

# Bluetooth® Dual Mode Stereo Audio SoC

## Introduction

The IS2062/64 products are part of the Bluetooth Dual Mode family of stereo audio System on Chip (SoC) devices.

- · Flash-based devices:
  - The IS2062GM and IS2064GM SoCs are offered in LGA packages and contain in-package Flash, which allows for firmware updates.
- ROM-based devices:
  - The IS2064S and IS2064B support Stereo Mode functionality in ROM. This allows for audio playback on two devices. Some Bluetooth parameters can be customized and stored in an internal EEPROM. These products are offered in QFN and BGA packages.

## **Features**

- Qualified for Bluetooth v5.0 Specification
- Bluetooth 5.0 Core System Component QDID is 110017
- Bluetooth Audio Profiles:
  - A2DP 1.3
  - AVRCP 1.6
  - HFP 1.6
  - HSP 1.2
  - SPP 1.2
- Bluetooth Low Energy (BLE):
  - Generic access service
  - Device information service
  - Proprietary services for data communication
  - Apple Notification Center Service (ANCS)
- · Supports Bluetooth Low Energy data rate up to 1Mbits/s
- Supports 16 kHz High Definition (HD) Voice
- Audio Interfaces:
  - I<sup>2</sup>S digital output (IS2064GM and IS2064S/B)
  - Analog output
  - Auxiliary input
  - Analog microphone input
- Supports Firmware Upgrade (IS2062GM/64GM)
- Integrated Battery Charger (up to 350 mA)

## **Baseband Features**

- 16 MHz main clock input
- Built-in Flash memory for programing (8 Mbit) (IS2062GM/64GM)
- **Built-in EEPROM**
- Connects simultaneously to two hosts over HFP/A2DP and SPP/BLE
- Adaptive Frequency Hopping (AFH)

## **Audio Codec**

- Sub-Band Coding (SBC) decoding, Advanced Audio Coding (AAC) decoding (IS2062GM/64GM), and LDAC decoding (IS2064GM-0L3)
- 20-bit Digital-to-Analog Converter (DAC) with 98 dB SNR
- 16-bit Analog-to-Digital Converter (ADC) with 92 dB SNR
- Supports up to 24-bit, 96 kHz I<sup>2</sup>S digital audio (IS2064GM and IS2064S/B)

## **RF Features**

- Transmit output power: +2 dBm
- Receive sensitivity: -90 dBm (2 Mbps Enhanced Data Rate (EDR))
- Combined Tx/Rx RF terminal simplifies external matching and reduces external antenna switches
- Tx/Rx RF switch for Class 2 or Class 3 applications
- Integrated synthesizer requires no external voltage-controlled oscillator (VCO), varactor diode, and resonator or loop filter
- Crystal oscillator with built-in digital trimming compensates for temperature or process variations

# DSP Audio Processing

- Includes a 32-bit DSP core
- Synchronous Connection-Oriented (SCO) channel operation
- 8/16 kHz noise suppression
- 8/16 kHz acoustic echo cancellation
- Modified Sub-Band Coding (MSBC) decoder for wide band speech
- Built-in High Definition Clean Audio (HCA) algorithms for both narrow band and wideband speech processing
- Packet Loss Concealment (PLC)
- Built-in audio effect algorithms to enhance audio streaming
- Serial Copy Management System (SCMS-T) content protection

## Package Details

### **Table 1. PACKAGE DETAILS**

| Parameter    | IS2062GM | IS2064GM | IS2064S | IS2064B |
|--------------|----------|----------|---------|---------|
| Package type | LGA      | LGA      | QFN     | BGA     |

DS60001409G-page 2 **Datasheet** 

| continued          |          |          |         |         |
|--------------------|----------|----------|---------|---------|
| Parameter          | IS2062GM | IS2064GM | IS2064S | IS2064B |
| Pin count          | 56       | 68       | 68      | 61      |
| Contact/Lead Pitch | 0.4      | 0.4      | 0.4     | 0.5     |
| Package size       | 7x7x1.0  | 8x8x1.0  | 8x8x0.9 | 5x5x0.9 |

Note: All dimensions are in millimeters (mm) unless specified.

## **Peripherals**

- · UART interface for host MCU communication
- Full-speed USB 1.1 interface (IS2064GM and IS2064S)
- · Built-in lithium-ion (Li-lon) and lithium-polymer (Li-Po) battery charger (up to 350 mA)
- Integrated 1.8V and 3V configurable voltage regulators
- · Built-in ADC for battery monitoring, voltage sensor and charger thermal protection
- Built-in under voltage protection (UVP)
- LED drivers: 2 (IS2062GM and IS2064B) and 3 (IS2064GM and IS2064S)

# **Operating Condition**

· Operating voltage: 3.2V to 4.2V

• Operating temperature : -20°C to +70°C

# **Applications**

- Headsets and headphones (IS2062GM and IS2064B)
- · Portable speakers
- · Earbuds and neckbands (IS2064B)

# **Table of Contents**

| Intr | oduct        | tion                             | 1  |
|------|--------------|----------------------------------|----|
| Fea  | atures       | S                                | 1  |
| Bas  | sebar        | nd Features                      | 2  |
| Aud  | dio Co       | odec                             | 2  |
| RF   | Feat         | ures                             | 2  |
|      |              | dio Processing                   |    |
|      |              | Details                          |    |
|      |              |                                  |    |
|      | •            | als                              |    |
| Op   | eratin       | g Condition                      | 3  |
| Apı  | olicati      | ons                              | 3  |
| 1.   | Devi         | ce Overview                      | 6  |
|      | 1.1.<br>1.2. | Key Features Pin Details         |    |
| 2    |              | 0                                |    |
| ۷.   | 2.1.         | Digital Signal Processor         |    |
|      | 2.2.         | Codec                            | 24 |
|      | 2.3.         | Auxiliary Port                   |    |
|      | 2.4.         | Analog Speaker Output            | 27 |
| 3.   | Trans        | sceiver                          | 29 |
|      | 3.1.         | Transmitter                      | 29 |
|      | 3.2.         | Receiver                         |    |
|      | 3.3.         | Synthesizer                      |    |
|      | 3.4.         |                                  | 29 |
|      | 3.5.         | Adaptive Frequency Hopping (AFH) | 29 |
| 4.   | Micro        | ocontroller                      | 30 |
|      | 4.1.         | Memory                           | 30 |
|      | 4.2.         | External Reset                   | 30 |
|      | 4.3.         | Reference Clock                  | 30 |
| 5.   | Powe         | er Management Unit               | 32 |
|      | 5.1.         | Charging a Battery               | 32 |
|      | 5.2.         | Voltage Monitoring               | 32 |
|      | 5.3.         | Low Dropout Regulator            |    |
|      | 5.4.         | Switching Regulator              | 33 |

|     | 5.5.           | LED Driver                             | 33 |
|-----|----------------|----------------------------------------|----|
|     | 5.6.           | Under Voltage Protection               | 33 |
|     | 5.7.           | Ambient Detection                      | 33 |
| 6.  | Appl           | ication Information                    | 35 |
|     | 6.1.           | Power Supply                           |    |
|     | 6.2.           | Host MCU Interface                     |    |
|     | 6.3.           | Configuration and Firmware Programming | 41 |
|     | 6.4.           | General Purpose I/O pins               | 41 |
|     | 6.5.           | I <sup>2</sup> S Mode Application      | 42 |
| 7.  | Ante           | nna Placement Rule                     | 44 |
| 8.  | Elec           | trical Characteristics                 | 46 |
|     | 8.1.           | Timing Specifications                  | 53 |
| 9.  | Pack           | aging Information                      | 56 |
|     | 9.1.           | Package Marking Information            | 56 |
|     | 9.2.           | Package Details                        | 57 |
| 10. | Refle          | ow Profile and Storage Condition       | 66 |
|     | 10.1.          | Solder Reflow Recommendation           | 66 |
|     | 10.2.          | Storage Condition                      | 66 |
| 11. | Orde           | ring Information                       | 67 |
| 12. | Refe           | rence Circuit                          | 68 |
| 13. | Doc            | ument Revision History                 | 88 |
| The | Mic            | rochip Web Site                        | 90 |
| Cu  | stome          | er Change Notification Service         | 90 |
| Cu  | stome          | er Support                             | 90 |
| Mic | rochi          | p Devices Code Protection Feature      | 90 |
| Leç | jal No         | otice                                  | 91 |
| Tra | dema           | arks                                   | 91 |
| Qu  | ality <b>I</b> | Management System Certified by DNV     | 92 |
| ۱۸۸ | rldwi          | de Sales and Service                   | 03 |

## 1. Device Overview

The IS2062/64 SoC integrates:

- · Bluetooth 5.0 dual-mode radio transceiver
- Power Management Unit (PMU)
- Microcontroller (MCU)
- · Audio codec
- · Crystal oscillator
- 32-bit DSP
- Flash (IS2062GM/64GM)
- EEPROM

The IS2062/64 SoC is configured using an UI tool.

**Note:** The UI tool is a Windows<sup>®</sup> based configuration utility tool, which is available for download from the Microchip website at http://www.microchip.com/wwwproducts/en/IS2062 and http://www.microchip.com/wwwproducts/en/IS2064.

