pin Connections

Table 1. PIN FUNCTION DESCRIPTION

Pin No.	Symbol	Description
1	BIAS	PTIC DC Bias Voltage
2	RF2P	PTIC RF Output
3	VDD	SPST DC Supply Voltage
4	VCC	SPST Logic Control Voltage
5	GND	SPST Ground
6	RF2S	SPST RF Port 2
7	RF1S	SPST RF Port 1
8	RF1P	PTIC RF Input
9	BIAS	PTIC DC Bias Voltage

Table 2. VCC TRUTH TABLE FOR RF CHANNEL OPERATING MODE

VCC	Mode
Low	RF1S to RF2S Isolated
High	RF1S to RF2S On

Table 3. MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Input Power (all RF Ports) (F ₀ =950MHz, 20% DC, VSWR=1:1, T _A =25C)	Pin	+38.5	dBm
DC Supply Voltage	V _{DD}	-0.3 to 3.6	V
Control Pin Voltage	V _{CC}	-0.3 to 3.3	V
Operating Temperature Range	T _{OP}	–30 to +85	°C
Storage Temperature Range	TSTG	–55 to 125	°C
ESD Capability, HBM	ESDHBM	500	V
ESD Capability, CDM	ESDCDM	500	V

1. Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Тур	Max	Unit
Operating Frequency		0.6		3.8	GHz
DC Supply Voltage	V _{DD}	1.7	2.8	3.3	V
Control Voltage High	V _{CCH}	1.5	1.8	3.0	V
Control Voltage Low	V _{CCL}	0	0	0.3	V
PTIC Operating Bias Voltage	V _{BIAS}	1.0		24	V

Table 5. ELECTRICAL CHARACTERISTICS - LINEAR PARAMETERS

(V_{DD} = 2.8 V, V_{CCL} = 0 V, V_{CCH} = 1.8 V, T_A = 25 °C, Z_0 = 50 $\Omega)$

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SPST	•	•				
Insertion Loss	F ₀ = 0.6–1.0 GHz	IL		0.13	0.15	dBM
(RF1S to RF2S)	F ₀ = 1.0–2.2 GHz	IL		0.15	0.20	dBM
	F ₀ = 2.2–3.0 GHz	IL		0.18	0.26	dBM
	F ₀ = 3.0–3.8 GHz	IL		0.23	0.36	dBM
Isolation	F ₀ = 0.6–1.0 GHz	ISO	21	23		dBM
(RF1S to RF2S)	F ₀ = 1.0–2.2 GHz	ISO	15	17		dBM
	F ₀ = 2.2–3.0 GHz	ISO	11	13		dBM
	F ₀ = 3.0–3.8 GHz	ISO	9	11		dBM
On Resistance (RF1S to RF2S)	F ₀ = DC	R _{ON}		1.3	1.4	Ω
Off Capacitance (RF1S to RF2S)	F ₀ = 500 MHz	C _{OFF}		130	140	fF
P 0.1 dB	F ₀ = 950 MHz, 20%DC	P ₀ .1 dB		+45		dBm
RF Peak Voltage (RF1S to RF2S, RF2S to RF1S)	F ₀ = 950 MHz. RF1S to RF2S isolated	V		60		V
PTIC		•	•		•	

Capacitance	

Capacitance	VBIAS = 2 V	2.46	2.7	2.94	pF
	VBIAS = 24 V	0.42	0.53	0.64	pF
Q (Note 2)	F ₀ = 0.6 GHz, VBIAS = 2 V		70		
	F ₀ = 0.6 GHz, VBIAS = 24 V		35		
	F ₀ = 2.7 GHz, VBIAS = 2 V		40		
	F ₀ = 2.7 GHz, VBIAS = 24 V		20		
	F ₀ = 3.8 GHz, VBIAS = 2 V		10		
	F ₀ = 3.8 GHz, VBIAS = 24 V		10		
Transition Time (Note 3)	C _{MIN} to C _{MAX}		66	72	μS
	C _{MAX} to C _{MIN}		48	52	μS

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Sample testing only. RF1P and R2P must be connected to DC ground
3. Sample testing only. PTIC Control IC Turbo Mode must be used

