Atmel

AT93C56B and AT93C66B

3-wire Automotive Temperature Serial EEPROM

2K (256 x 8 or 128 x 16) and 4K (512 x 8 or 256 x 16)

DATASHEET

Features

- Medium-voltage and Standard-voltage Operation
 V_{CC} = 2.5V to 5.5V
- Automotive Temperature Range -40°C to 125°C
- User-selectable Internal Organization
 - 2K: 256 x 8 or 128 x 16
 - 4K: 512 x 8 or 256 x 16
- 3-wire Serial Interface
- Sequential Read Operation
- 2MHz Clock Rate
- Self-timed Write Cycle (5ms max)
- High Reliability
 - Endurance: 1,000,000 Write Cycles
 - Data Retention: 100 Years
- Lead-free/Halogen-free Devices Available
- 8-lead JEDEC SOIC and 8-lead TSSOP Packages

Description

The Atmel[®] AT93C56B/66B provides 2,048/4,096 bits of Serial Electrically Erasable Programmable Read-Only Memory (EEPROM). The EEPROM is organized as 128/256 words of 16 bits each when the ORG pin is connected to V_{CC} and 256/512 words of 8 bits each when it is tied to ground. The device is optimized for use in many automotive applications where low-power and low-voltage operations are essential. AT93C56B/66B is available in space-saving 8-lead JEDEC SOIC and 8-lead TSSOP packages.

AT93C56B/66B is enabled through the Chip Select (CS) pin and accessed via a 3-wire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK). Upon receiving a Read instruction at DI, the address is decoded and the data is clocked out serially on the data output pin DO. The write cycle is completely self-timed and no separate erase cycle is required before write. The write cycle is only enabled when the part is in the Erase/Write Enable state. When CS is brought high following the initiation of a write cycle, the DO pin outputs the Ready/Busy status of the part.

AT93C56B/66B operates from 2.5V to 5.5V.

1. Pin Configuration and Pinouts

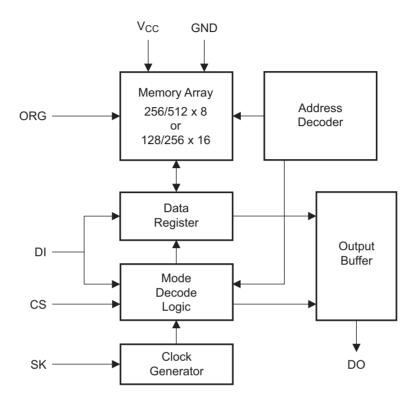
Pin Name	Function
CS	Chip Select
SK	Serial Data Clock
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
V _{CC}	Power Supply
ORG	Internal Organization
DC	Don't Connect

Figure 1.	Pin Configurations
-----------	--------------------

8-lead \$ (Top V		8-lead TSSOP (Top View)
CS 1() SK 2 DI 3 DO 4	8	CS 10 8 V _{cc} SK 2 7 DC DI 3 6 ORG DO 4 5 GND

Note: Drawings are not to scale.

2. Absolute Maximum Ratings*


Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on any pin with respect to ground1.0V to +7.0V
Maximum Operating Voltage 6.25V
DC Output Current

*Notice: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

3. Block Diagram

Figure 3-1. Block Diagram

Note: When the ORG pin is connected to V_{CC} , the "x 16" organization is selected. When it is connected to ground, the "x 8" organization is selected. If the ORG pin is left unconnected and the application does not load the input beyond the capability of the internal $1m\Omega$ pullup, then the "x 16" organization is selected.

4. Electrical Characteristics

4.1 Pin Capacitance

Table 4-1.Pin Capacitance⁽¹⁾

Applicable over recommended operating range from $T_A = 25^{\circ}C$, f = 1.0MHz, $V_{CC} = +5.0V$ (unless otherwise noted).

Symbol	Test Conditions	Мах	Units	Conditions
C _{OUT}	Output Capacitance (DO)	5	pF	V _{OUT} = 0V
C _{IN}	Input Capacitance (CS, SK, DI)	5	pF	$V_{IN} = 0V$

Note: 1. This parameter is characterized and is not 100% tested.