The following figure illustrates the block diagram of the IS2062/64 SoC.

Antenna Bluetooth Classic **DSP** and Low Energy Audio Transceiver Codec DSP Core I<sup>2</sup>S (Digital Signal) External Digital Baseband DSP (NOTE 2, 3 and 4) Core 16 MHz ROM Crystal RF Controller Speaker 1 ☐ 2-Channel DAC RAM Speaker 2 MAC Modem IS2062/64 (MIC 1 2-Channel Microphones ADC PMU (MIC 2) MCU Battery Battery (NOTE 1 and 4) Charger Core Power AUX\_In Switch (Analog Signal) Flash Memory RAM (NOTE 1 and 2) 1.8V Regulator ROM 3.0V **EEPROM** LDO(s) LED USB 1.1 I<sup>2</sup>C Driver (NOTE 2 and 3) LED **UART** IO Port GPIO ◀ MCU

Figure 1-1. BLOCK DIAGRAM OF IS2062/64 SOC

### Note:

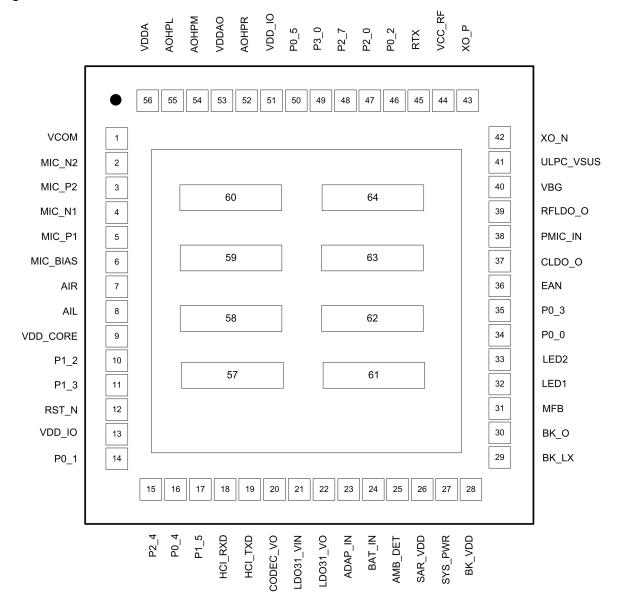
- 1. IS2062GM
- 2. IS2064GM
- 3. IS2064S
- 4. IS2064B

# 1.1 Key Features

The following table provides the key features of the IS2062/64 family.

Table 1-1. KEY FEATURES

| Feature IS2062GM |                     | IS206        | 4GM          | IS2064S | IS2064B |  |
|------------------|---------------------|--------------|--------------|---------|---------|--|
| reature          | 132002GW            | IS2064GM-012 | IS2064GM-0L3 | 1320043 | 1320046 |  |
| Application      | Headset/<br>Speaker | Speaker      | Speaker      | Speaker | Headset |  |
| Flash/ROM        | Flash               | Flash        | Flash        | ROM     | ROM     |  |


| continued                                  |                      |                      |                      |           |           |
|--------------------------------------------|----------------------|----------------------|----------------------|-----------|-----------|
| Feature                                    | IS2062GM             | IS206                | 34GM                 | IS2064S   | IS2064B   |
| reature                                    | 1020020111           | IS2064GM-012         | IS2064GM-0L3         | 1020040   | 1020040   |
| Stereo mode                                | Yes/<br>Programmable | Yes/<br>Programmable | Yes/<br>Programmable | Yes       | Yes       |
| Package                                    | LGA                  | LGA                  | LGA                  | QFN       | BGA       |
| Pin/Ball count                             | 56                   | 68                   | 68                   | 68        | 61        |
| Dimensions (mm)                            | 7x7                  | 8x8                  | 8x8                  | 8x8       | 5x5       |
| Audio DAC output                           | 2-channel            | 2-channel            | NA                   | 2-channel | 2-channel |
| DAC (single-<br>ended) SNR at<br>2.8V (dB) | -98                  | -98                  | NA                   | -98       | -98       |
| DAC (capless)<br>SNR at 2.8V (dB)          | -96                  | -96                  | NA                   | -96       | -96       |
| ADC SNR at 2.8V (dB)                       | -92                  | -92                  | -92                  | -92       | -92       |
| I <sup>2</sup> S digital output            | No                   | Yes                  | Yes                  | Yes       | Yes       |
| Analog output                              | Yes                  | Yes                  | No                   | Yes       | Yes       |
| Analog Auxiliary-<br>Input                 | Yes                  | Yes                  | Yes                  | Yes       | Yes       |
| Mono analog microphone                     | 2                    | 1                    | 1                    | 1         | 2         |
| External audio amplifier interface         | Yes                  | Yes                  | Yes                  | Yes       | Yes       |
| UART                                       | Yes                  | Yes                  | Yes                  | Yes       | Yes       |
| Full-speed USB<br>1.1                      | No                   | Yes                  | Yes                  | Yes       | No        |
| LED driver                                 | 2                    | 3                    | 3                    | 3         | 2         |
| Integrated DC-DC step-down regulator       | 1                    | 1                    | 1                    | 1         | 1         |
| Integrated LDO regulator                   | 2                    | 2                    | 2                    | 2         | 2         |
| DC 5V adaptor input                        | Yes                  | Yes                  | Yes                  | Yes       | Yes       |
| Battery charger<br>(350 mA<br>maximum)     | Yes                  | Yes                  | Yes                  | Yes       | Yes       |

| continued                                           |          |              |              |         |         |  |  |  |  |
|-----------------------------------------------------|----------|--------------|--------------|---------|---------|--|--|--|--|
| Feature                                             | IS2062GM | IS206        | 64GM         | IS2064S | IS2064B |  |  |  |  |
| reature                                             | 132002GW | IS2064GM-012 | IS2064GM-0L3 | 1320043 | 1320046 |  |  |  |  |
| ADC for charger thermal protection                  | Yes      | Yes          | Yes          | Yes     | Yes     |  |  |  |  |
| Under Voltage<br>Protection (UVP)                   | Yes      | Yes          | Yes          | Yes     | Yes     |  |  |  |  |
| GPIO                                                | 10       | 15           | 15           | 15      | 10      |  |  |  |  |
| EEPROM                                              | 128K     | 128K         | 128K         | 256K    | 128K    |  |  |  |  |
| Multitone                                           | Yes      | Yes          | Yes          | Yes     | Yes     |  |  |  |  |
| DSP functions<br>(audio playback<br>and voice call) | Yes      | Yes          | Yes          | Yes     | Yes     |  |  |  |  |
| BLE                                                 | Yes      | Yes          | Yes          | Yes     | Yes     |  |  |  |  |
| Bluetooth profiles                                  | <u>'</u> |              |              |         |         |  |  |  |  |
| A2DP                                                | 1.3      | 1.3          | 1.3          | 1.3     | 1.3     |  |  |  |  |
| AVRCP                                               | 1.6      | 1.6          | 1.6          | 1.6     | 1.6     |  |  |  |  |
| HFP                                                 | 1.6      | 1.6          | 1.6          | 1.6     | 1.6     |  |  |  |  |
| HSP                                                 | 1.2      | 1.2          | 1.2          | 1.2     | 1.2     |  |  |  |  |
| SPP                                                 | 1.2      | 1.2          | 1.2          | 1.2     | 1.2     |  |  |  |  |

## 1.2 Pin Details

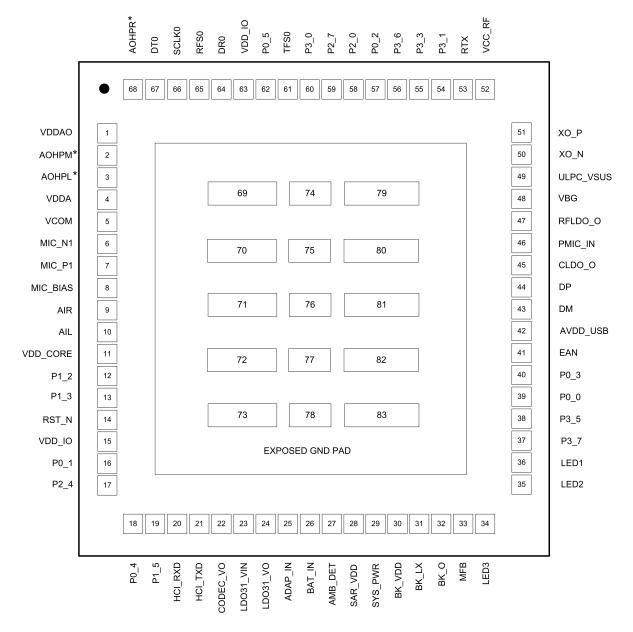

The following figure illustrates the pin diagram of the IS2062GM.

