

5.15-5.85GHz 802.11ac Front End Module

Description

The LX5586H is a complete integrated 5GHz Front-End Module (FEM) for an IEEE 802.11ac system. It includes a highly linear 5GHz Power Amplifier (PA) with power detector, Low Noise Amplifier (LNA) with bypass capability, and SPDT antenna switch. This highly integrated FEM only requires one bypass cap thus reducing system footprint, bill of materials, and manufacturing cost.

The LX5586H is available in a 16-pin low profile 2.5x2.5x0.45mm QFN Package.

Features

- 5V Supply Voltage
- Integrated 5GHz PA, LNA, and SPDT Tx/Rx Switch
- POUT = 19dBm (typical) at -36dB EVM (256QAM/80MHz)
- Bypassable Low Noise Figure LNA
- Small Footprint: 2.5 x 2.5mm²
- Low Profile: 0.45mm max
- RoHS Compliant & Halogen Free

Applications

- Tablets
- Access Points
- Mobile Devices
- Notebooks
- Gaming

Block Diagram

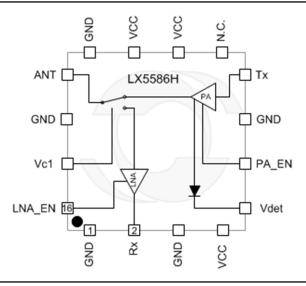


Figure 1 · Functional Block Diagram

www.microsemi.com

Pin Configuration

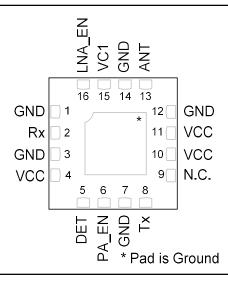


Figure 2 · Pinout (Top View)

Ordering Information

Ambient Temperature	Туре	Package	Ordering Part Number	Packaging Type
-40°C to 85°C	RoHS2 compliant, Pb-free NiPdAu lead finish	QFN 2.5x2.5x0.45 16L	LX5586HLL-TR	Tape and Reel

Pin Description

Pin Number	Pin Designator	Description
1	GND	Ground
2	Rx	DC blocked 50ohm output of bypassable LNA.
3	GND	Ground
4	VCC	5V nominal supply voltage
5	DET	Output of transmit power detector
6	PA_EN	Power amplifier control pin
7	GND	Ground

Pin Number	Pin Designator	Description
8	Tx	50 ohm input to PA. No DC voltage is generated by the FEM on this line. No external DC voltage should be applied to this pin as it present a DC short to GND.
9	Spare	No connect.
10	VCC	5V nominal supply voltage.
11	VCC	5V nominal supply voltage.
12	GND	Ground
13	ANT	DC blocked 50 ohm antenna port.
14	GND	Ground
15	VC1	Rx bypass mode control line.
16	LNA_EN	LNA control line.

Absolute Maximum Ratings

Parameter	Value	Units
DC Supply Voltage (VCC)	6	V
Control Inputs (LNA_EN, PA_EN, VC1)	3.6	V
Total Power Dissipation	1.5	W
RF Input power at ANT Port	10	dBm
Input Power at TXA Port	5	dBm
Maximum Junction Temperature (T _{JMAX})	+150	°C
Operational Ambient Temperature	-40 to +85	°C
Storage Temperature Range	-65 to +150	°C
Peak Package Solder Reflow Temperature (40 seconds maximum exposure)	260	°C

Note: Although this device is designed to be as robust as possible, Electrostatic Discharge (ESD) can damage this device.

This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times. The LX5586H typical ESD threshold level is >1000 VDC using Human Body Model (HBM) testing for all pins.

Exceeding any Absolute Maximum ratings could cause damage to the device. All voltages are with respect to GND. Currents are positive into, negative out of specified terminal. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" are not implied. Absolute maximum DC supply and control voltage is specified as 6V applied for 10 seconds over the entire lifetime of the part. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Thermal Properties

Thermal Resistance	Тур	Units
θ _{JP} Junction to Pad	18.3	°CAM
θ _{JA} Junction to Ambient	54.3	°C/W

Note: Note: The θ_{Jx} numbers assume no forced airflow. Junction Temperature is calculated using TJ = TA + (PD x θ_{JA}). In particular, θ_{JA} is a function of the PCB construction. The stated number above is for a four-layer board in accordance with JESD-51 (JEDEC).