4.2 DC Characteristics

Table 4-2. DC Characteristics

Applicable over recommended operating range from: $T_A = -40^{\circ}C$ to +125°C, $V_{CC} = +2.5V$ to +5.5V (unless otherwise noted).

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
V _{CC1}	Supply Voltage			2.5		5.5	V
V _{CC2}	Supply Voltage			4.5		5.5	V
1	Supply Current	$\gamma = 5.0\gamma$	Read at 1.0MHz		0.5	2.0	mA
I _{CC}	Supply Current	V _{CC} = 5.0V	Write at 1.0MHz		0.5	2.0	mA
I _{SB1}	Standby Current	V _{CC} = 2.5V	CS = 0V		3.0	10.0	μA
I _{SB2}	Standby Current	V _{CC} = 5.0V CS = 0V			10.0	15.0	μA
I _{IL}	Input Leakage	$V_{IN} = 0V$ to V_{CC}			0.1	3.0	μA
I _{OL}	Output Leakage	V_{IN} = 0V to V_{CC}	$V_{IN} = 0V$ to V_{CC}		0.1	3.0	μA
V _{IL1} ⁽¹⁾	Input Low Voltage	2 = 1/2		-0.6		0.8	V
V _{IH1} ⁽¹⁾	Input High Voltage	$2.5V \leq V_{CC} \leq 5.5V$		2.0		V _{CC} + 1	
V _{OL1}	Output Low Voltage	$2.5V \le V_{CC} \le 5.5V$	I _{OL} = 2.1m			0.4	V
V _{OH1}	Output High Voltage	$2.5V \ge V_{CC} \ge 5.5V$	I _{OH} = -0.4mA	2.4			V

Note: 1. V_{IL} min and V_{IH} max are reference only and are not tested.

4.3 AC Characteristics

Table 4-3. AC Characteristics

Applicable over recommended operating range from $T_A = -40^{\circ}C$ to + 125°C, V_{CC} = As Specified, CL = 1 TTL Gate and 100pF (unless otherwise noted).

Symbol	Parameter	Test	Condition	Min	Тур	Max	Units
f _{sк}	SK Clock Frequency	$\begin{split} 4.5 V &\leq V_{CC} \; \leq 5. \\ 2.5 V &\leq V_{CC} \; \leq 5. \end{split}$	0 0		2 1	MHz	
t _{sкн}	SK High Time	$\begin{array}{l} 4.5V \leq V_{CC} \ \leq 5.\\ 2.5V \leq V_{CC} \ \leq 5. \end{array}$		250 250			ns
t _{SKL}	SK Low Time	$\begin{array}{l} 4.5V \leq V_{CC} \ \leq 5.\\ 2.5V \leq V_{CC} \ \leq 5. \end{array}$		250 250			ns
t _{CS}	Minimum CS Low Time	$\begin{split} 4.5 V \leq V_{CC} &\leq 5.\\ 2.5 V \leq V_{CC} &\leq 5. \end{split}$		250 250			ns
t _{CSS}	CS Setup Time	Relative to SK	$\begin{array}{l} 4.5V \leq V_{CC} \ \leq 5.5V \\ 2.5V \leq V_{CC} \ \leq 5.5V \end{array}$	50 50			ns
t _{DIS}	DI Setup Time	Relative to SK	$\begin{array}{l} 4.5V \leq V_{CC} \ \leq 5.5V \\ 2.5V \leq V_{CC} \ \leq 5.5V \end{array}$	100 100			ns
t _{CSH}	CS Hold Time	Relative to SK		0			ns
t _{DIH}	DI Hold Time	Relative to SK	$\begin{array}{l} 4.5V \leq V_{CC} \ \leq 5.5V \\ 2.5V \leq V_{CC} \ \leq 5.5V \end{array}$	100 100			ns
t _{PD1}	Output Delay to "1"	AC Test	$\begin{array}{l} 4.5V \leq V_{CC} \ \leq 5.5V \\ 2.5V \leq V_{CC} \ \leq 5.5V \end{array}$			250 500	ns
t _{PD0}	Output Delay to "0"	AC Test	$\begin{array}{l} 4.5V \leq V_{CC} \ \leq 5.5V \\ 2.5V \leq V_{CC} \ \leq 5.5V \end{array}$			250 500	ns
t _{SV}	CS to Status Valid	AC Test	$\begin{array}{l} 4.5V \leq V_{CC} \ \leq 5.5V \\ 2.5V \leq V_{CC} \ \leq 5.5V \end{array}$			250 250	ns
t _{DF}	CS to DO in High Impedance	AC Test CS = V _{IL}	$\begin{array}{l} 4.5V \leq V_{CC} \ \leq 5.5V \\ 2.5V \leq V_{CC} \ \leq 5.5V \end{array}$			100 150	ns
t _{WP}	Write Cycle Time		$2.5V \leq V_{CC} \ \leq 5.5V$			5	ms
Endurance ⁽¹	5.0V, 25°C			1M			Write Cycles

