

DSA63XX

Ultra-Small, Ultra-Low Power MEMS Oscillator with Spread Spectrum for Automotive

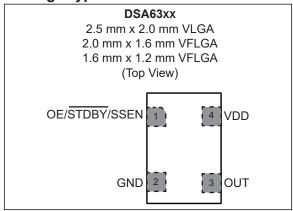
Features

- · Automotive AEC-Q100 Qualified
- Output Frequency: 1 MHz to 100 MHz LVCMOS
- · Spread Spectrum Options:
 - Center-Spread: ±0.25%, ±0.5%, ±1.0%, ±1.5%, ±2.0%, ±2.5%
 - Down-Spread: -0.25%, -0.5%, -1.0%, -1.5%, -2.0%, -3.0%
- Ultra-Low Power Consumption: 3 mA (Active), 1 μA (Standby)
- Wide Supply Voltage Range: 1.71V ~ 3.63V V_{DD}
- · Wide Temperature Range:
 - Automotive Grade 1: -40°C to +125°C
 - Automotive Grade 2: -40°C to +105°C
 - Automotive Grade 3: -40°C to +85°C
- · Ultra-Small Package Sizes:
 - $1.6 \text{ mm} \times 1.2 \text{ mm}$
 - $2.0 \text{ mm} \times 1.6 \text{ mm}$
 - 2.5 mm × 2.0 mm
- · Excellent Shock and Vibration Immunity
 - Qualified to MIL-STD-883
- · High Reliability
 - 20x Better MTBF than Quartz Oscillators
- · Lead Free and RoHS Compliant

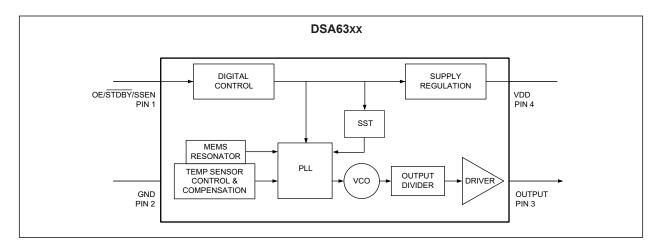
Applications

- · Automotive Infotainment
- Automotive ADAS
- · Automotive Camera Module

Benefits


 Replace High-Temperature Crystals and Quartz Oscillators

General Description


The DSA63xx series of clock generators uses a proven silicon MEMS technology to provide excellent frequency stability over a wide range of temperatures as well as small size. Available in three different package sizes with operating current as low as 3 mA, the smallest 4-pin package is a mere 1.6 mm x 1.2 mm in size. The devices support up to $\pm 2.5\%$ or -3% spread spectrum that can achieve up to 15 dB electromagnetic interference (EMI) reduction. Because of industry standard package and pin options, customers can solve last minute EMI problems simply by placing the new DSA63xx on their current board layout with no redesign required.

The DSA63xx family is available in 1.6 mm x 1.2 mm and 2.0 mm x 1.6 mm, and 2.5 mm x 2.0 mm packages. These packages are "drop-in" replacements for standard 4-pin CMOS quartz crystal oscillators.

Package Types

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Supply Voltage	–0.3V to +4.0V
ESD Protection	4 kV HBM, 400V MM, 2 kV CDM

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, $V_{DD} = 1.8V - 5\%$ to $3.3V + 10\%$, $T_A = -40$ °C to $+125$ °C.							
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Supply Voltage	V_{DD}	1.71	_	3.63	V	Note 1	
Power Supply Ramp	t _{PU}	0.1		100	ms	Note 8	
Active Supply Current	I _{DD}	_	3.0	_	mA	f _{OUT} = 27 MHz, V _{DD} = 1.8V, No Load	
Standby Supply Current	lozpy	_	1	_		V _{DD} = 1.8/2.5V, Note 2	
Standby Supply Current	I _{STBY}	_	1.5	_	μA	V _{DD} = 3.3V, Note 2	
Output Duty Cycle	SYM	45	_	55	%	_	
Frequency	f_0	1	_	100	MHz	_	
Frequency Stability	Δf	_	_	±20 ±25 ±50	ppm	All temp ranges, Note 3	
Ai.a	Λ.f.	_	_	±5		1st year @ 25°C	
Aging	Δf	_	_	±1	ppm	Per year after first year	
Startup Time	t _{SU}	_		1.5	ms	From 90% V _{DD} to valid clock output, T = 25°C	
Input Logic Lovele	V_{IH}	0.7 x V _{DD}		_	V	Input Logic High, Note 4	
Input Logic Levels	V_{IL}	_	_	0.3 x V _{DD}	V	Input Logic Low, Note 4	
Output Disable Time	t _{DA}	_	_	200 + 2 Periods	ns	Note 5	
Output Enable Time	t _{EN}	_	_	1	μs	Note 6	
OE/STDBY/SSEN Pull-up Resistor	_	_	300	_	kΩ	If configured, Note 7	