Electrical Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Units	
Unless otherwise noted: Typical conditions are at 5.53GHz, T _A = 25°C, VCC =5V. Min and max are across frequency, supply, and temperature.							
Operating	Supply Current						
VCC	Supply Voltage VCC		4.75	5	5.25	V	
I _{SLEEP}	Sleep Mode Current	PA_EN = LNA_EN = VC1= 0V, or floating.		1	100	μΑ	
General C	Characteristics						
F_{RFhi}	High Band Frequency Range		5.15	5.53	5.85	GHz	
CHBW	Channel Bandwidth	80MHz	20		80	MHz	
VIH	Control Logic Lovels		3	3.3	3.6	V	
VIL	Control Logic Levels		0		0.4	V	
Ictrl	Maximum Control Current	3.3V logic level		5	6	mA	
$\Delta t_{onPA} \ \Delta t_{offPA}$	Rx→Tx Switching Time	Difference between falling edge of LNA_EN and time when Tx output has settled to within 90% of its final power.		250	400	ns	
Δt_{rxlvl}	Rx Gain Switching Time	Difference between edge of LNA_EN and time when Rx output has settled to within 90% of its final power.		50	100	ns	
$\Delta t_{onLNA,} \ \Delta t_{offLNA}$	Tx→Rx Switching Time	Difference between edge of PA_EN and time when Rx output has settled to within 90% of its final power.		250	400	ns	
ESD	ESD Susceptibility, ANT port		1000			V	
	ESD Susceptibility, Other ports		1000			V	

Electrical Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Units	
Unless otherwise noted: Typical conditions are at 5.53GHz, T _A = 25°C, VCC = 5V. Min and max are across frequency, supply, and temperature.							
Detector C	haracteristics						
PDBW	Power Detector 3dB Bandwidth	RF two-tone spacing for which the PD output voltage swing is reduced to 0.707 of maximum with Pout = 16dBm.	1.5		2.5	MHz	
PDsens	Power Detector Sensitivity	Sensitivity between 11dBm and 22dBm output power.	10		130	mV/dB	
		Vdet _{RMS} variation over 5.15 to 5.35. Variation is defined as (Max-Min).			1		
PDFREQ	Power Detector Variation Over Frequency	Vdet _{RMS} variation over 5.47 to 5.725. Variation is defined as (Max-Min).			1	dB	
		Vdet _{RMS} variation over 5.725 to 5.85. Variation is defined as (Max-Min)			1		
PD _{VFT}	Power Detector Maximum Output Voltage Limits	At any particular detector voltage, the measured Vdet _{RMS} power variation over V, F and T must fall within this limit.			3	dB	
PD _{BW}	Power Detector Variation Over Channel Bandwidth	At any particular detector voltage for output power from 11-22 dBm, the measured Vdet _{RMS} power variation as the channel bandwidth is varied over 20/40/80MHz must fall within the limits shown.			0.5	dB	
		No RF	175	200	300		
V_{DET}	Power Detector Voltage ¹	Vdet _{RMS} at P _{OUT} = 22dBm measured in first 16µs of preamble	600	750	850	mV	
Z _{DET}	Detector Output Impedance				5	kΩ	
PD _{VSWR}	Power detector variation over 3:1 VSWR	To be met for forward power. Measured from 0° to 360° in 15° increments.		+/-1		dB	
Detector voltage is to be measured during the first 16us of the preamble, using the L-STF and L-LTF fields as shown below. 8 µs 8 µs 4 µs 8 µs 4 µs per VHT-LTF symbol 4 µs L-STF L-LTF L-SIG VHT-SIG-A VHT-STF VHT-LTF SIG-B Data							