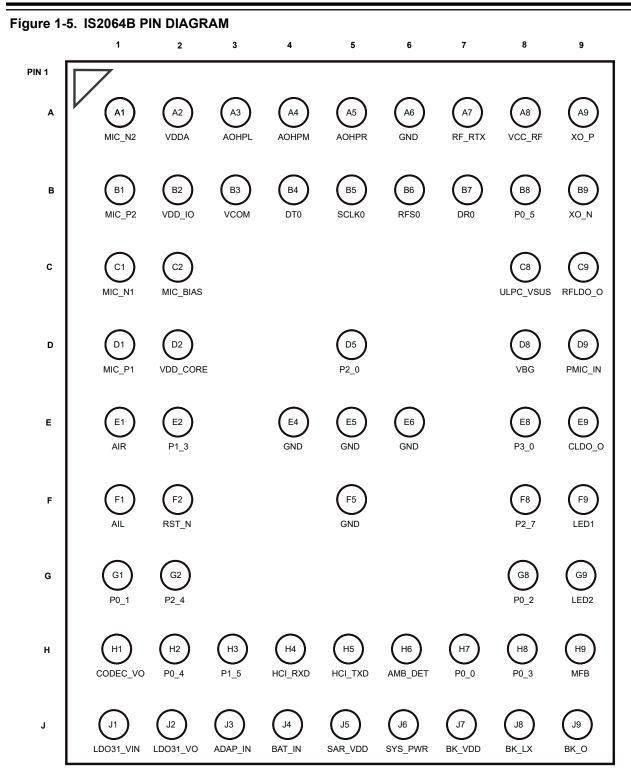
Figure 1-2. IS2062GM PIN DIAGRAM



The following figure illustrates the pin diagram of the IS2064GM.

Figure 1-3. IS2064GM PIN DIAGRAM




1. IS2064GM-0L3 does not support an analog output from the DAC. The \* on AOHPR, AOHPM, and AOHPL reflect the affected pins.

The following figure illustrates the pin diagram of the IS2064S.

Figure 1-4. IS2064S PIN DIAGRAM



The following figure illustrates the pin diagram of the IS2064B.



The following table provides the pin description of the IS2062GM, IS2064GM, IS2064S and IS2064B.

**Note:** The conventions used in the below table are indicated as follows:

- I = Input pin
- O = Output pin
- I/O = Input/Output pin
- P = Power pin

# Table 1-2. PIN DESCRIPTION

| IS2062G<br>M Pin No | IS2064G<br>M-012<br>and<br>IS2064S<br>Pin No | IS2064G<br>M-0L3<br>Pin No | IS2064B<br>Ball No | Pin Type | Pin Name | Description                                                                               |
|---------------------|----------------------------------------------|----------------------------|--------------------|----------|----------|-------------------------------------------------------------------------------------------|
| 53                  | 1                                            | 1                          | _                  | Р        | VDDAO    | Power supply (3.0V to 3.6V) dedicated to codec output amplifiers; connect to CODEC_VO pin |
| 54                  | 2                                            | _                          | A4                 | 0        | АОНРМ    | Headphone common mode output/sense input                                                  |
| 55                  | 3                                            | _                          | A3                 | 0        | AOHPL    | Left channel, analog headphone output                                                     |
| 56                  | 4                                            | 4                          | A2                 | Р        | VDDA     | Analog reference voltage. Do not connect, for internal use only                           |
| 1                   | 5                                            | 5                          | В3                 | Р        | VCOM     | Internal biasing voltage for codec, connect a 4.7 µF capacitor to ground                  |
| 4                   | 6                                            | 6                          | C1                 | I        | MIC_N1   | MIC1 mono differential analog negative input                                              |
| 5                   | 7                                            | 7                          | D1                 | I        | MIC_P1   | MIC1 mono differential analog positive input                                              |
| 2                   | _                                            | _                          | A1                 | I        | MIC_N2   | MIC2 mono differential analog negative input                                              |
| 3                   | _                                            | _                          | B1                 | I        | MIC_P2   | MIC2 mono differential analog positive input                                              |
| 6                   | 8                                            | 8                          | C2                 | Р        | MIC_BIAS | Electric microphone biasing voltage                                                       |
| 7                   | 9                                            | 9                          | E1                 | I        | AIR      | Right channel, single-ended analog input                                                  |
| 8                   | 10                                           | 10                         | F1                 | I        | AIL      | Left channel, single-ended analog input                                                   |

| cont                | continued                                    |                            |                    |          |              |                                                                                                                                                                                                                  |  |  |  |  |  |
|---------------------|----------------------------------------------|----------------------------|--------------------|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| IS2062G<br>M Pin No | IS2064G<br>M-012<br>and<br>IS2064S<br>Pin No | IS2064G<br>M-0L3<br>Pin No | IS2064B<br>Ball No | Pin Type | Pin Name     | Description                                                                                                                                                                                                      |  |  |  |  |  |
| 9                   | 11                                           | 11                         | D2                 | Р        | VDD_COR<br>E | Core 1.2V power input; connect to CLDO_O pin; connect to GND through a 1 µF (X5R/X7R) capacitor                                                                                                                  |  |  |  |  |  |
| 10                  | 12                                           | 12                         | _                  | 0        | P1_2         | I <sup>2</sup> C SCL (Internal EEPROM clock), do not connect                                                                                                                                                     |  |  |  |  |  |
| 11                  | 13                                           | 13                         | E2                 | I/O      | P1_3         | I <sup>2</sup> C SDA (Internal EEPROM data) requires external 4.7 kOhm pull-up resistor                                                                                                                          |  |  |  |  |  |
| 12                  | 14                                           | 14                         | F2                 | I        | RST_N        | System Reset (active-low)                                                                                                                                                                                        |  |  |  |  |  |
| 13                  | 15                                           | 15                         | B2                 | Р        | VDD_IO       | I/O power supply input (3.0V to 3.6V); connect to LDO31_VO; connect to GND through a 1 µF (X5R/X7R) capacitor                                                                                                    |  |  |  |  |  |
| 14                  | 16                                           | 16                         | G1                 | I/O      | P0_1         | Configurable control or indication pin (Internally pulled up, if configured as an input)  • FWD key when Class 2 RF (default), active-low  • Class 1 Tx control signal for external RF Tx/Rx switch, active-high |  |  |  |  |  |

| cont                | inued                                        |                            |                    |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------|----------------------------------------------|----------------------------|--------------------|----------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS2062G<br>M Pin No | IS2064G<br>M-012<br>and<br>IS2064S<br>Pin No | IS2064G<br>M-0L3<br>Pin No | IS2064B<br>Ball No | Pin Type | Pin Name      | Description                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15                  | 17                                           | 17                         | G2                 | I/O      | P2_4          | For IS2062GM/64GM (Flash variant):  External address bus negative, System configuration pin along with the P2_0 and EAN pins can be used to set the SoC in any one of the following three modes:  • Application mode (for normal operation)  • Test mode (to change EEPROM values), and  • Write Flash mode (to load a new firmware into the SoC), see Table 6-1  For IS2064S/B (ROM variant): Do not connect this pin |
| 16                  | 18                                           | 18                         | H2                 | I/O      | P0_4          | Configurable control or indication pin (Internally pulled-up, if configured as an input)  Out_Ind_1                                                                                                                                                                                                                                                                                                                    |
| 17                  | 19                                           | 19                         | НЗ                 | I        | P1_5          | Configurable control or indication pin (Internally pulled-up, if configured as an input)  • Slide switch detector, active-high  • Out_Ind_1  • Master/Slave mode control                                                                                                                                                                                                                                               |
| 18                  | 20                                           | 20                         | H4                 | I        | HCI_RXD       | HCI UART data input                                                                                                                                                                                                                                                                                                                                                                                                    |
| 19                  | 21                                           | 21                         | H5                 | 0        | HCI_TXD       | HCI UART data output                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20                  | 22                                           | 22                         | H1                 | Р        | CODEC_V<br>O  | LDO output for codec power                                                                                                                                                                                                                                                                                                                                                                                             |
| 21                  | 23                                           | 23                         | J1                 | Р        | LDO31_VI<br>N | LDO input, connect to SYS_PWR                                                                                                                                                                                                                                                                                                                                                                                          |
| 22                  | 24                                           | 24                         | J2                 | I        | LDO31_VO      | 3V LDO output for VDD_IO power, do not calibrate                                                                                                                                                                                                                                                                                                                                                                       |