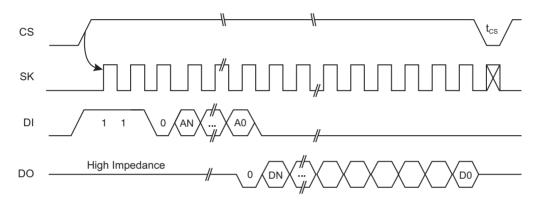
Note: 1. This parameter is characterized and is not 100% tested.

5. Instruction Set

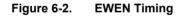
			Addr	ess	Data		
Instruction	SB	Opcode	x 8	x 16	x 8	x 16	Comments
Read	1	10	A8 – A0	A7 – A0			Reads data stored in memory, at specified address.
EWEN	1	00	11XXXXXXX	11XXXXXX			Write enable must precede all programming modes.
Erase	1	11	A8 – A0	A7 – A0			Erase memory location An – A0.
Write	1	01	A8 – A0	A7 – A0	D7 – D0	D15 – D0	Writes memory location An – A0.
ERAL	1	00	10XXXXXXX	10XXXXXX			Erases all memory locations. Valid only at V_{CC} = 4.5V to 5.5V.
WRAL	1	00	01XXXXXXX	01XXXXXX	D7 – D0	D15 – D0	Writes all memory locations. Valid only at V_{CC} = 5.0V ±10% and Disable Register cleared.
EWDS	1	00	00XXXXXXX	00XXXXXX			Disables all programming instructions.

Table 5-1. Instruction Set for the AT93C56B/66B

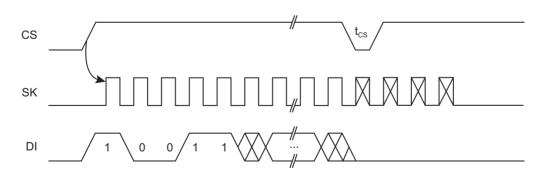
Note: The X in the address field represent *don't care* values and must be clocked.

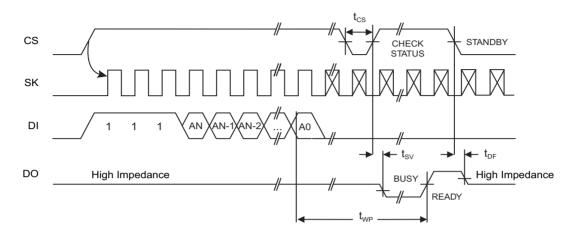


6. Functional Description

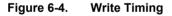

AT93C56B/66B is accessed via a simple and versatile three-wire serial communication interface. Device operation is controlled by seven instructions issued by the host processor. *A valid instruction starts with a rising edge of CS* and consists of a start bit (Logic 1) followed by the appropriate opcode and the desired memory address location.

Read: The Read instruction contains the address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the serial output pin DO. Output data changes are synchronized with the rising edges of serial clock SK. It should be noted that a dummy bit (Logic 0) precedes the 8- or 16-bit data output string. AT93C56B/66B supports sequential read operations. The device will automatically increment the internal address pointer and clock out the next memory location as long as Chip Select (CS) is held high. In this case, the dummy bit (Logic 0) will not be clocked out between memory locations, thus allowing for a continuous stream of data to be read.




Erase/Write Enable (EWEN): To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write Enable (EWEN) instruction must be executed first before any programming instructions can be carried out. Please note that once in the EWEN state, programming remains enabled until an EWDS instruction is executed or V_{CC} power is removed from the part.