- Note 1: Pin 4 V_{DD} should be filtered with 0.1 μF capacitor.
 - 2: Not including current through pull-up resistor on EN pin (if configured).
 - 3: Includes frequency variations due to initial tolerance, temp. and power supply voltage.
 - 4: Input waveform must be monotonic with rise/fall time < 10 ms
 - **5:** Output Disable time takes up to two periods of the output waveform + 200 ns.
 - **6:** For parts configured with OE, not Standby.
 - **7:** Output is enabled if pad is floated or not connected.
 - 8: Time to reach 90% of target V_{DD} . Power ramp rise must be monotonic.

DSA63XX

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, $V_{DD} = 1.8V - 5\%$ to 3.3V +10%, $T_A = -40$ °C to +125°C.								
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
	.,	0.8 x V _{DD}			V	Output Logic High, I = 3 mA, Std. Drive		
Output Logic Lovele	V _{OH}	U.O X V _{DD}		_	V	Output Logic High Drive	High, I = 6 mA,	
Output Logic Levels	V			0.2 v.V	V	Output Logic Std. Drive	Low, $I = -3 \text{ mA}$,	
	V _{OL}	_		0.2 x V _{DD}	V	Output Logic High Drive	Low, I = -6 mA,	
		_	1	1.5	ns	DSA61x2 High Drive, 20% to 80% C _L = 15 pF	V _{DD} = 1.8V	
Output Transition Time	t _{RX} /t _{FX}	_	0.5	1.0	ns		V _{DD} = 2.5V/3.3V	
Rise Time/Fall Time	t _{RY} /t _{FY}	_	1.2	2.0	ns	DSA61x1 Std Drive, 20% to 80% C _L = 10 pF	V _{DD} = 1.8V	
		_	0.6	1.2	ns		V _{DD} = 2.5V/3.3V	
		_	8.5	_		f _{OUT} =	V _{DD} = 1.8V	
Period Jitter, RMS	J_{PER}	_	7	_	ps _{RMS}	27 MHz, Spread Off	V _{DD} = 2.5V/3.3V	
Cycle-to-Cycle Jitter		_	50	70		f _{OUT} =	V _{DD} = 1.8V	
(Peak)	J _{Cy–Cy}	_	35	60	ps	27 MHz, Spread Off	V _{DD} = 2.5V/3.3V	
Period Jitter		_	70	_		f _{OUT} =	V _{DD} = 1.8V	
(Peak-to-Peak)	J_{PP}	_	60	_	ps	27 MHz, Spread Off	V _{DD} = 2.5V/3.3V	
Spread Spectrum Modulation Frequency	f _{SS}	_	33	_	kHz	_		

Note 1: Pin 4 V_{DD} should be filtered with 0.1 μF capacitor.

- 2: Not including current through pull-up resistor on EN pin (if configured).
- 3: Includes frequency variations due to initial tolerance, temp. and power supply voltage.
- 4: Input waveform must be monotonic with rise/fall time < 10 ms
- **5:** Output Disable time takes up to two periods of the output waveform + 200 ns.
- 6: For parts configured with OE, not Standby.
- 7: Output is enabled if pad is floated or not connected.
- 8: Time to reach 90% of target V_{DD} . Power ramp rise must be monotonic.