Electrical Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Units
Unless othe temperature		at 5.53GHz, T _A = 25°C, VCC = 5V. Min an	d max ar	e across f	requency	supply, and
High Band	Tx Characteristics	,		I		
S ₁₁	Input Return Loss	TxA port with PA enabled	8	12		dB
S ₂₂	Output Return Loss	ANT port with PA enabled	7	10		dB
S ₂₁	Power Gain	Small signal gain in operating frequency band.	24	28	33	dB
		Over single 80MHz-channel		0.2	1	
ΔS_{21}	Power Gain Variation	5150 to 5700 MHz		0.2	2	dB
		5700 to 5850 MHz		1.3	3	
S ₂₁	Gain Limit at Ref-vco freq	3433-3917 MHz			24	dB
S ₂₁	Gain Limit at Ref-vco ÷ 2 Spur Frequency	1716-1959 MHz			20	dB
		20 dBm, MCS7, 11a, 20MHz, 50% duty cycle, with 8and 76 symbols. EVM is to be measured at 5.18, 5.5, and 5.825GHz.		-33		
Dynamic EVM DEVM		19 dBm, MCS7, 11ac, 80MHz, 50% duty cycle, with 8, 50, and 1000 symbols. EVM is to be measured at 5.21, 5.53, and 5.775GHz.		-36		
	DEVM	18 dBm MCS9, 11ac, 80MHz, 50% duty cycle, with 8, 50, and 1000 symbols. EVM is to be measured at 5.21, 5.53, and 5.775GHz at 5V, 25C		-37	-34	dB
		18 dBm MCS9, 11ac, 80MHz, 50% duty cycle, with 8, 50, and 1000 symbols. EVM is to be measured at 5.21, 5.53, and 5.775GHz over all voltage and temperature ranges		-37	-33	
Dynamic EVM floor	DEVMfloor	DEVM floor for 10-90% duty cycle, with 8, 50, 1000 symbols, from 7-17 dBm output power		-38		
Mask _{11ac}	802.11ac Mask	Mask compliance with, MCS0, 20MHz, RBW=100kHz, VBW= 30kHz, 100% duty cycle. Measured at 5.18GHz and 5.825GHz.		20		dBm
HD2, HD3	2 nd , 3 rd Harmonic PSD	P _{OUT} = 20dBm, 6Mbps, 20MHz BW		-35		dBm/MHz
		Роит = 17 dBm		180		
laa	Operating Current	P _{OUT} = 18 dBm		195	230]
lcc	Operating Outlett	P _{OUT} = 19 dBm		210	250	mA
		Pout = 20 dBm		230		
I_{q}	Quiescent Current	No RF input. PA enabled, V _{CC} = 5V		110	150	mA
	-					

Electrical Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Units	
Unless othe	7 1	e at 5.53GHz, T _A = 25°C, VCC=5V. Min an	d max are	across fr	equency,	supply, and	
Rx Chara	acteristics						
S ₁₁	Input Return Loss	At ANT port for HG and bypass Rx states	10	14		dB	
S ₂₂	Output Return Loss	At RxA port for all Rx gain states	10	20		dB	
0	D 0:	LNA enabled	10	12.5	15	I.D.	
S ₂₁	Power Gain	LNA bypass state (bypass)	-9	-7	-6	dB	
ΔS ₂₁	Power Gain Variation	Over single 80MHz-channel			1	٩D	
ΔS ₂₁ Power	Power Gain variation	Over entire F _{RFI0}			2	dB	
Noise NE	NF	LNA enabled, 25°C		2.7		dB	
Figure	INF	LNA bypass state, 25°C		8		uБ	
IIP3 Input Third Order Intercept Point		At ANT port with LNA enabled. To be measured with total input power = -10dBm (-13 dBm/tone).	4	6.5			
	At ANT port with LNA enabled and input tones at 2.412 and 2.437GHz. Total input power is 0 dBm (-3 dBm/tone).		10		dBm		
		At ANT port with LNA bypassed. Measured with total input power = 5 dBm (2dBm/tone).	18	26.5			
L _{loop}	ANT→RxA Loopback Isolation	PA enabled (T/R switch in Tx) and LNA bypassed (Loopback)	28	30	45	dB	
1	Quiescent Current	LNA enabled, (No RF)		7		mA	
Iq	Quiescent Current	LNA in bypass mode, (No RF)		3.5	100	μA	

Functional State Table

Vc1	LNA_EN¹	PA_EN²	Default State
1	1	0	Rx High Gain
1	0	0	Rx Bypass State
0	0	1	Tx
0	0	0	Sleep Mode ³

¹ LNA is on while LNA_EN is high and LNA is off and in bypass mode when LNA_EN is low and VC1 is high.