| cont                | continued                                    |                            |                    |          |          |                                                                                                                                                 |  |  |  |
|---------------------|----------------------------------------------|----------------------------|--------------------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| IS2062G<br>M Pin No | IS2064G<br>M-012<br>and<br>IS2064S<br>Pin No | IS2064G<br>M-0L3<br>Pin No | IS2064B<br>Ball No | Pin Type | Pin Name | Description                                                                                                                                     |  |  |  |
| 23                  | 25                                           | 25                         | J3                 | Р        | ADAP_IN  | 5V power adapter input, used to charge the battery in case of Lilon battery power applications                                                  |  |  |  |
| 24                  | 26                                           | 26                         | J4                 | Р        | BAT_IN   | Power Supply input.  Voltage range: 3.2V to 4.2V.  Source can either be a Li-lon battery or any other power rail on the host board              |  |  |  |
| 25                  | 27                                           | 27                         | H6                 | Р        | AMB_DET  | Analog input for ambient temperature detection                                                                                                  |  |  |  |
| 26                  | 28                                           | 28                         | J5                 | Р        | SAR_VDD  | SAR 1.8V input; connect to BK_O pin                                                                                                             |  |  |  |
| 27                  | 29                                           | 29                         | J6                 | Р        | SYS_PWR  | System power output derived from the ADAP_IN or BAT_IN. Do not connect, for internal use only                                                   |  |  |  |
| 28                  | 30                                           | 30                         | J7                 | I        | BK_VDD   | 1.8V buck VDD power input; connect to SYS_PWR pin                                                                                               |  |  |  |
| 29                  | 31                                           | 31                         | J8                 | I        | BK_LX    | 1.8V buck regulator feedback path                                                                                                               |  |  |  |
| 30                  | 32                                           | 32                         | J9                 | I        | вк_о     | 1.8V buck regulator output. Do not connect to other devices. For internal use only                                                              |  |  |  |
| 31                  | 33                                           | 33                         | H9                 | Р        | MFB      | <ul> <li>Multi-Function Button and power-on key</li> <li>UART RX_IND, active-high (used by host MCU to wake up the Bluetooth system)</li> </ul> |  |  |  |
| _                   | 34                                           | 34                         | _                  | Р        | LED3     | LED driver 3                                                                                                                                    |  |  |  |
| 33                  | 35                                           | 35                         | G9                 | Р        | LED2     | LED driver 2                                                                                                                                    |  |  |  |
| 32                  | 36                                           | 36                         | F9                 | Р        | LED1     | LED driver 1                                                                                                                                    |  |  |  |

| cont                | inued                                        |                            |                    |          |          |                                                                                                                                                                                                                            |
|---------------------|----------------------------------------------|----------------------------|--------------------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS2062G<br>M Pin No | IS2064G<br>M-012<br>and<br>IS2064S<br>Pin No | IS2064G<br>M-0L3<br>Pin No | IS2064B<br>Ball No | Pin Type | Pin Name | Description                                                                                                                                                                                                                |
| _                   | 37                                           | 37                         | _                  | Р        | P3_7     | Configurable control or indication pin (Internally pulled-up, if configured as an input)  • UART TX_IND, active-low (used by Bluetooth system to wake-up the host MCU)                                                     |
| _                   | 38                                           | 38                         | _                  | Р        | P3_5     | Configurable control or indication pin (Internally pulled-up, if configured as an input)                                                                                                                                   |
| 34                  | 39                                           | 39                         | H7                 | I/O      | P0_0     | Configurable control or indication pin (Internally pulled-up, if configured as an input)  • Slide switch detector, active-high                                                                                             |
| 35                  | 40                                           | 40                         | Н8                 | I/O      | P0_3     | Configurable control or indication pin (Internally pulled-up, if configured as an input)  REV key (default), active-low  Buzzer signal output  Out_Ind_2  Class 1 Rx control signal of external RF T/R switch, active-high |

| continued           |                                              |                            |                    |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|---------------------|----------------------------------------------|----------------------------|--------------------|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| IS2062G<br>M Pin No | IS2064G<br>M-012<br>and<br>IS2064S<br>Pin No | IS2064G<br>M-0L3<br>Pin No | IS2064B<br>Ball No | Pin Type | Pin Name      | Description                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 36                  | 41                                           | 41                         | _                  | I/O      | EAN           | For IS2062GM/64GM (Flash variant):  External address-bus negative System configuration pin along with the P2_0 and P2_4 pins can be used to set the SoC in any one of the following three modes:  • Application mode (for normal operation)  • Test mode (to change EEPROM values), and  • Write Flash mode (to load a new firmware into the SoC), see Table 6-1  For IS2064S/B (ROM variant): Do not connect for this pin |  |
|                     | 42                                           | 42                         | _                  | Р        | AVDD_USB      | USB power input; connect to LDO31_VO pin                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                     | 43                                           | 43                         | _                  | I/O      | DM            | Differential data-minus USB                                                                                                                                                                                                                                                                                                                                                                                                |  |
| _                   | 44                                           | 44                         | _                  | I/O      | DP            | Differential data-plus USB                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 37                  | 45                                           | 45                         | E9                 | Р        | CLDO_O        | 1.2V core LDO output for internal use only. Connect to GND through a 1 µF capacitor                                                                                                                                                                                                                                                                                                                                        |  |
| 38                  | 46                                           | 46                         | D9                 | Р        | PMIC_IN       | 1.8V power input for internal blocks; connect to BK_O                                                                                                                                                                                                                                                                                                                                                                      |  |
| 39                  | 47                                           | 47                         | C9                 | Р        | RFLDO_O       | 1.28V RF LDO output for internal use only. Connect to GND through a 1 µF capacitor                                                                                                                                                                                                                                                                                                                                         |  |
| 40                  | 48                                           | 48                         | D8                 | Р        | VBG           | Bandgap output reference for decoupling interference, connect to GND through a 1 µF capacitor                                                                                                                                                                                                                                                                                                                              |  |
| 41                  | 49                                           | 49                         | C8                 | Р        | ULPC_VSU<br>S | ULPC 1.2V output power,<br>maximum loading 1 mA, connect<br>to GND through a 1 µF capacitor                                                                                                                                                                                                                                                                                                                                |  |
| 42                  | 50                                           | 50                         | В9                 | ı        | XO_N          | 16 MHz crystal input negative                                                                                                                                                                                                                                                                                                                                                                                              |  |

| continued           |                                              |                            |                    |          |                |                                                                                                                                           |  |
|---------------------|----------------------------------------------|----------------------------|--------------------|----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| IS2062G<br>M Pin No | IS2064G<br>M-012<br>and<br>IS2064S<br>Pin No | IS2064G<br>M-0L3<br>Pin No | IS2064B<br>Ball No | Pin Type | Pin Name       | Description                                                                                                                               |  |
| 43                  | 51                                           | 51                         | A9                 | I        | XO_P           | 16 MHz crystal input positive                                                                                                             |  |
| 44                  | 52                                           | 52                         | A8                 | Р        | VCC_RF         | RF power input (1.28V) for both synthesizer and Tx/Rx block, connect to RFLDO_O                                                           |  |
| 45                  | 53                                           | 53                         | A7                 | I/O      | RTX/<br>RF_RTX | RF path (transmit/receive)                                                                                                                |  |
| _                   | 54                                           | 54                         | _                  | I/O      | P3_1           | Configurable control or indication pin (Internally pulled-up, if configured as an input)  REV key when Class 1 RF (default), active-low   |  |
| _                   | 55                                           | 55                         | _                  | I/O      | P3_3           | Configurable control or indication pin (Internally pulled-up, if configured as an input)  • FWD key when Class 1 RF (default), active-low |  |
| _                   | 56                                           | 56                         | _                  | I/O      | P3_6           | Configurable control or indication pin (Internally pulled-up, if configured as an input)  • Master/Slave mode control                     |  |
| 46                  | 57                                           | 57                         | G8                 | I/O      | P0_2           | Configurable control or indication pin (Internally pulled-up, if configured as an input)  • Play/Pause key (default)                      |  |

| continued           |                                              |                            |                    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|---------------------|----------------------------------------------|----------------------------|--------------------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| IS2062G<br>M Pin No | IS2064G<br>M-012<br>and<br>IS2064S<br>Pin No | IS2064G<br>M-0L3<br>Pin No | IS2064B<br>Ball No | Pin Type | Pin Name | Description                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 47                  | 58                                           | 58                         | D5                 | I/O      | P2_0     | For IS2062GM/64GM (Flash variant):  External address-bus negative System configuration pin along with the P2_4 and EAN pins can be used to set the SoC in any one of the following three modes:  • Application mode (for normal operation)  • Test mode (to change EEPROM values), and  • Write Flash mode (to load a new firmware into the SoC), see Table 6-1  For IS2064S/B (ROM variant): Do not connect for this pin |  |
| 48                  | 59                                           | 59                         | F8                 | I/O      | P2_7     | Configurable control or indication pin (Internally pulled-up, if configured as an input)  Volume up key (default), active-low                                                                                                                                                                                                                                                                                             |  |
| 49                  | 60                                           | 60                         | E8                 | I/O      | P3_0     | Configurable control or indication pin (Internally pulled-up, if configured as an input)  • Auxiliary input detector, active-low                                                                                                                                                                                                                                                                                          |  |
| _                   | 61                                           | 61                         | _                  | I/O      | TFS0     | I <sup>2</sup> S interface: left/right clock                                                                                                                                                                                                                                                                                                                                                                              |  |
| 50                  | 62                                           | 62                         | B8                 | I/O      | P0_5     | Configurable control or indication pin (Internally pulled-up, if configured as an input)  Volume down key (default), active-low                                                                                                                                                                                                                                                                                           |  |
| 51                  | 63                                           | 63                         | B2                 | Р        | VDD_IO   | I/O power supply input (3V to 3.6V); connect to LDO31_VO pin, connect to GND through a 1 µF (X5R/X7R) capacitor                                                                                                                                                                                                                                                                                                           |  |

| continued           |                                              |                            |                          |          |          |                                                     |  |
|---------------------|----------------------------------------------|----------------------------|--------------------------|----------|----------|-----------------------------------------------------|--|
| IS2062G<br>M Pin No | IS2064G<br>M-012<br>and<br>IS2064S<br>Pin No | IS2064G<br>M-0L3<br>Pin No | IS2064B<br>Ball No       | Pin Type | Pin Name | Description                                         |  |
| _                   | 64                                           | 64                         | В7                       | I/O      | DR0      | I <sup>2</sup> S interface: digital left/right data |  |
|                     | 65                                           | 65                         | В6                       | I/O      | RFS0     | I <sup>2</sup> S interface: left/right clock        |  |
|                     | 66                                           | 66                         | B5                       | I/O      | SCLK0    | I <sup>2</sup> S interface: bit clock               |  |
| _                   | 67                                           | 67                         | B4                       | I/O      | DT0      | I <sup>2</sup> S interface: digital left/right data |  |
| 52                  | 68                                           | _                          | <b>A</b> 5               | 0        | AOHPR    | Right-channel, analog headphone output              |  |
| 57-64               | 69-83                                        | 69-83                      | _                        | Р        | EP       | Exposed pads, Used as ground (GND) pins             |  |
| _                   | _                                            | _                          | A6, E4,<br>E5, E6,<br>F5 | Р        | GND      | Ground reference                                    |  |

