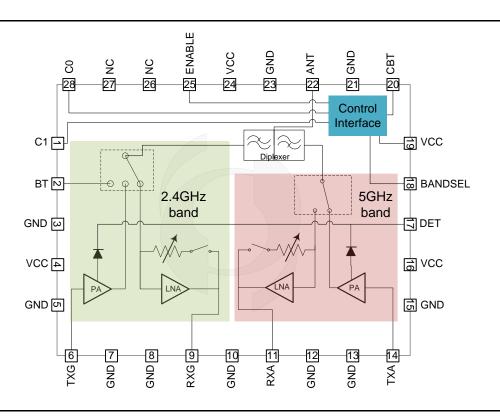


Dual Band 802.11ac Front End Module

Description

The LX5591 is a complete integrated dual band Front End Module (FEM) for an IEEE 802.11ac system. It includes highly linear 2.4 and 5GHz Power Amplifier (PAs) with power detector, 2.4 and 5 GHz Low Noise Amplifiers (LNA) with bypass capability, an integrated diplex filter, and T/R switches on both bands.


The LX5591 is available in a 28-pin 4mm x 3mm QFN Package.

Features

- Single Supply Voltage 3V to 3.6V
- Integrated 2.4 and 5GHz PA, LNA, SPDT T/R switch (5GHz) and SP3T T/R/BT switch (2.4GHz), and integrated diplex filter
- P_{OUT} = 16dBm (5 GHz) and 16dBm (2.4 GHz) with -35dB EVM (256QAM/80MHz)
- Bypassable LNA with Low NF
- RoHS2 Compliant & Halogen Free

Applications

- WiFi Access Points
- Notebooks

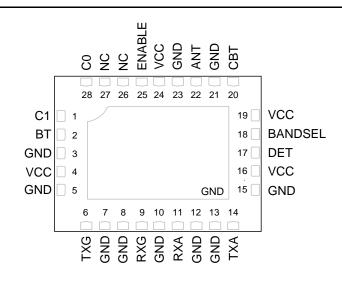


Figure 1 - Functional Block Diagram

Block Diagram

Pin Configuration

Figure 2 · Pinout (Top View)

Top mark

5591 YWWNNN = Trace code

•MSC

Ordering Information

Ambient Temperature	Туре	Package	Part Number	Packaging Type
-40°C to 85°C	RoHS2 compliant, Pb-free NiPdAu finish	QFN 4x3x0.9 28L	LX5591LQ -TR	Tape and Reel

Pin Descriptions

Pin Number	Pin Designator	Description		
1	C1	Mode control		
2	ВТ	Bluetooth RF input/output 50 Ohm, DC blocked		
3	GND	Ground		
4	VCC	3.3V nominal supply voltage		
5	GND	Ground		
6	TXG	Low-band TX RF input 50 Ohm, DC is tied to GND		
7	GND	Ground		
8	GND	Ground		
9	RXG	Low-band RX output 50 Ohm, DC blocked		
10	GND	Ground		
11	RXA	High-band RX output 50 Ohm, DC blocked		
12	GND	Ground		
13	GND	Ground		
14	ТХА	High-band TX RF input 50 Ohm, DC is tied to GND		
15	GND	Ground		
16	VCC	3.3V nominal supply voltage		
17	DET	Power Detector Output		
18	BANDSEL	Band select control pin		
19	VCC	Must be connected to 3.3V supply (logic high).		
20	СВТ	Bluetooth control pin		
21	GND	Ground		
22	ANT	Antenna (Common) RF Input/Output 50 Ohm, DC is tied to GND		
23	GND	Ground		
24	VCC	3.3V nominal supply voltage		
25	ENABLE	Chip enable control pin		
26	NC	NC		
27	NC	NC		
28	C0	Mode control pin		