Atmel



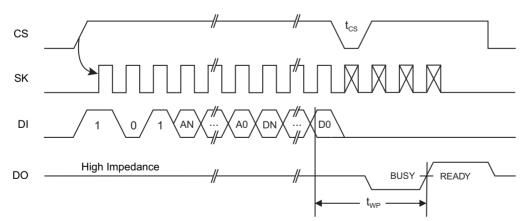
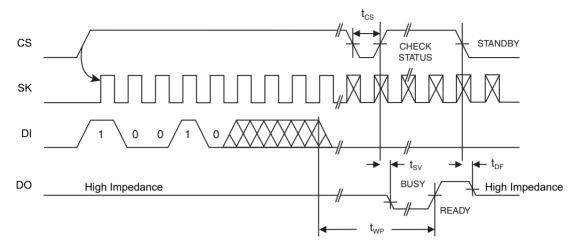
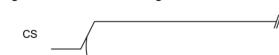
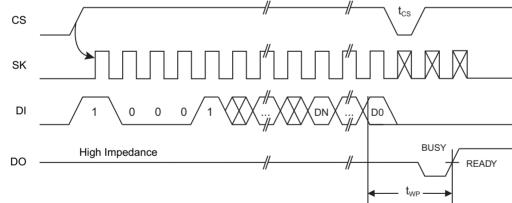

Erase: The Erase instruction programs all bits in the specified memory location to the Logical 1 state. The self-timed erase cycle starts once the Erase instruction and address are decoded. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). A Logic 1 at pin DO indicates that the selected memory location has been erased, and the part is ready for another instruction.

Figure 6-3. Erase Timing


Write: The Write instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle, t_{WP} , starts after the last bit of data is received at serial data input pin DI. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). A Logic 0 at DO indicates that programming is still in progress. A Logic 1 indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the part is ready for further instructions. A Ready/Busy status cannot be obtained if the CS is brought high after the end of the self-timed programming cycle, t_{WP} .

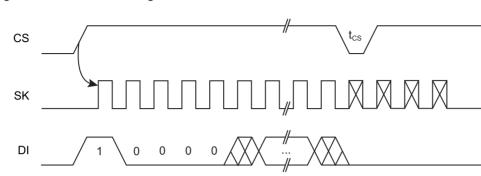



Erase All (ERAL): The Erase All (ERAL) instruction programs every bit in the memory array to the Logic 1 state and is primarily used for testing purposes. The DO pin outputs the ready/busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). The ERAL instruction is valid only at V_{CC} = $5.0V \pm 10\%$.


Note: 1. Valid only at V_{CC} = 4.5V to 5.5V.

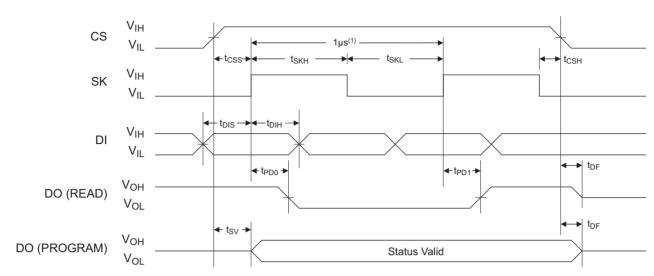
Write All (WRAL): The Write All (WRAL) instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). The WRAL instruction is valid only at V_{CC} = 5.0V ± 10%.

WRAL Timing


Figure 6-6.

Note: 1. Valid only at V_{CC} = 4.5V to 5.5V

Atmel


Erase/Write Disable (EWDS): To protect against accidental data disturb, the Erase/Write Disable (EWDS) instruction disables all programming modes and should be executed after all programming operations. The operation of the Read instruction is independent of both the EWEN and EWDS instructions and can be executed at any time.

7. Timing Diagrams

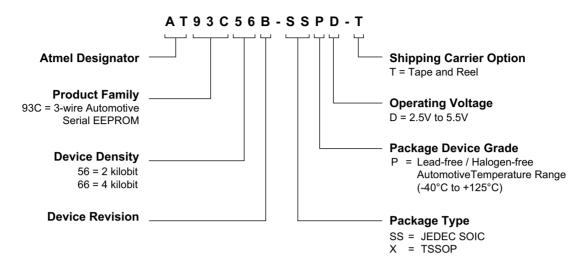
Note: This is the minimum SK period.

