

5.15–5.85GHz 802.11ac Front End Module

Description

The LX5586 is a complete integrated 5GHz Front-End Module (FEM) for an IEEE 802.11ac system. It includes a highly linear 5GHz Power Amplifier (PA) with power detector, Low Noise Amplifier (LNA) with bypass capability, and SPDT antenna switch. This highly integrated FEM only requires one bypass cap thus reducing system footprint, bill of materials, and manufacturing cost.

The LX5586 is available in a 16-pin low profile 2.5x2.5x0.4mm QFN Package.

Features

- Single Supply Voltage 3V to 4.6V
- Integrated 5GHz PA, LNA, and SPDT Tx/Rx Switch
- POUT = 17dBm (typical) at -35dB EVM (256QAM/80MHz)
- Bypassable low noise figure LNA
- Small Footprint: 2.5 x 2.5mm²
- Low Profile: 0.4mm max
- RoHS Compliant & Halogen Free

Applications

- Smartphones
- Tablets
- Access Points
- Mobile Devices
- Notebooks
- Gaming

Figure 1 · Functional Block Diagram

Block Diagram

Pin Configuration

Figure 2 · Pinout (Top View)

Ordering Information

Ambient Temperature	Туре	Package	Ordering Part Number	Packaging Type
-40°C to 85°C	RoHS2 compliant, Pb-free NiPdAu lead finish	QFN 2.5x2.5x0.4 16L	LX5586LL -TR	Tape and Reel

Pin Description

Pin Number	Pin Designator	Description
1	GND	Ground
2	Rx	DC blocked, 50ohm output of bypassable LNA.
3	GND	Ground
4	VCC	3.6V nominal supply voltage
5	DET	Output of transmit power detector
6	PA_EN	Power amplifier control pin
7	GND	Ground
8	Тх	50 ohm input to PA. No DC voltage is generated by the FEM on this line. No external DC voltage should be applied on this pin, as it presents a shunt inductor to ground.
9	Spare	No connect
10	VCC	3.6V nominal supply voltage
11	VCC	3.6V nominal supply voltage

Pin Number	Pin Designator	Description	
12	GND	Ground	
13	ANT	DC blocked, 50 ohm antenna port.	
14	GND	Ground	
15	VC1	Rx bypass mode control line	
16	LNA_EN	LNA control line	

Absolute Maximum Ratings

Parameter	Value	Units
DC Supply Voltage (VCC)	6	V
Control Inputs (LNA_EN, PA_EN, VC1)	6	V
Total Power Dissipation	1.5	W
RF Input power at ANT Port	10	dBm
Input Power at TXA Port	5	dBm
Maximum Junction Temperature (T _{JMAX})	+150	°C
Operational Ambient Temperature	-40 to +85	°C
Storage Temperature Range	-65 to +150	°C
Peak Package Solder Reflow Temperature (40 seconds maximum exposure)	260	°C

Note: Although this device is designed to be as robust as possible, Electrostatic Discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times. The LX5586 ESD threshold level is >1000V using Human Body Model (HBM) testing for all RF lines. The ESD threshold also exceeds 500V (CDM) on all pins.

Exceeding any Absolute Maximum ratings could cause damage to the device. All voltages are with respect to GND. Currents are positive into, negative out of specified terminal. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" are not implied. Absolute maximum DC supply and control voltage is specified as 6V applied for 10 seconds over the entire lifetime of the part. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Thermal Properties

Thermal Resistance	Тур	Units
θ _{JP} Junction to Pad	18.3	20AN
θ_{JA} Junction to Ambient	54.3	C/W

Note: Note: The θ Jx numbers assume no forced airflow. Junction Temperature is calculated using $T_J = T_A + (PD \times \theta J_A)$. In particular, θJ_A is a function of the PCB construction. The stated number above is for a four-layer board in accordance with JESD-51 (JEDEC) with 9 thermal vias.