Part Markings

MSC 586H YNNN

Pin 1 identifier
 MSC Company name
 586H Part number
 YNNN Trace code

Figure 3 · Typical Part Markings

² PA_EN controls PA enable and T/R switch logic.

³ The FEM will be placed into sleep mode when all control signals are logic 0 or if they are all floating.

Characteristic Curves: Tx S-parameters

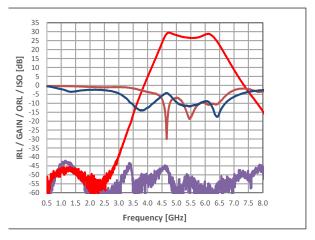


Figure 4 · Tx S-Parameters (VCC= 5V; 25°C)

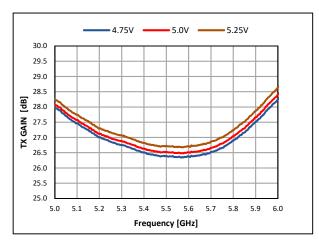


Figure 5 · Tx gain at 25°C

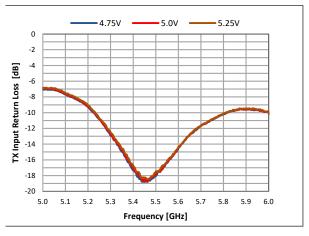


Figure 6 · Tx input return loss at 25°C

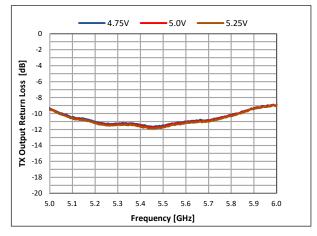


Figure 7 · Tx output return loss at 25°C

Characteristic Curves: Tx Linearity: 80MHz BW

Figure 8 · Dynamic EVM (802.11ac, VHT-80, MCS 9, VCC=5V)

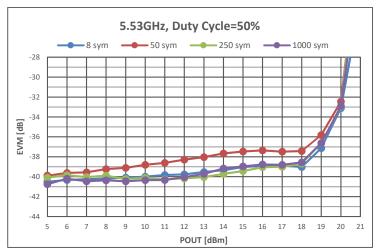


Figure 9 · Dynamic EVM (802.11ac, VHT-80, MCS 9, VCC=5V)

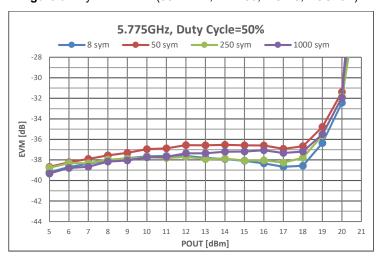


Figure 10 · Dynamic EVM (802.11ac, VHT-80, MCS 9, VCC=5V)

Characteristic Curves: Rx High Gain S-parameters

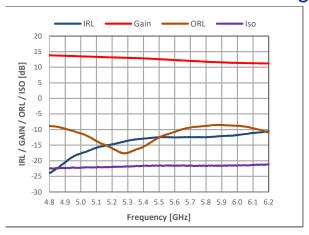


Figure 10 · Rx HG S-Parameters (VCC = 5V, 25°C)

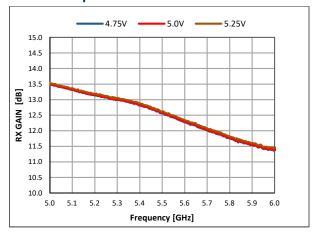


Figure 11 · Rx HG gain at 25°C

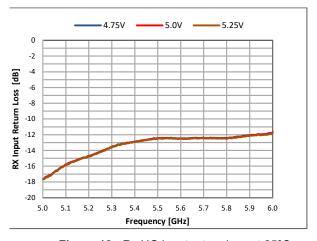
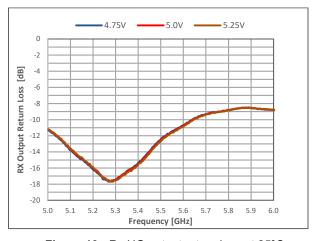