Table 7-1. Organization Key for Timing Diagrams

	AT93C5	6B (2K)	АТ93С66В (4К)		
I/O	x 8	x 16	x 8	x 16	
AN	A8 ⁽¹⁾	A7 ⁽²⁾	A8	A7	
DN	D7	D15	D7	D15	

Notes: 1. A₈ is a *don't care* value, but the extra clock is required.

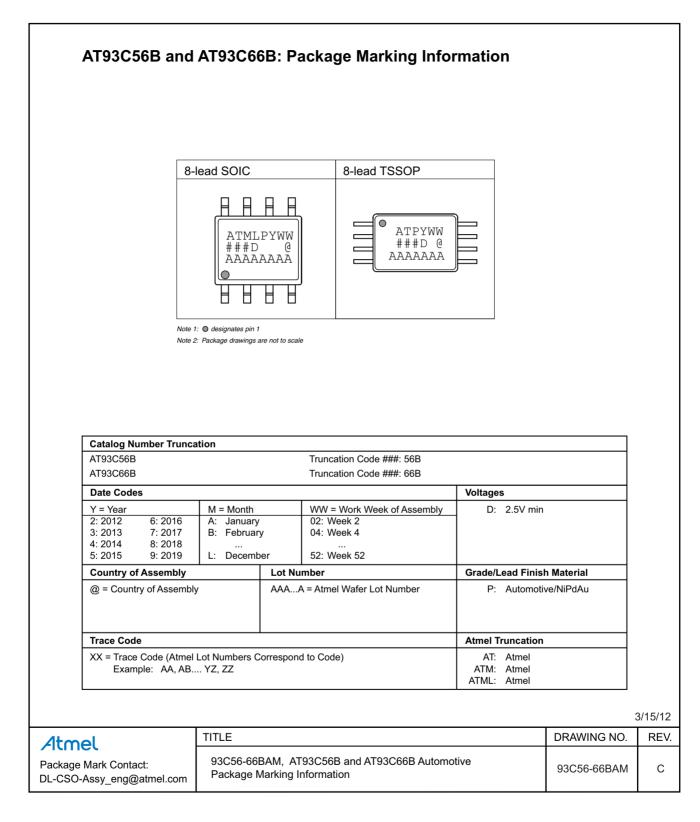
2. A₇ is a *don't care* value, but the extra clock is required.


7.1 Power Recommendation

The device internal POR (Power-On Reset) threshold is just below the minimum device operating voltage. Power shall rise monotonically from 0.0Vdc to full V_{CC} in less than 1ms. Hold at full V_{CC} for at least 100µs before the first operation. Power shall drop from full V_{CC} to 0.0Vdc in less than 1ms. Power dropping to a non-zero level and then slowly going to zero is *not* recommended. Power shall remain off (0.0Vdc) for 0.5s minimum. Please consult Atmel if your power conditions do not meet the above recommendations.