Symbol	Parameter	Test Condition		Тур	Max	Units	
Unless otherwise noted: Typical conditions are at 5.5GHz, T _A = 25°C, VCC = 3.6V. Min and max are across frequency, supply, and temperature.							
General C	General Characteristics						
VCC	Supply Voltage VCC	Note: Part is fully functional from 3.0 to 4.6V. Gain and linearity will be degraded below 3.2V.	3.2	3.6	4.6	V	
ISLEEP	Sleep Mode Current	PA_EN = LNA_EN = VC1= 0V, or floating.		0.2	100	μA	
FRFhi	High Band Frequency Range	Note: Part is fully functional from 4.9 to 5.15GHz, but gain and linearity will be affected. Operation from 4.9 to 5.15GHz is best effort only.	5.15	5.53	5.85	GHz	
CHBW	Channel Bandwidth	80MHz	20	80	80	MHz	
VIH	Control Logic Levels		3	3.3	3.6	V	
VIL			0		0.4	V	
Ictrl	Maximum Control Current	3V logic level		5	6	mA	
∆t _{onPA} ∆t _{offPA}	Rx→Tx Switching Time	Difference between falling edge of LNA_EN and time when Tx output has settled to within 90% of its final power.		250		ns	
Δt _{rxivi}	Rx Gain Switching Time	Difference between edge of LNA_EN and time when Rx output has settled to within 90% of its final power.		100		ns	
$\Delta t_{onLNA,}$ Δt_{offLNA}	Tx→Rx Switching Time	Difference between edge of PA_EN and time when Rx output has settled to within 90% of its final power.		325		ns	

Symbol	Parameter	Test Condition	Min	Тур	Max	Units		
Unless othe	Jnless otherwise noted: Typical conditions are at 5.5GHz, $T_A = 25^{\circ}$ C, VCC = 3.6V.							
Min and max	in and max are across frequency, supply, and temperature.							
Power Det	ector							
PDBW	Power Detector 3dB Bandwidth	RF two-tone spacing for which the PD output voltage swing is reduced to 0.707 of maximum.	2			MHz		
PDsens	Power Detector Sensitivity	Sensitivity between 10dBM and 20dBm output power.	10		100	mV/dB		
PD _{FREQ} Power Freque		Variation over 5.15 to 5.35. Variation is defined as (Max-Min).			1			
	Power Detector Variation over Frequency	Variation over 5.47 to 5.725. Variation is defined as (Max-Min).			1	dB		
		Variation over 5.725 to 5.825. Variation is defined as (Max-Min)			1.2			
VPDLIMITS	Power Detector Maximum Output Voltage Limits	Spec driven by input voltage range of the ADC monitoring the detector output.	0		1.2	V		
		No RF	170	225	290			
VDET	Power Detector Voltage	Pout =20 dBm CW	800	950	1050	mV		
ZDET	Detector Output Impedance				3	kΩ		
PD _{err}	Power Detector Error	Maximum delta in Tx output power measured between 3:1 VSWR load (all phases) and 50Ω at the ANT port.		+/-0.7		dB		