Note: All I/O pins are configured using UI tool, a Windows® based utility.

## 2. Audio

The input and output audio signals have different stages and each stage is programmed to vary the gain response characteristics. For microphones, both single-ended inputs and differential inputs are supported. To maintain a high quality signal, a stable bias voltage source to the condenser microphone's FET is provided. The DC blocking capacitors are used at both positive and negative sides of the input. Internally, this analog signal is converted to 16-bit, 8/16 kHz linear PCM data.

## 2.1 Digital Signal Processor

A Digital Signal Processor (DSP) is used to perform speech and audio processing. The advanced speech features, such as acoustic echo cancellation and noise reduction, are built-in. To reduce nonlinear distortion and to help echo cancellation, an outgoing signal level to the speaker is monitored and adjusted to avoid saturation of speaker output or microphone input. To provide an echo free and full-duplex user experience, adaptive filtering is also applied to track the echo path impulse in response.

The embedded noise reduction algorithm helps to extract clean speech signals from the noisy inputs captured by microphones and improves mutual understanding in communication. The advanced audio features, such as multi-band dynamic range control, parametric multi-band equalizer, audio widening and virtual bass are built-in. The audio effect algorithms improve the user's audio listening experience in terms of better quality audio after audio signal processing.

The following figures illustrate the processing flow of speaker phone applications for speech and audio signal processing.

Figure 2-1. SPEECH PROCESSING

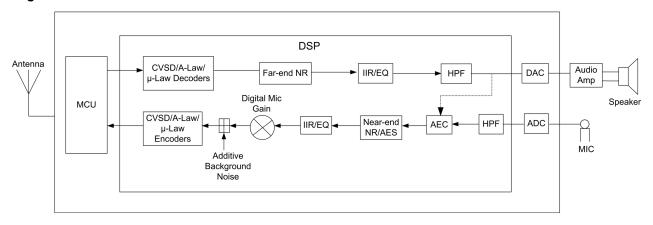
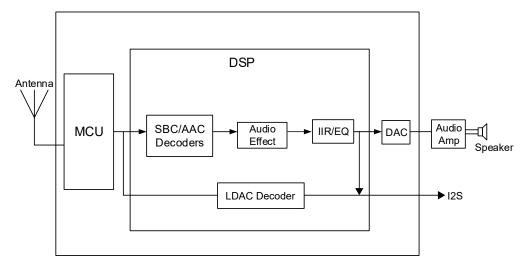




Figure 2-2. AUDIO PROCESSING

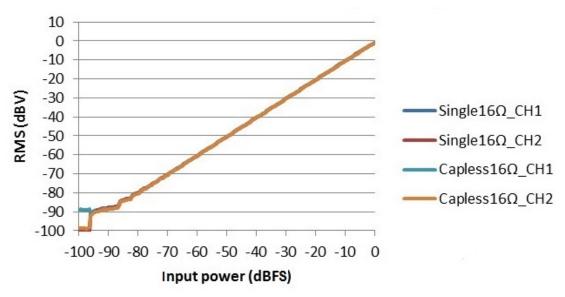


1. LDAC decoder in the preceding figure is supported only in the IS2064GM-0L3 variant.

For SBC and AAC audio data, the DSP parameters such as EQ, Speaker Gain, Mic Gain, Sound Effect etc. are configured using the DSP tool. For additional information on the DSP tool, refer to the "IS206x DSP Application Note".

**Note:** The DSP tool and *IS206x DSP Application Note* are available for download from the Microchip website at http://www.microchip.com/wwwproducts/en/IS2062 and http://www.microchip.com/wwwproducts/en/IS2064.

### 2.2 Codec


The built-in codec has a high Signal-to-Noise Ratio (SNR) performance and it consists of an ADC, a DAC and additional analog circuitry.

**Note:** The internal DAC is not supported in the IS2064GM-0L3 variant.

**Note:** The internal DAC supports 16-bit resolution. 24-bit I<sup>2</sup>S port requirements are met by adding trailing zeros in LSBs.

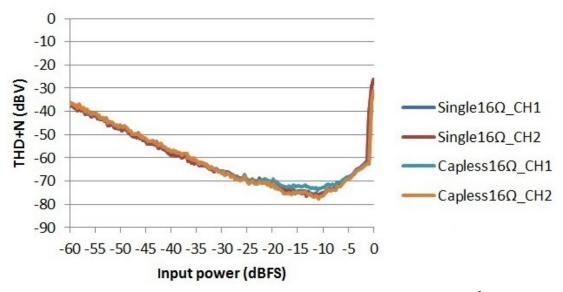

The following figures illustrate the dynamic range and frequency response of the codec.

Figure 2-3. CODEC DAC DYNAMIC RANGE



**Note:** The data corresponds to the 16 Ohm load with 2.8V operating voltage and +25°C operating temperature.

Figure 2-4. CODEC DAC THD+N VERSUS INPUT POWER



**Note:** The data corresponds to the 16 Ohm load with 2.8V operating voltage and +25°C operating temperature.

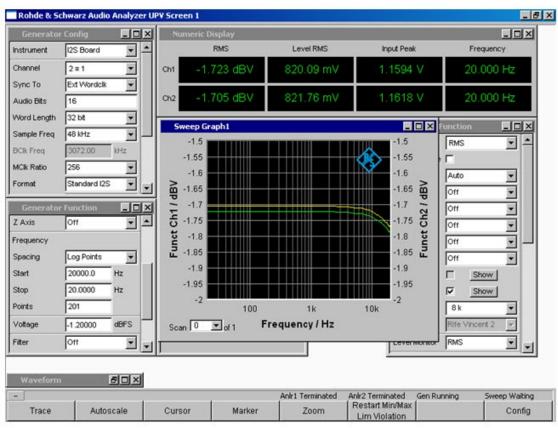



Figure 2-5. CODEC DAC FREQUENCY RESPONSE (CAPLESS MODE)

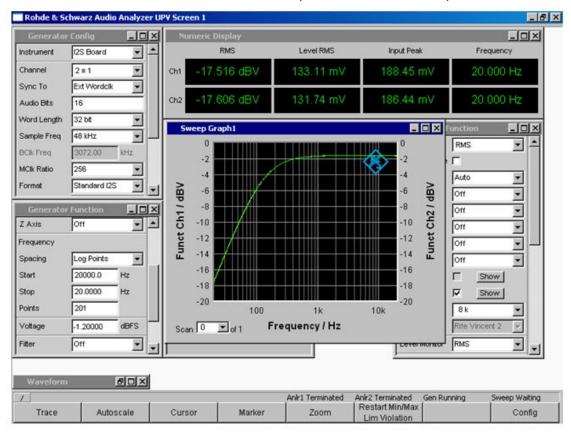



Figure 2-6. CODEC DAC FREQUENCY RESPONSE (SINGLE-ENDED MODE)

**Note:** The DAC frequency response corresponds to Single-Ended mode with a 47  $\mu$ F DC block capacitor.

## 2.3 Auxiliary Port

The SoC supports one analog (line-in) signal from the external audio source. The analog signal is processed by the DSP to generate different sound effects (multi-band dynamic range compression and audio widening), which are configured using the DSP tool.

## 2.4 Analog Speaker Output

The IS2062/64 SoC (except IS2064GM-0L3) supports the following speaker output modes:

- Capless mode Recommended for headphone applications in which capless output connection helps to save the BOM cost by avoiding a large DC blocking capacitor. Figure 2-7 illustrates the analog speaker output Capless mode.
- Single-Ended mode Used for driving an external audio amplifier, where a DC blocking capacitor is required. Figure 2-8 illustrates the analog speaker output Single-Ended mode.