Figure 12 · Rx HG input return loss at 25°C

Figure 13 · Rx HG output return loss at 25°C

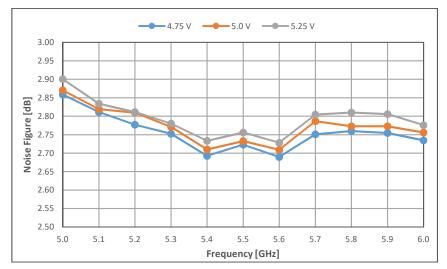


Figure 14 · LX5586H Noise Figure

Characteristic Curves: Rx Bypass Mode S-parameters

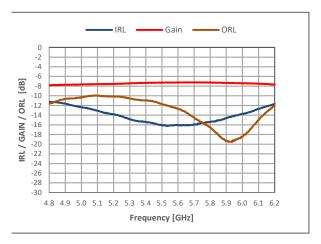


Figure 15 · Rx BP S-parameters (VCC = 5V, 25°C)

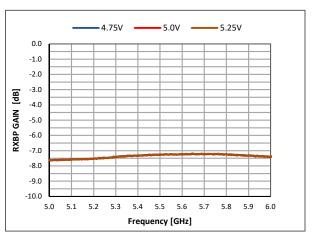


Figure 16 · Rx BP gain at 25°C

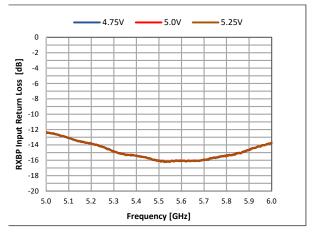
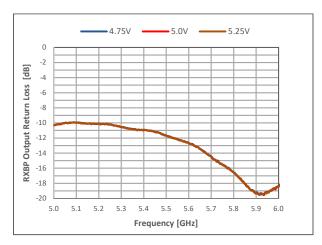
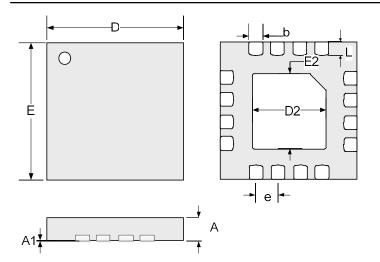
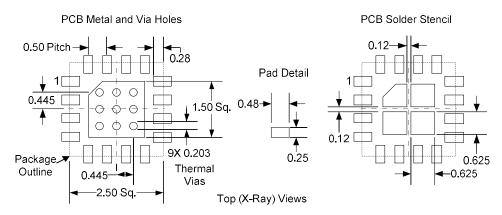


Figure 17 · Rx BP input return loss at 25°C




Figure 18 · Rx BP output return loss at 25°C

Package Outline Dimensions


The package is halogen free and meets RoHS2 and REACH standards.

(MSL1, 260°C per JEDEC J-STD-020)

DIMENSION	MILLIMETERS			
DIVILIVISION	MIN	MAX		
Α		0.45		
A1	0.01	0.05		
L	0.20	0.30		
b	0.20	0.30		
D	2.45	2.55		
D2	1.30	1.40		
E	2.45	2.55		
E2	1.30	1.40		
е	0.50 BSC			

Figure 19 · 16 Pin QFN Package Dimensions

Notes:

- 1. All dimensions are in millimeters.
- Unless specified dimensions are symmetrical about center lines.
 OSP or NiAu planar surface finish recommended.
- 4. Non-Solder Mask Defined (NSMD) pads recommended for terminal pads.

- 5. Recommended tented thermal vias as shown with vias filled with solder.
 6. Stencil thickness < 0.15mm.
 7. Aperture design for thermal pads using multiple openings with 60 to 80% solder paste coverage.

Figure 20 · PCB Layout Footprint (Top View)

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2019 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,400 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.