Symbol	Parameter	Test Condition M		Тур	Мах	Units
Tx Charac	teristics over 3.2-4.6V Supply	Range				
S ₁₁	Input Return Loss	TxA port with PA enabled	10	12		dB
S ₁₁	Output Return Loss	ANT port with PA enabled	7	10		dB
S ₂₁	Power Gain	Small signal gain in operating frequency band.	23	27	33	dB
		Over single 80MHz-channel		0.2	1	
ΔS_{21}	Power Gain Variation	5150 to 5700 MHz		0.2	2	dB
		5700 to 5875 MHz		1.3	3	
S ₂₁	Gain Limit at Ref-vco freq	3433-3917 MHz			24	dB
S ₂₁	Gain Limit at Ref-vco ÷ 2 Spur Frequency	1716-1959 MHz			20	dB
S ₁₂	Reverse Isolation	Over F _{RFlo}	39			dB
		256QAM, 80MHz, DEVM<-34dB, at 5.21, 5.53, 5.775GHz	14	17		d D as
DEVM' Linear Power	64QAM, 20MHz, DEVM<-30dB at 5.18 <f<5.825ghz< td=""><td>15</td><td>18</td><td></td><td>abm</td></f<5.825ghz<>	15	18		abm	
DEVM	Low Power EVM floor	256QAM, 80MHz, 5-14 dBm		-38		dBm
Mask _{11ac}	802.11ac Mask	P _{OUT} = 19dBm, BPSK, RBW = 100kHz, VBW = 30kHz, 10% duty cycle.	(-20 dE 80 MH	Meets 80 Br at 41M z offset, o	2.11ac r Hz offse -40 dBr a ffset)	nask t, -28 dBr at at 120 MHz
OOB20		P _{OUT} with 20MHz channel BW meeting -50 dBm/MHz. Emissions measured at 4.5 to 5.15GHz (operating frequency set to 5.18GHz) and 5.35 to 5.46GHz (operating frequency of 5.32 and 5.5GHz). Best effort only.		14		
OOB40 OOB Emissions	P _{OUT} with 40 MHz channel BW meeting -50 dBm/MHz. Emissions measured at 4.5 to 5.15GHz (operating frequency set to 5.18GHz) and 5.35 to 5.46GHz (operating frequency of 5.3 and 5.5GHz). Best effort only.		14		dBm	
OOB80		P _{OUT} with 80 MHz channel BW meeting -50 dBm/MHz Emissions measured at 4.5 to 5.15GHz (operating frequency set to 5.21GHz) and 5.35 to 5.46GHz (operating frequency of 5.29 and 5.53GHz). Best effort only.		14		
HD2, HD3	2 nd , 3 rd Harmonic PSD	Pout = 20dBm, 6Mbps, 20MHz BW		-27	-22	dBm/MHz

Icc Icc	P _{OUT} = 14 dBm		165 195				
	1	Pout = 15 dBm		175		20 mA	
	ICC	Pout = 16 dBm		185	220		
		Р _{ОUT} = 17 dBm		200			
Quiescent CurrentIqNo RF input. PA enabled, $V_{CC} = 3.3V$ 125mA							
¹ DEVM (dynamic EVM) is measured with 10% or 50% duty cycle and with burst durations from 60µs to 1ms.							

Typical Tx Characteristics at 3.3V						
Symbol	Parameter	Test Condition	Min	Тур	Max	Units
DEVM Lir	Linear Dower	256QAM, 80MHz, DEVM<-34dB, at 5.21, 5.53, 5.775GHz		16.5	6.5	
	Linear Power	64QAM, 20MHz, DEVM<-30dB at 5.18 <f<5.825ghz< td=""><td></td><td>17.5</td><td></td><td>иып</td></f<5.825ghz<>		17.5		иып
Mask _{11ac}	802.11ac Mask	P _{OUT} = 18.5dBm, BPSK, RBW = 100kHz, VBW = 30kHz, 10% duty cycle.	Meets 802.11ac mask (-20 dBr at 41MHz offset, -28 dBr 80 MHz offset, -40 dBr at 120 MHz offset)		nask t, -28 dBr at at 120 MHz	
HD2, HD3	2 nd , 3 rd Harmonic PSD	P _{OUT} = 20dBm, 6Mbps, 20MHz BW		-27		dBm/MHz
		Pout = 14 dBm		165		
I _{CC3V}	Icc	Роит = 15 dBm		175		mA
		Р _{ОUT} = 16 dBm		185		
		Роит = 17 dBm		200		
Quiescent Current	Iq	No RF input. PA enabled, $V_{CC} = 3.3V$		125		mA