Figure 2-7. ANALOG SPEAKER OUTPUT CAPLESS MODE

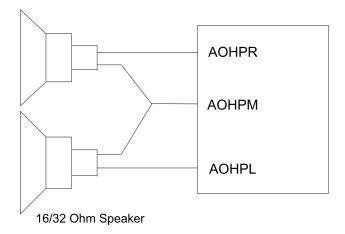
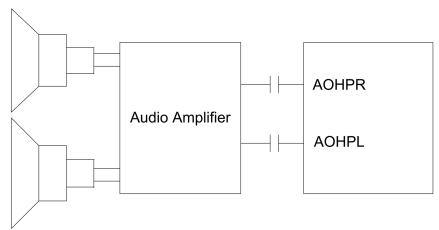




Figure 2-8. ANALOG SPEAKER OUTPUT SINGLE-ENDED MODE



#### 3. **Transceiver**

The SoC is designed and optimized for Bluetooth 2.4 GHz systems. It contains a complete radio frequency transmitter/receiver section. An internal synthesizer generates a stable clock to synchronize with another device.

#### 3.1 **Transmitter**

The internal Power Amplifier (PA) has a maximum output power of +4 dBm. This is applied to Class 2 or Class 3 radios, without an external RF PA. The transmitter directly performs the IQ conversion to minimize the frequency drift.

#### 3.2 Receiver

The Low-Noise Amplifier (LNA) operates with TR-combined mode for the single port application. It saves the pin on the package without having an external Tx/Rx switch.

The ADC is used to sample the input analog signal and convert it into a digital signal for demodulator analysis. A channel filter is integrated into a receiver channel before the ADC to reduce the external component count and increase the anti-interference capability.

The image rejection filter is used to reject the image frequency for the low-IF architecture, and it also intended to reduce external Band Pass Filter (BPF) component for a super heterodyne architecture.

The Received Signal Strength Indicator (RSSI) signal feedback to the processor is used to control the RF output power to make a good trade-off for effective distance and current consumption.

#### 3.3 **Synthesizer**

A synthesizer generates a clock for radio transceiver operation. The VCO inside, with a tunable internal LC tank, can reduce any variation for components. A crystal oscillator with an internal digital trimming circuit provides a stable clock for the synthesizer.

#### Modem 3.4

For Bluetooth 1.2 specification and below, 1 Mbps is the standard data rate based on the Gaussian Frequency Shift Keying (GFSK) modulation scheme. This basic rate modem meets Basic Data Rate (BDR) requirements of Bluetooth 2.0 with EDR specifications.

For Bluetooth 2.0 and above specifications, EDR is introduced to provide the data rates of 1/2/3 Mbps. For baseband, both BDR and EDR utilize the same 1 MHz symbol rate and 1.6 kHz slot rate. For BDR, symbol 1 represents 1-bit. However, each symbol in the payload part of EDR packets represent 2-bit or 3bit. This is achieved by using two different modulations, π/4 DQPSK and 8 DPSK.

#### 3.5 Adaptive Frequency Hopping (AFH)

The SoC has an AFH function to avoid RF interference. It has an algorithm to check the nearby interference and to choose the clear channel for transceiver Bluetooth signal.

DS60001409G-page 29 © 2019 Microchip Technology Inc.

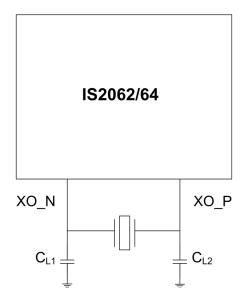
### 4. Microcontroller

A single-cycle 8-bitmicrocontroller is built into the SoC to execute the Bluetooth protocols. It operates from 16 MHz to higher frequencies, where the firmware dynamically adjusts the trade-off between the computing power and the power consumption. In the ROM version, the MCU firmware is hard-wired to minimize power consumption for the firmware execution and to save the external Flash cost.

## 4.1 Memory

There are sufficient ROM and RAM to fulfill the processor requirements, in which a synchronous single port RAM interface is used. The register bank, dedicated single port memory and Flash memory are connected to the processor bus. The processor coordinates with all link control procedures and the data movement happens using a set of pointer registers.

### 4.2 External Reset


The IS2062/64 SoC provides a Watchdog Timer (WDT) to reset the SoC. It has an integrated Power-on Reset (POR) circuit that resets all circuits to a known Power-on state. This action is also driven by an external Reset signal, which is used to control the device externally by forcing it into a POR state. The RST N signal input is active-low and no connection is required in most of the applications.

### 4.3 Reference Clock

The IS2062/64 SoC is composed of an integrated crystal oscillation function that uses a 16 MHz±10 ppm external crystal and two specified loading capacitors to provide a high quality system reference timer source. This feature is typically used to remove the initial tolerance frequency errors, which are associated with the crystal and its equivalent loading capacitance in the mass production. Frequency trim is achieved by adjusting the crystal loading capacitance through the on-chip trim capacitors (C<sub>trim</sub>).

The value of trimming capacitance is 200 fF ( $200x10^{-15}$  F) per LSb at 5-bit word and the overall adjustable clock frequency is  $\pm 40$  kHz (based on the crystal with load capacitance,  $C_L$  spec = 9 pF). The following figure illustrates the crystal connection of the IS2062/64 SoC with two capacitors.

Figure 4-1. CRYSTAL CONNECTION



## Note:

- 1.  $C_{trim}$ = 200 fF \* (1 to 31);  $C_{int}$  = 3 pF.
- 2.  $C_L = [C_{L1} \times C_{L2})/(C_{L1} + C_{L2})] + (C_{trim}/2) + C_{int}$  (set trim value as 16, then  $C_{trim} = 3.2 \text{ pF}$ ).
- 3. For a 16 MHz crystal, in which  $C_L$ = 9 pF, then the  $C_{L1}$  =  $C_{L2}$  = 9.1 pF).
- 4. For  $C_L$  selection, refer to the data sheet of the crystal.

#### 5. **Power Management Unit**

The IS2062/64 SoC has an integrated Power Management Unit (PMU). The main features of the PMU are a lithium-ion and lithium-polymer battery charger, and a voltage regulator. The power switch is used to exchange the power source between a battery and an adaptor. Also, the PMU provides current to the LED drivers.

#### 5.1 Charging a Battery

The IS2062/64 SoC has a built-in battery charger, which is optimized with lithium-ion and lithium-polymer batteries. The battery charger includes a current sensor for charging control, user programmable current regulator, and high accuracy voltage regulator.

The charging current parameters are configured by using the UI tool. An adapter is plugged in to activate the charging circuit. Reviving, pre-charging, constant current and constant voltage modes and recharging functions are included. The maximum charging current is 350 mA. The following figure illustrates the charging curve of a battery.

Recharge Reviving Pre charge CV Voltage 4.2v Constant Current Mode Constant Voltage Mode Mode Mode Mode Recharge Voltage 4.1v CC current 0.5c CC Voltage 3.0v Recharge current 0.25c Precharge Voltage 2.5v Precharge Current 0.1c Reviving Current 2 mA

Figure 5-1. BATTERY CHARGING CURVE

#### 5.2 **Voltage Monitoring**

A 10-bit, successive approximation register ADC (SAR ADC) provides a dedicated channel for battery voltage level detection. The warning level is programmed by using the UI tool. The ADC provides a granular resolution to enable the MCU to take control over the charging process.

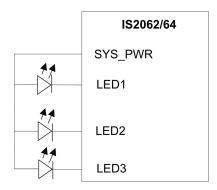
#### 5.3 Low Dropout Regulator

A built-in Low Dropout (LDO) Regulator is used to convert the battery or adaptor power for power supply. It also integrates the hardware architecture to control the power-on/off procedure. The built-in

**Datasheet** DS60001409G-page 32 © 2019 Microchip Technology Inc.

programmable LDOs provide power for codec and digital I/O pads. Also, it is used to buffer the high input voltage from battery or adapter. This LDO requires 1 µF bypass capacitor.

#### 5.4 **Switching Regulator**


The built-in programmable output voltage regulator converts the battery voltage to RF and baseband core power supply. This converter has a high conversion efficiency and a fast transient response.

#### 5.5 **LED Driver**

The IS2062GM and IS2064B have two LED drivers, and the IS2064GM and IS2064S have three LED drivers to control the LEDs. The LED drivers provide enough sink current (16-step control and 0.35 mA for each step) and the LED is connected directly to the IS2062/64 SoC. The LED settings are configured using the UI tool.

The following figure illustrates the LED driver in the IS2062/64 SoC.

Figure 5-2. LED DRIVER



#### 5.6 **Under Voltage Protection**

When the voltage of SYS PWR pin drops below the voltage level of 2.9V, the system shuts down automatically.

#### 5.7 **Ambient Detection**

The IS2062/64 SoC contains a built-in ADC for charger thermal protection.

The following figure illustrates the suggested circuit and thermistor, Murata NCP15WF104F. The charger thermal protection avoids battery charge in the restricted temperature range. The upper and lower limits for temperature values are configured by using the UI tool.

Note: The thermistor must be placed close to the battery in the user application for accurate temperature measurements and to enable the thermal shutdown feature.