SPREAD SPECTRUM

Ordering Code	Spread Percentage	Spread Type
A	±0.25%	Center-Spread
В	±0.5%	Center-Spread
С	±1.0%	Center-Spread
D	±1.5%	Center-Spread
E	±2.0%	Center-Spread
F	±2.5%	Center-Spread
G	-0.25%	Down-Spread
Н	-0.5%	Down-Spread
I	-1.0%	Down-Spread
J	-1.5%	Down-Spread
К	-2.0%	Down-Spread
L	-3.0%	Down-Spread
M	Custom	Center-Spread or Down-Spread

TEMPERATURE SPECIFICATIONS (Note 1)

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Junction Operating Temperature	TJ	-40	_	+150	°C	_
Storage Ambient Temperature Range	T _A	-55	_	+150	°C	_
Soldering Temperature	T _S	_	+260	_	°C	40 sec. max.

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability.

2.0 PIN DESCRIPTIONS

The DSA63xx is a highly configurable device and can be factory programmed in many different ways to meet the customer's needs. Microchip's ClockWorks[®] Configurator http://clockworks.microchip.com/Timing/ must be used to choose the necessary options, create the final part number, data sheet, and order samples. The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: DSA63XX PIN FUNCTION TABLE

Pin Number	Pin Name	Description
4	OE	Output Enable: H = Active, L = Disabled (High Impedance).
(Note 1)	STDBY	Standby: H = Device is active, L = Device is in standby (Low Power Mode).
(Note 1)	SSEN	Spread Spectrum Enable: H = Enabled, L = Disabled.
2	GND	Ground.
3	Output	Oscillator clock output.
4	VDD	Power supply: 1.71V to 3.63V.

Note 1: DSA630x/1x/3x has a 300 kΩ internal pull-up resistor on pin 1. DSA634x/5x/7x has no internal pull-up resistor on pin 1 and needs an external pull-up or to be driven by another chip.

An explanation of the different options listed in Table 2-1 follows.

2.1 Pin 1

This is a control pin and may be configured to fulfill one of three different functions. If not actively driven, a 10 k Ω pull-up resistor is recommended.

2.1.1 OUTPUT ENABLE (OE)

Pin 1 may be configured as OE. Oscillator output may be turned on and off according to the state of this pin.

2.1.2 STDBY

Pin 1 may be configured as Standby. When the pin is low, both output buffer and PLL will be off and the device will enter a low power mode.

2.1.3 SPREAD SPECTRUM ENABLE (SSEN)

This pin, when high, enables spread spectrum modulation of the clock output. Various levels of center-spread and down-spread are available. For more details, see the Spread Spectrum section and the spread spectrum ordering codes on the Product Identification System.

2.2 Pins 2 through 4

Pins 2 and 4 are the supply terminals, GND and VDD respectively. Pin 3 is the clock output, programmable to Standard and High Drive strength settings. Visit ClockWorks® Configurator to customize your device.

2.3 Output Buffer Options

The DSA63xx family is available in multiple output driver configurations.

The standard-drive (63x1) and high-drive (63x2) deliver respective output currents of greater than 3 mA and 6 mA at 20%/80% of the supply voltage. For heavy loads of 15 pF or higher, the high-drive option is recommended.

3.0 DIAGRAMS

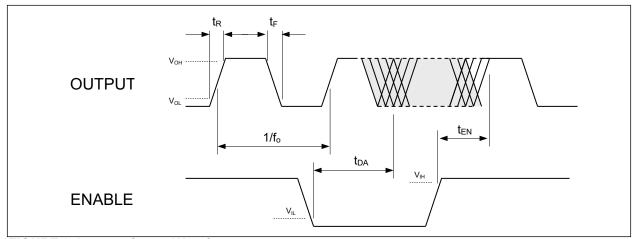


FIGURE 3-1: Output Waveform.

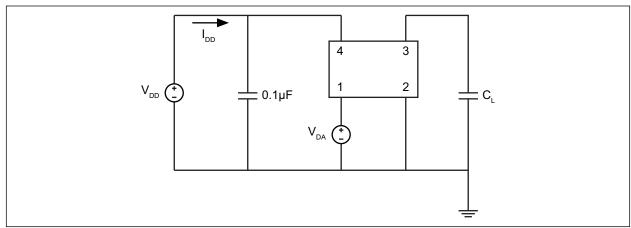


FIGURE 3-2: Test Circuit.