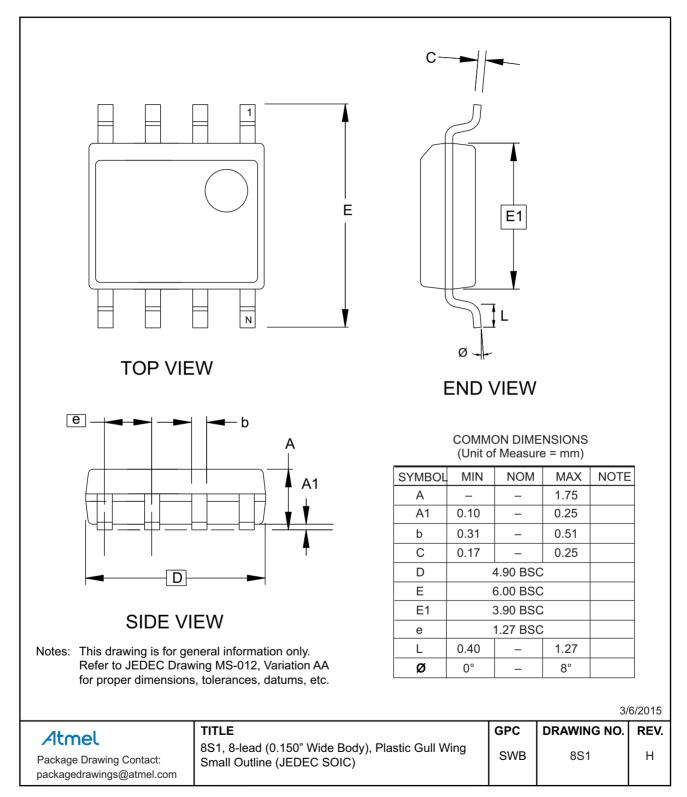
8. Ordering Information

8.1 Ordering Code Detail

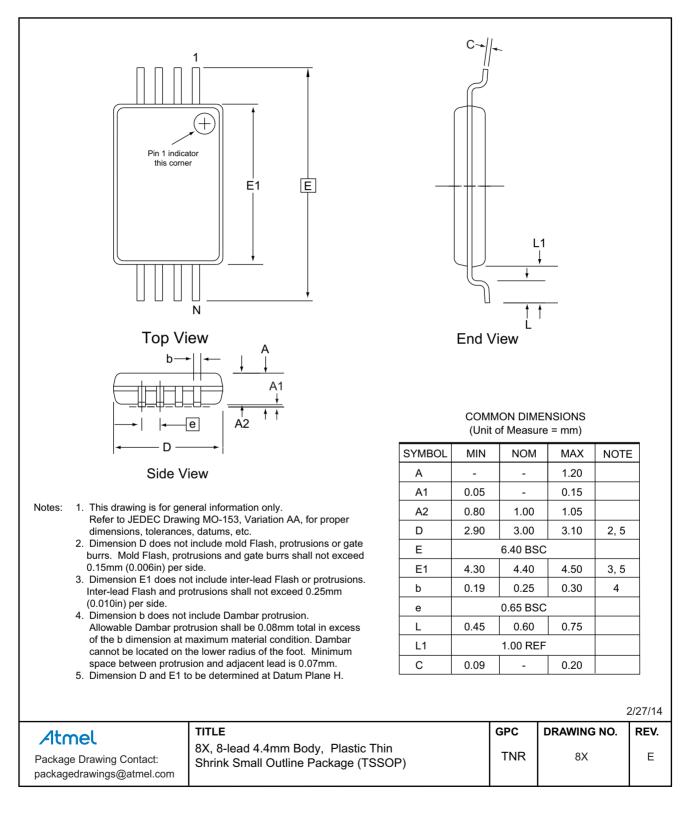

8.2 Atmel Ordering Code Information

			Delivery Ir		
Ordering Code	Lead Finish	Package	Form	Quantity	Operation Range
AT93C56B-SSPD-T	Lead-free 8S1			4,000 per Reel	Automotive
AT93C56B-XPD-T	Halogen-free	8X	Tape and Reel	5,000 per Reel	Temperature (–40°C to 125°C)
AT93C66B-SSPD-T	Lead-free	8S1	Tana and Daal	4,000 per Reel	Automotive
AT93C66B-XPD-T	Halogen-free	8X	Tape and Reel	5,000 per Reel	Temperature (–40°C to 125°C)

	Package Type				
8S1	8-lead, 0.150" wide, Plastic Gull Wing Small Outline (JEDEC SOIC)				
8X	8-lead, 4.4mm body, Plastic Thin Shrink Small Outline (TSSOP)				



9. Product Markings


10. Packaging Information

10.1 8S1 — 8-lead JEDEC SOIC

Atmel

10.2 8X — 8-lead TSSOP

11. Revision History

Doc. Rev.	Date	Comments
8811C	02/2016	Updated 8S1 and 8X package drawings and ordering information. Added the ordering code detail. Removed bulk(tube) options. Document reorganization.
8811B	08/2012	Removed preliminary status. Updated Atmel logos and disclaimer/copy page.
8811A	06/2012	Initial document release

Atmel Enabling Unlimited Possibilities

f 🗾 in 8 🖸 W

Т

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-8811C-SEEPROM-AT93C56B-66B-Auto-Datasheet_022016.

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.