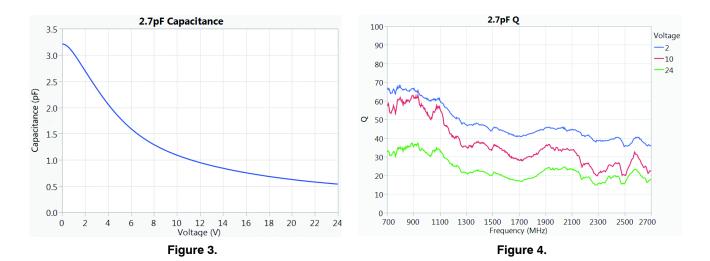
Table 6. ELECTRICAL CHARACTERISTICS - NON-LINEAR PARAMETERS

(V_{DD} = 2.8 V, V_{CCL} = 0 V, V_{CCH} = 1.8 V, T_A = 25 $^\circ\text{C},$ Z_0 = 50 $\Omega)$

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SPST						
Second Harmonic	LTE TX $F_0 = 0.6-3.8$ Ghz, P _{IN} = 26 dBm	2 F ₀		-90	-80	dBM
	GSM LB F ₀ = 824–915 Mhz, P _{IN} = 35 dBm	2 F ₀		-65	-55	dBM
	GSM HB $F_0 = 1710-1910$ Mhz, $P_{IN} = 33$ dBm	2 F ₀		-70	-60	dBM
Third Harmonic	LTE TX F ₀ = 0.6–3.8 GHz, P _{IN} = 26 dBm	3 F ₀		-90	-80	dBM
	GSM LB F ₀ = 824–915 MHz, P _{IN} = 35 dBm	3 F ₀		-65	-55	dBM
	GSM HB F ₀ = 1710–1910 MHz, P _{IN} = 33 dBm	3 F ₀		-75	-65	dBM
2 nd Order Intermodulation	Refer to Table 7	IMD2		-115	-105	dBM
3 rd Order Intermodulation	Refer to Table 8	IMD3		-115	-105	dBM
PTIC						
Second Harmonic (Note 4)	F_0 = 0.9 GHz, V _{BIAS} = 2 V, P _{IN} = +23 dBm	2 F ₀		-75	-70	dBM
	$F_0 = 0.9 \text{ GHz}, \text{ V}_{\text{BIAS}} = 24 \text{ V},$ $P_{\text{IN}} = +23 \text{ dBm}$	2 F ₀		-85	-80	dBM
Third Harmonic (Note 4)	F_0 = 0.9 GHz, V_{BIAS} = 2 V, P_{IN} = +23 dBm	3 F ₀		-63	-58	dBM
	F_0 = 0.9 GHz, V_{BIAS} = 24 V, P_{IN} = +23 dBm	3 F ₀		-98	-90	dBM
Third Order Intercept Point	F_1 = 850 MHz, F_2 = 860 MHz, P_{IN} = 25 dBm/Tone, V_{BIAS} = 2 V	IIP3		73		dB
	F_1 = 850 MHz, F_2 = 860 MHz, P_{IN} = 25 dBm/Tone, V_{BIAS} = 24 V	IIP3		83		dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. PTIC Harmonics are measured in the reflect configuration


Table 7. IMD2 TEST CONDITIONS

Band	IN–Band Frequency MHz	CW Carrier MHz	dBm	CW Interferer MHz	dBm
1 Low	2140	1950	+20	190	-15
1 High	2140	1950	+20	1090	-15
5 High	881.5	836.5	+20	45	-15
5 High	881.5	836.5	+20	1718	-15

Table 8. IMD2 TEST CONDITIONS

Band	IN–Band Frequency MHz	CW Carrier MHz	dBm	CW Interferer MHz	dBm
1 Low	2140	1950	+20	190	–15
5 High	881.5	836.5	+20	791.5	-15

TYPICAL PERFORMANCE CURVES

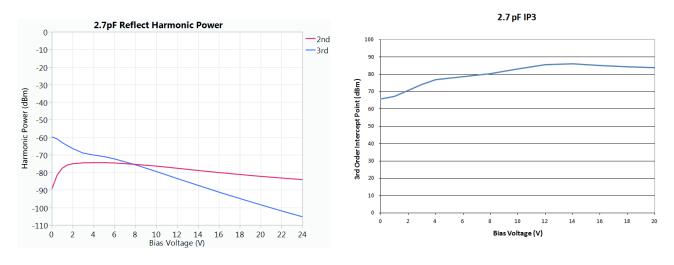


Figure 5.

Figure 6.

PACKAGE DIMENSIONS ECP9 CASE TBD

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for implantation in the human body. Should Buyer purchase or use ON Semiconductor has used or sinult classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON semiconductor ny such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless agai

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative