

2.4 - 2.5 GHz LNA With Bypass

Description

The LX5563 is a low noise amplifier (LNA) for WLAN applications in the 2.412 to 2.472 GHz frequency range. It operates with a single voltage supply of 3.3V, and features both high gain and bypass modes.

The LNA is fully matched on both the input and output ports; no external inductors or matching is required. It includes all bias circuitry and operates with a digital control signal. Only one external bypass capacitor on the supply line is required.

The LNA is packaged in a 1.5x1.5x0.5 mm dual-flat no-leads (DFN) package.

Features

- 2.412GHz to 2.472GHz Frequency Range
- Single 3.3V Operation
- 14dB Gain in High Gain Mode; 7dB Loss in Bypass Mode
- 1.3dB Noise Figure
- Input IP3 = +7.5 dBm (high gain)
- Input P1dB = -3 dBm (high gain) or +18dBm (bypass)
- Single Control Enables LNA in High Gain Mode, or Places LNA into Bypass Mode.

Applications

- 2.4GHz Wi-Fi RF Front Ends
- 802.11 b/g/n/ac Radios
- Laptops, Tablets
- Smartphones
- Wireless Access Points
- Routers

Figure 1 - Functional Block Diagram

Block Diagram

Pin Configuration

• Top view XX = Encoded date code

3 = Encoded Part Number

• 1.5 x 1.5 x 0.5mm DFN package

Ordering Information

Ambient Temperature	Туре	Package	Part Number	Packaging Type
-40°C to 85°C	RoHS2 compliant, Pb-free	DFN 1.5x1.5 - 6L	LX5563LL	Bulk / Tube
			LX5563LL -TR	Tape and Reel

Pin Description

Pin Number	Pin Designator	Description
1	LNAEn	LNA Enable/Bypass mode select
2	RFIN	RF input. This pin is AC coupled to the transistor; no DC blocking is required.
3	GND	Ground
4	GND	Ground
5	RFOUT	RF output. This pin is AC coupled to the transistor; no DC blocking is required.
6	VCC	3.3V Supply voltage

Absolute Maximum Ratings

Parameter	Value	Units	
DC Supply Voltage, RF off	4	V	
RF input power	+10	dBm	
Operational ground slug temperature	-40 to +85	°C	
Storage temperature range	-65 to +150	°C	

Note: Stresses in excess of these absolute ratings may cause permanent damage. The device is not implied to be functional under these conditions.

General Electrical Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Units
VCC	Operating voltage		3	3.3	3.6	V
VIH	Logic high	LNAEn	VCC-1.1		3.6	V
VIL	Logic low	LNAEn	0		0.8	V
	ESD	All pins, HBM	1500			V

Note: The device may be operated safely over these conditions. However, performance is guaranteed only over the conditions defined in the electrical specifications.

Operating Overview

Referring to the functional block diagram (Figure 1 \cdot), the LX5563 is an LNA with two modes. When the LNAEn pin is high, the LNA is enabled, and the device is in High gain mode. When LNAEn is low, the LNA is disabled, and the device is placed in Bypass mode. Bypass mode can be used to extend the overall dynamic range of a receiver, or to allow the receiver to operate in the presence of strong blocker signals by reducing the gain and offering higher linearity than in high gain mode.

Electrical Specifications

Symbol	Parameter		Test Condition	Min	Тур	Max	Units	
F	Frequency rang	ge		2.412		2.472	GHz	
604	0	HG	High gain mode	13.5	15	16.5	dB	
521	Small signal gain	Bypass	Bypass mode	-8	-7	-6	aв	
			HG mode, over single 20 MHz channel	-0.25		0.25		
∆S21	Gain variation	HG	HG mode, over single 80 MHz channel	-0.3		0.3		
			HG mode over entire frequency range	-0.3		0.3		
EVM	EVM	HG	OFDM Input signal at -20 dBm. For information only.		-40		dB	
		HG	At 25°C ambient, High gain.		1.25	1.55		
F	Noise figure	Bypass	At 25°C ambient, bypass mode.		7		dB	
IIP3	Input IP3	HG	5MHz tone spacing, -8 dBm <pin<0 dbm<="" td=""><td>7</td><td>9</td><td></td><td>d D as</td></pin<0>	7	9		d D as	
		Bypass	5MHz tone spacing, 2 dBm <pin<17 dbm<="" td=""><td></td><td>26</td><td></td><td>dBm</td></pin<17>		26		dBm	
	Input P1dB	HG	High mode		0		dBm	
IP1dB		Bypass	Bypass mode		17			
Q11			High mode	10	18		dB	
311	Input return loss	Bypass	Bypass	10	18		uБ	
S 22	Output return loss	HG	High mode	10	12		dB	
022	Ouput letuin 1035	Bypass	Bypass mode	9.5	11		aв	
	Quiescent current	HG	No RF input signal applied		9	12	mA	
100		Bypass	Leakage currently only		4	6.5	μA	
2f/3f	Harmonic generation	Bypass	LNAEn low, +8 dBm, 2.437 GHz OFDM signal applied on RFin pin			-48	dBm/MHz	
lammer	Leakage at 5180MHz		Input signal at 2.462GHz and		-3			
performance	performance Leakage at 2718MHz		-30dBm; jammer at 5180 and -10 dBm		-40		dBm	
Trise	Turn on time		From bypass to high gain mode, 10-90%		100		ns	
Tfall	Turn off time		From high gain to bypass mode, 10-90%		100		ns	
<i>Note:</i> Nominal test conditions: VCC=3.3 V, Ambient temperature = 25 °C. 20 MHz BW, 64 QAM OFDM test signals applied at 2.437 GHz unless otherwise noted. Min and Max are over the entire 3.0V to 3.6V supply range and -40 °C to 85 °C temperature range.								

Characteristic Curves

Figure 5 - HG Input P1dB (dBm, 25°C)

Figure 4 - S21 Gain V_{CC} =3.3V, 25°C

Figure 8 - Bypass Input IP3 (dBm, 25°C)

Characteristic Curves

Figure 9 · HG Noise Figure (dB, 25°C)

Figure 10 - Bypass Noise Figure (dB, 25°C)

Figure 11 • Input Current vs. Temperature and Voltage

Figure 12 · Power Sweep (V_{CC}=3.3V, Icq = 8.6mA, 25°C)

Application Information

The LX5563 is fully matched on both RF ports. No external matching is required. An external decoupling capacitor is recommended on the supply line, as shown in Figure $13 \cdot .$

Figure 13 - Application Schematic

Package Outline Dimensions

The package is halogen free and meets RoHS2 and REACH standards.

DIM	MILLI	METERS	INCHES		
	MIN	MAX	MIN	MAX	
А	0.41	0.50	0.016	0.020	
A1	0.0	0.05	0.0 0.00		
A3	0.15	0.15 REF		0.006 REF	
b	0.18	0.30	0.07	0.012	
D	1.50) BSC	0.059 BSC		
D2	1.05	1.30	0.041	0.051	
ш	1.50	1.50 BSC		0.059 BSC	
E2	0.55	0.80	0.022	0.031	
е	0.50 BSC		0.20 BSC		
K	0.15	-	0.006	-	
L	0.125	0.225	0.005	0.009	

Figure 14 • 6 Pin DFN Package Dimensions

Recommended PCB Footprint

Figure 15 - PCB Layout Footprint (Top View)

PRODUCTION DATA – Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1(949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.