Absolute Maximum Ratings

Parameter	Value	Units
DC supply voltage	4.2	V
Control input voltage (C0, C1, CBT, ENABLE, BANDSEL)	3.6	V
RF input power at TX ports (with 50 Ohm load at ANT port)	+10	dBm
Maximum junction temperature (TJ max)	+150	°C
Maximum storage temperature	-65 to +150	°C
Peak package solder reflow temperature (30 seconds maximum exposure)	260	°C
Electrostatic discharge Human Body Model (HBM), Class 1C	1000	V

Note: Although this device is designed to be as robust as possible, Electrostatic Discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

Exceeding any Absolute Maximum ratings could cause damage to the device. All voltages are with respect to GND. Currents are positive into, negative out of specified terminal. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" are not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Thermal Properties

Thermal Resistance	Тур	Units
G-band θ_{JP} Junction to Pad	22	
A-band θ_{JP} Junction to Pad	30	°C/W
G-band θ_{JA} Junction to Ambient	37	C/W
A-band θ_{JA} Junction to Ambient	45	

Note: The θ_{JA} numbers assume no forced airflow. Junction Temperature is calculated using $T_J = T_A +$ (Power dissipation x θ_{JA}) or $T_J = T_P +$ (Power dissipation x θ_{JP}). In particular, θ_{JA} is a function of the PCB construction. The stated number above is for a four-layer board in accordance with JESD-51 (JEDEC).

Electrical Characteristics - General

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Frflb	Low band frequency range		2.402		2.482	GHz
Frfhb	High band frequency range		5.15		5.85	GHZ
CHBW	Channel bandwidth	Low Band	20		40	MHz
СПВИ		High Band	20		80	
VCC	Supply voltage		3	3.3	3.6	
Vнi	Control pin logic levels (C0, C1, ENABLE,CBT,	High	VCC- 0.2	VCC	VCC+ 0.2	V
VLOW	BANDSEL)	Low	0	0	0.4	
I _{SLEEP}	Sleep mode current draw	ENABLE pin low, all control pins except CBT low, CBT in any state.		50		μA
Istandby	Standby current	In any Rx bypass state.		50		μΛ
ICRTL	Control pin current	Control pin current for all control pins except CBT. Current is measured with logic high applied to pin.		5		μA
Ісвт	CBT control pin current	BT control pin current consumption with logic high applied to pin.		5		-
Δt_{SLEEP}	Sleep to Rx switching time	Difference between edge of ENABLE control pin transition and time when Rx output has settled to within 90% of its final power.			500	ns
$\Delta t_{onPA} \Delta t_{offPA}$	Rx toTx switching time	Difference between edge of control pin transition and time when Tx output has settled to within 90% of its final power.			500	
$\Delta t_{onLNA,}$ Δt_{offLNA}	Tx to Rx switching timeDifference between edge of control pin transition and time when Rx output has settled to within 90% of its final power.				1000	ns
∆t _{rxlvi}	Rx gain switching time	Difference between edge of control pin transition and time when Ant/Rx output has settled to within 90% of its final power.			500	ns
T _{oper}	Operating temperature range	Case temperature	-40		85	°C

Electrical Characteristics - Detector

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
PD _{RANGE} -	Power detector range: Low band	Mode = TXG Power range over which PD _{SENS} requirements are met in low band.	7		22	dBm
PD _{RANGE} - hb	Power detector range: High band	Mode = TXA Power range over which PD _{SENS} requirements are met in high band.	7		21	авт
PDsens	Power detector sensitivity	$V_{\text{DET-RMS}}$ sensitivity. Sensitivity to be measured during first 16µs of preamble.	5		150	mV/dB
Power detector PD _{VAR,F} variation over frequency					±1	
PD _{VAR,VT}	Power detector variation over supply, and temperature	Variation in output power required to maintain a constant V _{DET-RMS} output voltage. Power range, LB = 10-22dBm			±2	dB
PD _{VAR,BW}	Power detector variation over channel bandwidth	Power range, HB = 10-21dBm			±0.75	
V _{DET-}	Detector voltage (RMS) – low band	Mode = TXG No RF Input		220		mV
NORF	Detector voltage (RMS) – high band	Mode = TXA No RF Input		220		mV
Vdet-	Detector voltage (Peak) – low band	Mode = TXG P _{OUT} = 22 dBm Peak voltage at DET pin Measured in first 16µs of preamble.		1000		mV
PEAK	Detector voltage (Peak) – high band	Mode = TXA Pou⊤ = 21dBm Peak voltage at DET pin Measured in first 16µs of preamble.		925		mV
Z _{DET}	Detector output impedance			2.25		kΩ

Electrical Characteristics – Transmit Low-Band

Symbol	Parameter	Parameter Test Conditions		Тур	Мах	Units	
S11 _{TXG}	Input return loss	At TXG port with low-band PA enabled		10			
S22 _{TXG}	Output return loss At ANT port with low-band PA enabled			8			
S21 _{TXG} Power gain		Small signal gain in operating frequency band.	29			dB	
ΔS21тх _G	Power gain variation	Over single 40MHz-channel at 2422, 2462MHz.		1			
		Over entire F _{RFLB}		2			
5		802.11ac, VHT40, MCS9 Dynamic EVM < -34 dB		16			
Plin, txg	Linear output power	802.11n, HT40, MCS7 Dynamic EVM < -30dB		18		dBm	
Pmask,txg	Spectral emission mask power 802.11b, 1 Mbps, Root Cosine			21		dBm	
Phd2,txg	2 nd Harmonic PSD power	802.11b, 1Mbps PSD < -48dBm/MHz		21		dBm	
Рндз,тхд	3 rd Harmonic PSD power	802.11b, 1Mbps PSD < -48dBm/MHz		21		dBm	
	On and the summer t	802.11ас, VHT40, MCS9 Роит = 15dBm		185			
Ісс,тхс	Operating current	802.11b, 1Mbps Pout = 20dBm		240		mA	
Icq,txg	G Quiescent current No RF input. PA enabled			150			
P _{IN,MAX,TXG}	Maximum RE drive at		0			dBm	

Electrical Characteristics – Receive Low-Band

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
S11 _{RXG}	Input return loss	At ANT port for all low-band Rx gain states		10		dB
S22 _{RXG}	Output return loss	At RXG port for all low-band Rx gain states		10		aв
		Control Logic C1 C0				
		LNA Enabled Low Low		12		
S21 _{RXG}	Power gain	LNA Bypassed Low High Low Attenuation		-3		dB
		LNA Bypassed High Low High Attenuation		-9		
Gstep,rxg	Gain step	Change in gain between high and low gain state. High Gain [C1, C0] = [L,L] Bypass, Max Atten. [C1, C0] = [H,L]		21		dB
∆S21 _{RXG}	Power gain variation	Over single 40MHz channel at 2422 and 2462MHz		1		dB
	. ener gant tanallen	Over entire F _{RFLB}		2		
NFRXG	Naisa figura	Control Logic C1 C0				dB
NF RXG	Noise figure	LNA Enabled Low Low		3		aв
	Input Third Order Intercept Point	At ANT port with LNA enabled. $P_{IN} = -15 \text{ dBm}$ (Total power) 10MHz Tone spacing		7		dDaa
IIP3 _{RXG}		At ANT port with LNA bypassed. Measured with 0 dBm input power (total) and 10MHz tone spacing.		30		dBm
ICC,RXG	Operating current	LNA enabled		9		mA

Electrical Characteristics – Bluetooth

Symbol	Parameter	Test Conditions		Тур	Max	Units
S11 _{ВТ}	Input return loss	At ANT port for CBT high		8		
S22вт	Output return loss	At BT port for CBT high		10		dB
S21 _{BT}	Insertion loss	ANT port to BT port with CBT high		2.2		uБ
ΔS21 _{BT}	Insertion loss variation	Over entire F _{RFLB}		±0.25		

Electrical Characteristics – Transmit High-Band

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
S11 _{TXA}	Input return loss	At TXA port with high-band PA enabled		10		
S22 _{TXA}	Output return loss	At ANT port with high-band PA enabled		8		
S21 TXA	Power gain	Small signal gain in operating frequency band.		27		dB
ΔS21τχα	Power gain variation	Over single 80MHz-channel at 5.21, 5.53 and 5.775 GHz		1		
		Over entire F _{RFLB}		2		
D		802.11ac, VHT80, MCS9 Dynamic EVM < -34 dB		16		dBm
Plin,txa	Linear output power	802.11n, HT40, MCS7 Dynamic EVM < -30dB		18		иып
P _{MASK,TXA}	Spectral emission mask power 802.11ac, VHT20, MCS0			20		dBm
P _{HD2,TXA}	2 nd Harmonic PSD power	802.11ac, VHT20, MCS0 PSD < -48dBm/MHz		20		dBm
P _{HD3,TXA}	3 rd Harmonic PSD power	802.11ac, VHT20, MCS0 PSD < -48dBm/MHz		20		dBm
1	Operating ourrant	802.11ac, VHT80, MCS9 Роцт =15 dBm		210		
Ісс,тха	Operating current	802.11ac, VHT20, MCS9 Роцт =19 dBm		290		mA
ICCQ,TXA	Quiescent current	No RF input. PA enabled.		120		
Pin,max,txa	Maximum RF drive at TXA pin	Continuous into 6:1 VSWR at Ant port	0			dBm

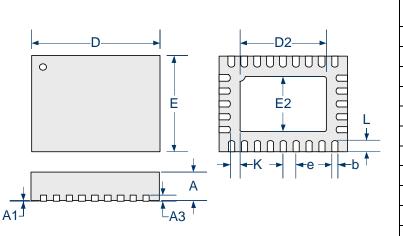
Electrical Characteristics – Receive High-Band

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
S11 _{RXA}	Input return loss	At ANT port for all high-band Rx gain states		9		
S22 _{RXA}	Output return loss	At RXA port for all high-band Rx gain states		10		
		Control Logic C1 C0				
		LNA Enabled Low Low		11		
S21 _{RXA}	Power gain	LNA Bypassed Low High Low Attenuation		-4		dB
		LNA Bypassed High Low High Attenuation		-7		
Gstep,rxa	Gain step	Change in gain between high and low gain state. High Gain [C1, C0] = [L,L] Bypass, Max Atten. [C1, C0] = [H,L]		18		
4.004	Deven and a constantion	Over single 80MHz channel		1		
ΔS21 _{RXA}	Power gain variation	Over entire F _{RFHB}		2.6		
		Control Logic C1 C0				15
NFrxa	Noise figure	LNA Enabled Low Low		3.3		dB
	Input Third Order Intercept Point	At ANT port with LNA enabled. $P_{IN} = -15 \text{ dBm}$ (Total power) 10MHz Tone spacing		7		dDate
IIP3 _{RXA}		At ANT port with LNA bypassed. $P_{IN} = 0 \text{ dBm}$ (Total power) 10MHz Tone spacing	28			dBm
Icc,rxa	Operating current	LNA enabled		11		mA

Functional State Table

BAND SEL	C1	C0	СВТ	ENABLE	Mode Name	State
0	0	0	0	1	RXG-HG	Low band Rx mode LNA in high gain state.
0	0	1	0	1	RXG-BP1	Low band Rx mode LNA bypassed Minimum attenuation
0	1	0	0	1	RXG-BP2	Low band Rx mode LNA bypassed Maximum attenuation
0	1	1	0	1	TXG	Low band Tx mode PA enabled
0	х	х	1	1	ВТ	Bluetooth mode All low band Rx and Tx functions are disabled.
1	0	0	0	1	RXA-HG	High band Rx mode LNA in high gain state.
1	0	1	0	1	RXA-BP1	High band Rx mode LNA bypassed Minimum attenuation.
1	1	0	0	1	RXA-BP2	High band Rx mode LNA bypassed Maximum attenuation
1	1	1	0	1	ТХА	High band Tx mode PA enabled
1	0/1	0/1	1	1	BT-HB	Concurrent high band + BT mode High band RF path operates according to C0 & C1 settings. Low band RF path in BT mode.
х	х	х	1	0	BT-SLEEP	Standby / Sleep with BT mode. BT RF path enabled.
x	х	х	0	0	SLEEP	Standby / Sleep mode State of RF switches are undefined.

Notes:


X=Don't care; control pin can be either logic LOW or HIGH

All control inputs must be driven to either logic LOW or HIGH. Proper operation is not guaranteed if any control pin is left floating or in a HI-Z condition.

Pull-down resistors >1M Ω are present on BANDSEL, ENABLE, C0, and C1 control pin inputs, but should not be relied on for proper operation.

Package Outline Dimensions

The package is halogen free and meets RoHS2 and REACH standards.

DIM	Millimeters		
	MIN	TYP	MAX
А	0.8	0.9	1.0
A1	0.00	0.02	0.05
A3	0.20 Ref		
b	0.15	0.20	0.25
D	3.95	4.00	4.05
Е	2.95	3.00	3.05
е	0.35	0.40	0.45
D2	2.55	2.70	2.80
E2	1.55	1.70	1.80
К	0.20	N/A	N/A
L	0.25	0.35	0.40

Figure 3 - 28 Pin QFN Package Dimensions

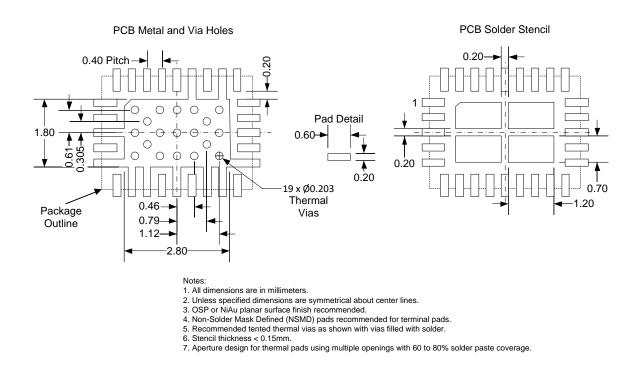
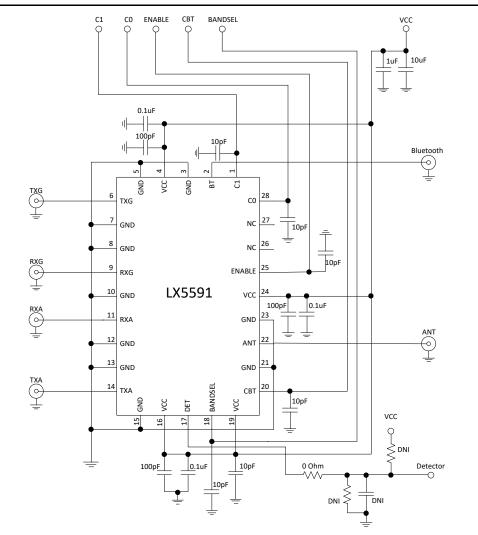



Figure 4 · PCB Layout Footprint (Top View)

Evaluation Board Schematic

Notes :

1. Place all bypass caps close to pins.

2. DNI - Do Not Install. Prepare the place holder.

3. BT, RXG, and RXA pins are internally DC blocked with a series capacitor.

If an external DC voltage is applied to these pins, the RF signal may be distorted because the combination of DC+RF signal can trigger the ESD diodes on these pins. If any significant external DC voltage is applied to these pins, external blocking capacitors may be required.

4. TXG and TXA pins are shorted to GND through internal inductors.DC blocking capacitors will be required if an external DC voltage is applied to these pins.

Figure 5 - Evaluation Board Schematic

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2017 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,400 employees globally. Learn more at **www.microsemi.com**.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.