DS60001409G-page 33 **Datasheet** 

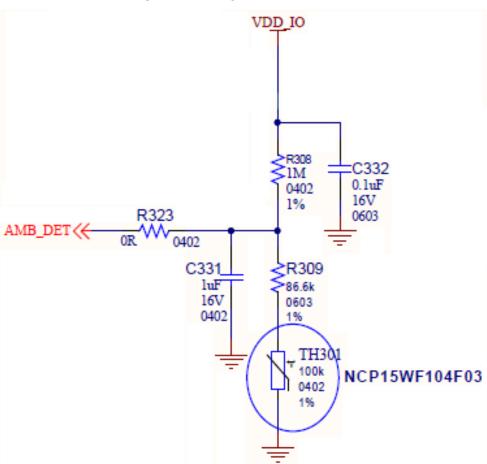
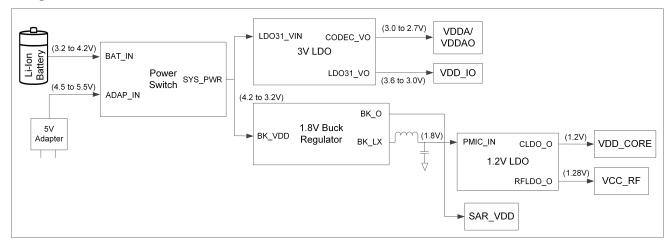



Figure 5-3. AMBIENT TEMPERATURE DETECTOR

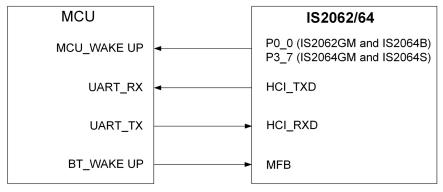
#### 6. **Application Information**


This section describes the power supply connection, host MCU UART interface, and various modes in detail.

#### 6.1 Power Supply

The following figure illustrates the connection from the BAT\_IN pin to various other voltage supply pins of the IS2062/64 SoC.

The IS2062/64 SoC is powered through the BAT IN input pin. The external 5V power adapter can be connected to ADAP IN in order to charge the battery.


Figure 6-1. POWER TREE DIAGRAM



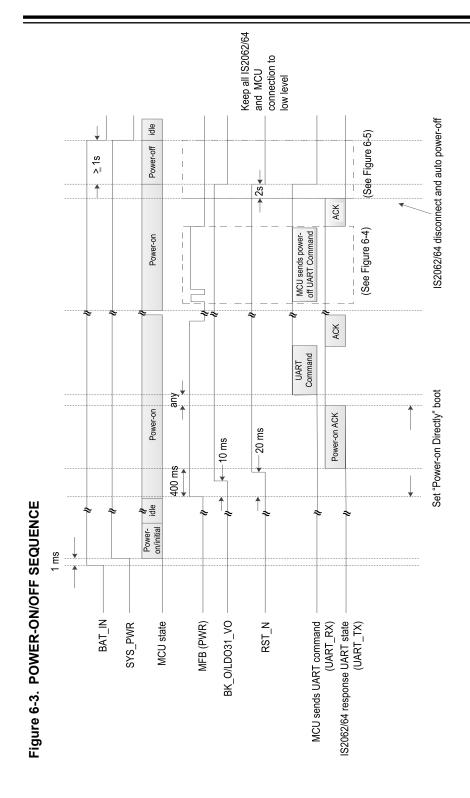
#### 6.2 **Host MCU Interface**

The following figure illustrates the UART interface between the IS2062/64 SoC and an external MCU.

Figure 6-2. HOST MCU INTERFACE OVER UART



The MCU controls the IS2062/64 SoC over the UART interface and wakes up the SoC using the MFB, P0\_0 (IS2062GM and IS2064B) and P3\_7 (IS2064GM and IS2064S) pins.


Refer to the "UART CommandSet" document for a list of functions that the IS2062/64 SoC supports and how to use the UI tool to set up the system using the UART command.

DS60001409G-page 35 **Datasheet** © 2019 Microchip Technology Inc.

## **Application Information**

**Note:** The "*UART\_CommandSet*" document is available for download from the Microchip website at http://www.microchip.com/wwwproducts/en/IS2062 and http://www.microchip.com/wwwproducts/en/IS2064.

The following figures illustrate the various UART control signal timing sequences.



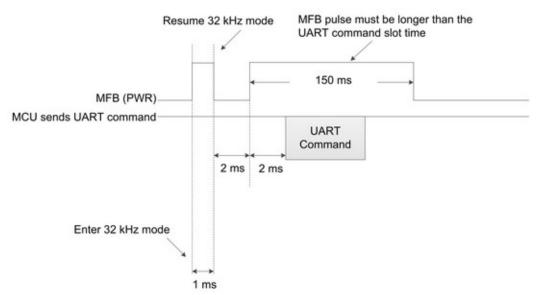
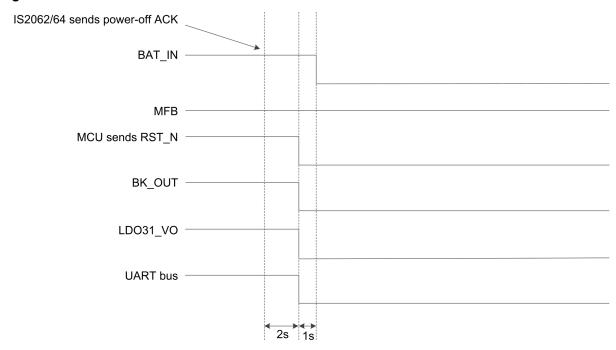
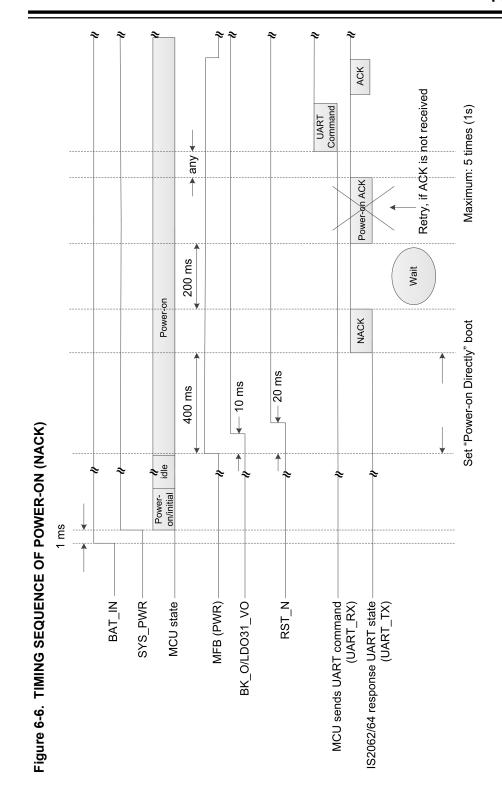





Figure 6-4. TIMING SEQUENCE OF RX INDICATION AFTER POWER-ON

Figure 6-5. TIMING SEQUENCE OF POWER-OFF



- 1. EEPROM clock = 100 kHz.
- 2. For a byte wire, 0.01 ms x 32 clock x  $2 = 640 \mu s$ .
- 3. It is recommended to have ramp-down time more than 640 µs during the power-off sequence to ensure safe operation of the device.



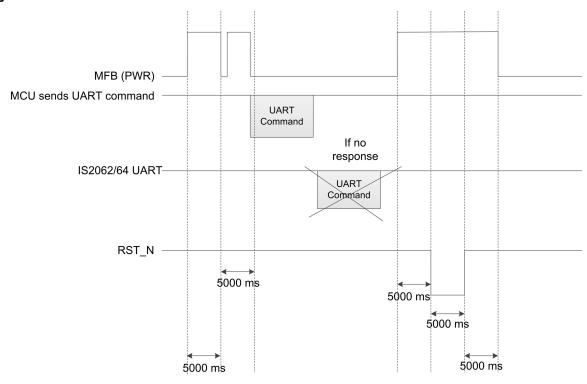
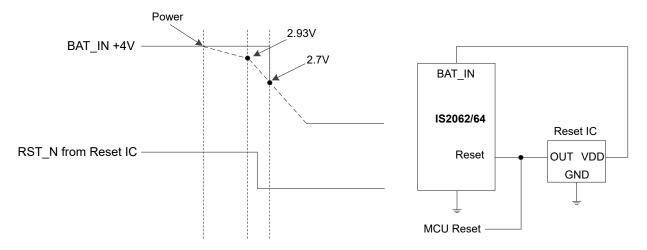




Figure 6-7. RESET TIMING SEQUENCE IN CASE OF NO RESPONSE FROM SoC TO HOST MCU

**Note:** The MCU sends the UART command again, when SoC is not responding to its first UART command. If the SoC is not responding to the second UART command within 5 secs, then the MCU forces the system to Reset.

Figure 6-8. TIMING SEQUENCE OF POWER DROP PROTECTION



## Note:

- 1. It is recommended to connect the battery on a BAT\_IN pin of the SoC for power supply.
- If an external power source or a power adapter is utilized to provide the power to the SoC (ADAP\_IN), use a voltage supervisor IC.
- 3. The Reset IC output pin, RST N, must be "Open drain" type and threshold voltage as 2.93V.
- 4. The RST N signal must be fully pulled to low before BAT IN power drop to 2.7V.