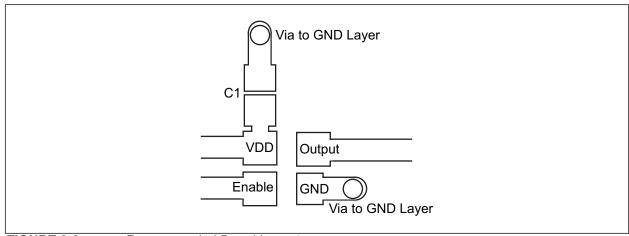


FIGURE 3-3: Recommended Board Layout.

4.0 SPREAD SPECTRUM

Spread spectrum is a slow modulation of the clock frequency over time. The PLL inside the MEMS oscillator is modulated with a triangular wave at 33 kHz. With such a slow modulation, the peak spectral energy of both the fundamental and all the harmonics is spread over a wider frequency range and such an energy is significantly reduced, thus providing an EMI reduction. The triangular wave is chosen because of its flat spectral density.

The DSA63xx MEMS oscillator family offers several modulation options: the spreading is either center-spread or down-spread with respect to the clock frequency. Center-spread ranges from $\pm 0.25\%$ to $\pm 2.5\%$, while down-spread ranges from -0.25% to -3%.

If the clock frequency is 100 MHz and center-spread with $\pm 1\%$ is chosen, the output clock will range from 99 MHz to 101 MHz. If down-spread with -2% is chosen, the output clock will range from 98 MHz to 100 MHz.

Figure 4-1 and Figure 4-2 show a spectrum example of the DSA6331 with a 33.333 MHz clock, modulated with center-spread of ±1%.

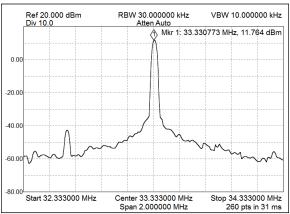


FIGURE 4-1: DSA6331 Spectrum at 33.333 MHz with Modulation Turned Off.

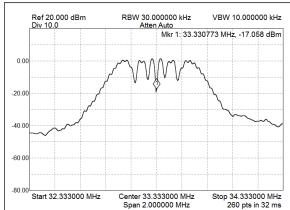


FIGURE 4-2: DSA6331 Spectrum at 33.333 MHz with Modulation Turned On.

It is noticeable that the spread spectrum provides a reduction of about 10 dB from the peak power. Such a reduction may also be estimated by the following equation:

EQUATION 4-1:

 $EMI \ \ Reduction = 10 \times Log \ 10 (|S| \times fc \div RBW)$ Where: $S \quad Peak-to-peak \ spread \ percentage \ (0.01, \\ this \ example).$ fc \quad Carrier \ frequency \ (33.333 \ MHz, this \ example). $RBW \quad Resolution \ bandwidth \ of \ the \ spectrum \ analyzer \ (30 \ kHz, this \ example).$

The theoretical calculation for this example provides 10.45 dB, which is consistent with the measurement.

Similarly to the fundamental frequency, all the harmonics are spread and attenuated in similar fashion. Figure 4-3 shows how the DSA6331 fundamental at 33.333 MHz and its odd harmonics are attenuated when various types of modulations are selected. For picture clarity, only the center-spread options are shown. However, down spread with corresponding percentage provides the same level of harmonic attenuation (e.g. center-spread of $\pm 1\%$ provides the same harmonics attenuation of down spread with -2%).

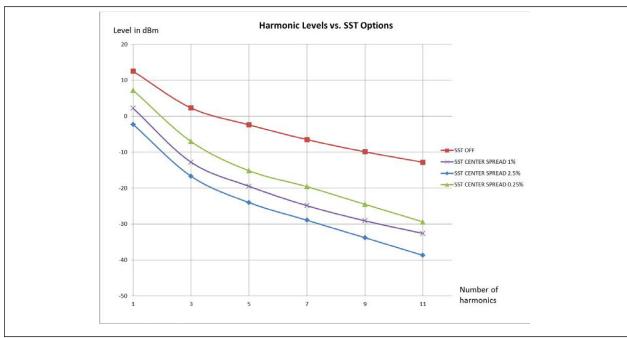


FIGURE 4-3: DSA6331 Harmonic Levels with Various Spread Spectrum Options.

5.0 SOLDER REFLOW PROFILE

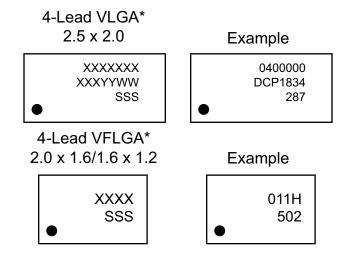


FIGURE 5-1: Solder Reflow Profile.

MSL 1 @ 260°C refer to JSTD-020C						
Ramp-Up Rate (200°C to Peak Temp)	3°C/sec. max.					
Preheat Time 150°C to 200°C	60 to 180 sec.					
Time maintained above 217°C	60 to 150 sec.					
Peak Temperature	255°C to 260°C					
Time within 5°C of actual Peak	20 to 40 sec.					
Ramp-Down Rate	6°C/sec. max.					
Time 25°C to Peak Temperature	8 minutes max.					

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend: XX...X Product code or customer-specific information

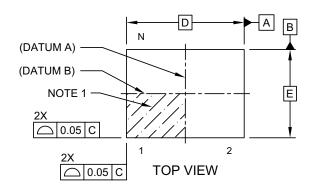
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)

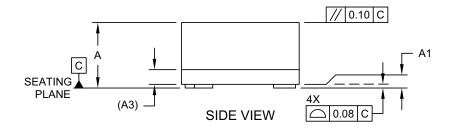
WW Week code (week of January 1 is week '01')

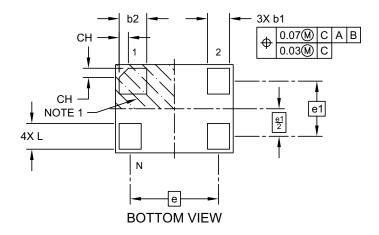
SSS Alphanumeric traceability code

e3 Pb-free JEDEC® designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

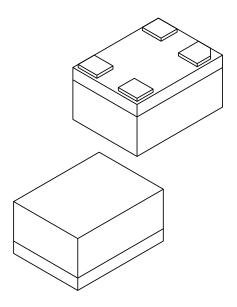

•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).


Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.


Underbar (_) and/or Overbar (_) symbol may not be to scale.

4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-1199A Sheet 1 of 2

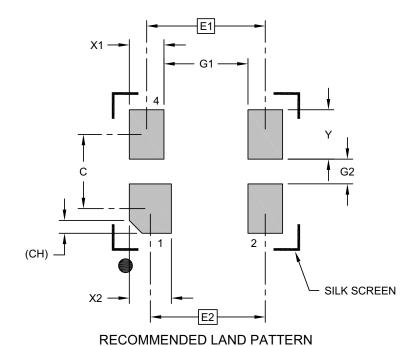
4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Number of Terminals	Ν		4	
Terminal Pitch	е		1.20 BSC	
Terminal Pitch	e1		0.75 BSC	
Overall Height	Α	0.79	0.84	0.89
Standoff	A1	0.00	0.02	0.05
Substrate Thickness (with Terminals)	A3		0.20 REF	
Overall Length	D		1.60 BSC	
Overall Width	Е		1.20 BSC	
Terminal Width	b1	0.25	0.30	0.35
Terminal Width	b2	0.325	0.375	0.425
Terminal Length	Ĺ	0.30	0.35	0.40
Terminal 1 Index Chamfer	CH	-	0.125	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

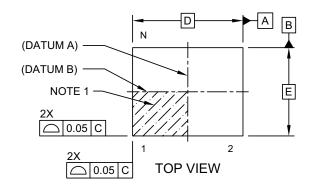
Microchip Technology Drawing C04-1199A Sheet 2 of 2

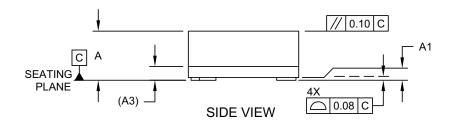
4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA]

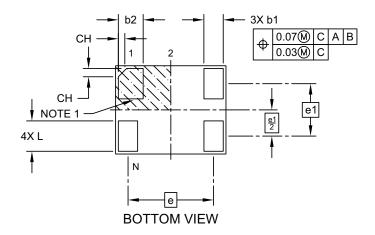
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units MILLIMETERS NOM MAX **Dimension Limits** MIN Contact Pitch 1.20 BSC E1 Contact Pitch E2 1.16 BSC **Contact Spacing** С 0.75 Contact Width (X3) X1 0.35 Contact Width X2 0.43 Contact Pad Length (X6) 0.50 G1 0.85 Space Between Contacts (X4) 0.25 Space Between Contacts (X3) G2 0.13 X 45° REF Contact 1 Index Chamfer СН

Notes:

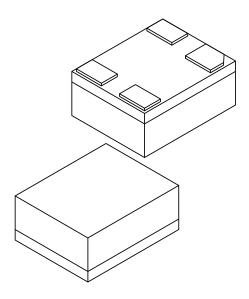

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-3199A

4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-1200A Sheet 1 of 2

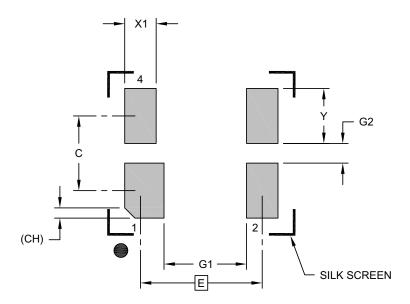
4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	Ν		6	
Terminal Pitch	е		1.55 BSC	
Terminal Pitch	e1	0.95 BSC		
Overall Height	Α	0.79	0.84	0.89
Standoff	A1	0.00	0.02	0.05
Substrate Thickness (with Terminals)	A3	0.20 REF		
Overall Length	D		2.00 BSC	
Overall Width	Е		1.60 BSC	
Terminal Width	b1	0.30	0.35	0.40
Terminal Width	b2	0.40	0.45	0.50
Terminal Length	L	0.50	0.55	0.60
Terminal 1 Index Chamfer	CH	-	0.15	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1200A Sheet 2 of 2

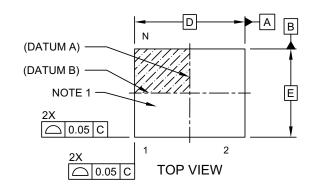
4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA]

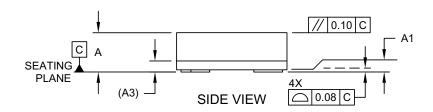
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

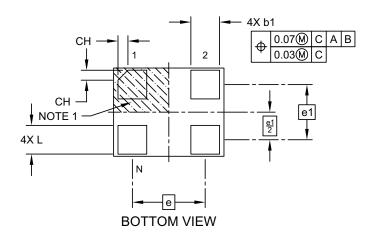
RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		1.55 BSC	
Contact Spacing	С		0.95	
Contact Width (X4)	X1			0.50
Contact Width (X2)	X2			0.40
Contact Pad Length (X6)	Υ			0.70
Space Between Contacts (X4)	G1	1.05		
Space Between Contacts (X3)	G2	0.25		
Contact 1 Index Chamfer	CH	0	.13 X 45° RE	F

Notes:

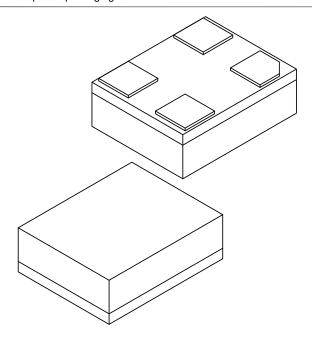

1. Dimensioning and tolerancing per ASME Y14.5M $\,$


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-3200A

4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-1202A Sheet 1 of 2

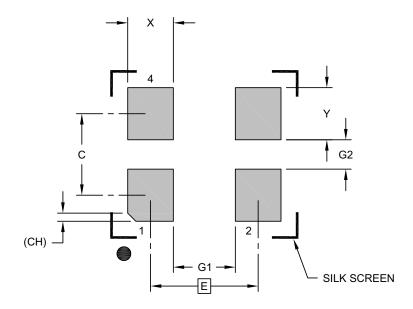
4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Terminals	Ν		4	
Terminal Pitch	е		1.65 BSC	
Terminal Pitch	e1	1.25 BSC		
Overall Height	Α	0.79	0.84	0.89
Standoff	A1	0.00	0.02	0.05
Substrate Thickness (with Terminals)	A3		0.20 REF	
Overall Length	D	2.50 BSC		
Overall Width	E	2.00 BSC		
Terminal Width	b1	0.60	0.65	0.70
Terminal Length	L	0.60	0.65	0.70
Terminal 1 Index Chamfer	CH	-	0.225	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1202A Sheet 2 of 2