Rx Characteristics over 3.2-4.6V Supply Range						
Symbol	Parameter	Test Condition	Min	Тур	Max	Units
Unless othe temperature	Unless otherwise noted: Typical conditions are at 5.5GHz, T _A = 25°C, VCC = 3.6V. Min and max are across frequency, supply, and temperature.					
S ₁₁	Input Return Loss	At ANT port for HG and bypass 10 14 Rx states				dB
S ₂₂	Output Return Loss	At RxA port for all Rx gain states 10 20				dB
Sec	Power Cain	LNA enabled	10	12.5	15	٩D
321		LNA bypass state (bypass)	-9	-7	-6	чБ
1501		Over single 80MHz-channel			0.5	dB
	Over entire F _{RFI0}			2		
Noise	LNA enabled, 25°C		2.8	3.5	d B	
Figure		LNA bypass state, 25°C		8		чD
IIP3 Input Third Order Intercept Point		At ANT port with LNA enabled. To be measured with total input power = -10dBm (-13 dBm/tone).	4	6.5		
	Input Third Order Intercept Point	At ANT port with LNA enabled and input tones at 2.412 and 2.437GHz. Total input power is 0 dBm (-3 dBm/tone).		10		dBm
		At ANT port with LNA bypassed. Measured with total input power = 5 dBm (2dBm/tone).	18	26.5		
L _{loop}	ANT→RxA Loopback Isolation	PA enabled (T/R switch in Tx) and LNA bypassed (Loopback)	35	40	45	dB
	Operating Current	LNA enabled		8.5	14.5	mA
Icc	Operating Current	LNA in bypass mode		1	100	μA

Functional State Table

Vc1	LNA_EN ¹	PA_EN ²	Default State				
1	1	0	Rx High Gain				
1	0	0	0 Rx Bypass State				
0	0	1	Тх				
0 0 0 Sleep Mode ³							
¹ LNA is on while LNA_EN is high and LNA is off and in bypass mode when LNA_EN is low and VC1 is high.							

 $^{\rm 2}$ PA_EN controls PA enable and T/R switch logic.

³ The FEM will be placed into sleep mode when all control signals are logic 0 or if they are all floating.

Part Markings

Figure 3 · Typical Part Markings

Figure 4 · Tx S-Parameters (VCC= 3.6V; 25°C)

Figure 6 · Tx S-Parameters at 25°C

Figure 5 · Tx S-Parameters at 25°C

Figure 7 · Tx S-Parameters at 25°C

Characteristic Curves: Tx Linearity: 20MHz BW

Figure 9 · Dynamic EVM (802.11ac, VHT-20, MCS 8)

Figure 10 · Dynamic EVM (802.11ac, VHT-20, MCS 8)

Characteristic Curves: Tx Linearity: 80MHz BW

Figure 13 · Dynamic EVM (802.11ac, VHT-80, MCS 9)

Characteristic Curves: Rx High Gain S-parameters

Figure 14 · Rx HG S-Parameters (VCC = 3.6V, 25°C)

Figure 16 · Rx HG S-Parameters at 25°C

Figure 15 · Rx HG S-Parameters at 25°C

Figure 17 · Rx HG S-Parameters at 25°C

Figure 18 · LX5586 Noise Figure at 25C

Characteristic Curves: Rx Bypass Mode S-parameters

Figure 19 · Rx BP S-parameters (VCC = 3.6V, 25°C)

Figure 21 · Rx BP S-parameters at 25°C

Figure 20 · Rx BP S-parameters at 25°C

Figure 22 · Rx BP S-parameters at 25°C

Package Outline Dimensions

The package is halogen free and meets RoHS2 and REACH standards.

(MSL1, 260°C per JEDEC J-STD-020)

DIMENSION	MILLIMETERS	
	MIN	MAX
A		0.40
L	0.15	0.25
b	0.20	0.30
D	2.45	2.55
D2	1.3	1.40
E	2.45	2.55
E2	1.3	1.40
е	0.50 BSC	
k	0.05 REF.	

Figure 23 · 16 Pin QFN Package Dimensions

Figure 24 · PCB Layout Footprint (Top View)

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2019 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,400 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.