4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	1.65 BSC		
Contact Spacing	С		1.25	
Contact Width (X4)	Х	0.70		
Contact Pad Length (X6)	Υ	0.80		
Space Between Contacts (X4)	G1	0.95		
Space Between Contacts (X3)	G2	0.45		
Contact 1 Index Chamfer	CH	OH 0.13 X 45° REF		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-3202A

APPENDIX A: REVISION HISTORY

Revision A (April 2019)

• Initial creation of DSA63xx Microchip data sheet DS20006189A.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

		3, 1	Fyamples:	
PARŢ NO. X	<u> </u>	<u> </u>	Examples:	
Device Pin 1 Out Definition Driv Stree	/e		Spread Spectrum, Pin 1 = STDBY with Internal Pull- Up, High Drive Strength, 4-Lead 2.5 mm x 2.0 mm	
Device:	DSA63:	Ultra-Small, Ultra-Low Power MEMS Oscillator with Spread Spectrum for Automotive	VLGA, Automotive Grade 3 Temperature, ±25 ppm Stability, ±1.5% Center-Spread, Revision A, 100 MHz Frequency, 140/Tube	
		Adiomotivo	b) DSA6301HA1LA-016.0000T:	
Pin Definition:	Selection	Pin 1 Internal Pull-Up Register	Ultra-Small, Ultra-Low Power MEMS Oscillator with Spread Spectrum, Pin 1 = OE with Internal Pull-Up,	
	0	OE Pull-up	Standard Drive Strength, 4-Lead 1.6 mm x 1.2 mm VFLGA, Automotive Grade 1 Temperature, ±50 ppm	
	1	STDBY Pull-up	Stability, –3.0% Down-Spread, Revision A, 16 MHz	
	3	SSEN Pull-up	Frequency, 1,000/Reel c) DSA6331ML2AA-050.5000B:	
	4	OE None		
	5	STDBY None	Ultra-Small, Ultra-Low Power MEMS Oscillator with	
	7	SSEN None	Spread Spectrum, Pin 1 = SSEN with Internal Pull-Up, Standard Drive Strength, 4-Lead 2.0 mm x 1.6 mm VFLGA, Automotive Grade 2 Temperature, ±25 ppm	
Output Drive Strength:	1 2	Standard High	Stability, ±0.25% Center-Spread, Revision A, 50.5 MHz Frequency, 3,000/Reel	
Packages:	J =	4-Lead 2.5 mm x 2.0 mm VLGA	Note 1: Media Type identifier only appears in the	
	M =	4-Lead 2.0 mm x 1.6 mm VFLGA	catalog part number description. This identifier is used for ordering purposes and	
	H =	4-Lead 1.6 mm x 1.2 mm VFLGA	is not printed on the device package. Check with your Microchip Sales Office for package	
Temperature	A =	-40°C to +125°C (Automotive Grade 1)	availability with different media options.	
Range:	L =	-40°C to +105°C (Automotive Grade 2) -40°C to +85°C (Automotive Grade 3)		
Frequency Stability:	1 = 2 =	± 50 ppm		
Stability.	3 =	± 25 ppm ± 20 ppm		
Spread Spectrum:	A = B =	±0.25% Center-Spread ±0.5% Center-Spread		
	C = D =	±1.0% Center-Spread ±1.5% Center-Spread		
	E =	±2.0% Center-Spread		
	F = G =	±2.5% Center-Spread		
	G = H =	-0.25% Down-Spread -0.5% Down-Spread		
	I =	-1.0% Down-Spread		
	J = K =	-1.5% Down-Spread -2.0% Down-Spread		
	L =	-3.0% Down-Spread		
	M =	Custom		
Revision:	B =	Revision A		
Frequency:	xxx.xxxx =	User-Defined Frequency between 001.0000 MHz and 100.0000 MHz		
Media Type:	 T = B =	140/Tube (J Package Option) 100/Bag (M & H Package Option) 1,000/Reel 3,000/Reel		

Note 1: Please visit Microchip ClockWorks[®] Configurator Website to configure the part number for customized frequency. http://clockworks.microchip.com/timing/.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSAs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net. PICkit, PICtail, PowerSmart, PureSilicon. QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-4422-0

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CATel: 408-735-9110
Tel: 408-436-4270 **Canada - Toronto**

Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820