## 6.3 Configuration and Firmware Programming

Configuration and Firmware Programming modes are entered according to the system configuration I/O pins. The following table provides the system configuration settings. The P2\_0 and P2\_4 pins have internal pull-up.

Table 6-1. SYSTEM CONFIGURATION SETTINGS

| P2_0 | P2_4 | EAN  | Operating mode                       |
|------|------|------|--------------------------------------|
| High | High | Low  | Flash Application mode               |
| High | High | High | ROM Application mode                 |
| Low  | High | Low  | Flash Test mode (EEPROM programming) |
| Low  | High | High | ROM Test mode (Flash programming)    |
| Low  | Low  | High | Boot mode (Flash programming)        |

## 6.4 General Purpose I/O pins

The following table provides the details of various functions that are mapped to the I/O pins of IS2062/64 SoC and these I/Os are configured by using the UI tool.

**Note:** The MFB pin must be configured as the power-on/off key and the remaining pins are configured for any one of the default functions, as provided in the following table.

Table 6-2. I/O PIN CONFIGURATION

| S.No | Pin Name | IS2062GM and IS2064B                         | IS2064GM and IS2064S                         |
|------|----------|----------------------------------------------|----------------------------------------------|
| 1    | MFB      | Button 0 UART_RX_IND                         | Button 0 UART_RX_IND                         |
| 2    | P0_0     | UART_TX_IND Slide Switch                     | UART_TX_IND Slide Switch                     |
| 3    | P0_1     | Button 4 (FWD) CLASS1 TX                     | Button 4 (FWD) CLASS1 TX                     |
| 4    | P0_2     | Button 1 (Play/Pause)                        | Button 1 (Play/Pause)                        |
| 5    | P0_3     | Button 5 (REV) Buzzer Output Ind.1 CLASS1 RX | Button 5 (REV) Buzzer Output Ind.1 CLASS1 RX |
| 6    | P0_4     | Output Ind.0 External Amplifier Enable       | Output Ind.0 External Amplifier Enable       |
| 7    | P0_5     | Button 3 (VOL-)                              | Button 3 (VOL-)                              |

| continu | ed       |                           |                           |
|---------|----------|---------------------------|---------------------------|
| S.No    | Pin Name | IS2062GM and IS2064B      | IS2064GM and IS2064S      |
|         |          | Output Ind.0              | Output Ind.0              |
| 0       | D4 F     | Slider Switch             | Slider Switch             |
| 8       | P1_5     | External Amplifier Enable | External Amplifier Enable |
|         |          | Twin Role setting1        | Twin Role setting1        |
| •       | D0 0     | System Configuration      | System Configuration      |
| 9       | P2_0     | Buzzer                    | Buzzer                    |
| 10      | P2_7     | Button 2 (VOL+)           | Button 2 (VOL+)           |
| 11      | P3_0     | Aux-in detect             | Aux-in detect             |
| 12      | P3_1     | _                         | Button 5                  |
| 13      | P3_3     | _                         | Button 4 (FWD)            |
| 14      | P3_6     | _                         | Twin Role setting 2       |
| 15      | P3_7     |                           | UART_TX_IND<br>LED3       |

# 6.5 I<sup>2</sup>S Mode Application

The IS2064GM and IS2064S/B SoC provide an I<sup>2</sup>S digital audio output interface to connect with the external codec or DSP. It provides 8, 16, 44.1, 48, 88.2 and 96 kHz sampling rates for 16-bit and 24-bit data formats. The I<sup>2</sup>S setting are configured by using the UI and DSP tools.

**Note:** The UI and DSP tools are available for download from the Microchip website at http://www.microchip.com/wwwproducts/en/IS2062 and http://www.microchip.com/wwwproducts/en/IS2064.

The external codec or DSP interfaces with IS2062/64 over these pins: SCLK0, RFS0, DR0, and DT0. The following figures illustrate the I<sup>2</sup>S signal connection between the IS2064GM and IS2064S/B SoC and an external DSP. Use the DSP tool to configure the IS2064GM and IS2064S/B SoC as Master/Slave. For additional information on timing specifications, refer to Timing Specifications.

Figure 6-9. I<sup>2</sup>S MASTER MODE

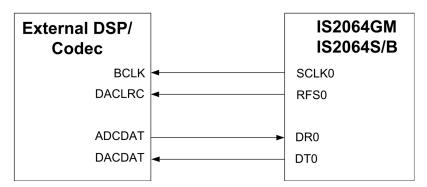
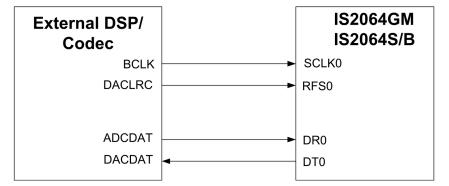
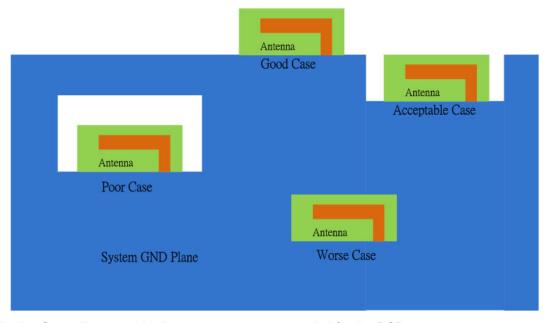




Figure 6-10. I<sup>2</sup>S SLAVE MODE




# 7. Antenna Placement Rule

For Bluetooth enabled products, the antenna placement affects the overall performance. The antenna requires free space to radiate RF signals and it must not be surrounded by the GND plane.

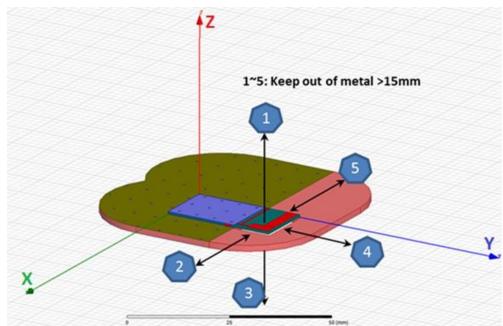

The following figure illustrates a typical example of the good and poor antenna placement on the main application board with the GND plane.

Figure 7-1. ANTENNA PLACEMENT EXAMPLES



The following figure illustrates the keep out area recommended for the PCB antenna.

Figure 7-2. KEEP OUT AREA RECOMMENDED FOR PCB ANTENNA



# **Antenna Placement Rule**

| Note:   | For additional information on the antenna placement | , refer to the antenna sp | ecific data sheet from |
|---------|-----------------------------------------------------|---------------------------|------------------------|
| the ant | enna manufacturer.                                  |                           |                        |

## 8. Electrical Characteristics

This section provides an overview of the IS2062/64 SoC electrical characteristics. Additional information will be provided in future revisions of this document, once it is available.

Table 8-1. ABSOLUTE MAXIMUM RATINGS

| Parameter                      | Symbol     | Min. | Max. | Unit |
|--------------------------------|------------|------|------|------|
| Ambient temperature under bias | _          | -20  | +70  | °C   |
| Storage temperature            | _          | -65  | +150 | °C   |
| Digital core supply voltage    | VDD_CORE   | 0    | 1.35 | V    |
| RF supply voltage              | VCC_RF     | 0    | 1.35 | V    |
| SAR ADC supply voltage         | SAR_VDD    | 0    | 2.1  | V    |
| Codec supply voltage           | VDDA/VDDAO | 0    | 3.3  | V    |
| I/O supply voltage             | VDD_IO     | 0    | 3.6  | V    |
| Buck supply voltage            | BK_VDD     | 0    | 4.3  | V    |
| Supply voltage                 | LDO31_VIN  | 0    | 4.3  | V    |
| Battery input voltage          | BAT_IN     | 0    | 4.3  | V    |
| Adapter input voltage          | ADAP_IN    | 0    | 7.0  | V    |

**Note:** Stresses listed on the preceding table cause permanent damage to the device. This is a stress rating only. The functional operation of the device at those or any other conditions and those indicated in the operation listings of this specification are not implied. Exposure to maximum rating conditions for extended periods affects device reliability.

The following tables provide the recommended operating conditions and the electrical specifications of the IS2062/64 SoC.

**Table 8-2. RECOMMENDED OPERATING CONDITION** 

| Parameter                   | Symbol         | Min. | Тур. | Max.         | Unit |
|-----------------------------|----------------|------|------|--------------|------|
| Digital core supply voltage | VDD_CORE       | 1.14 | 1.2  | 1.26         | V    |
| RF supply voltage           | VCC_RF         | 1.22 | 1.28 | 1.34         | V    |
| SAR ADC supply voltage      | SAR_VDD        | 1.62 | 1.8  | 1.98         | V    |
| Codec supply voltage        | VDDA/<br>VDDAO | 1.8  | 2.8  | 3.0          | V    |
| I/O supply voltage          | VDD_IO         | 3.0  | 3.3  | <del>-</del> | V    |
| Buck supply voltage         | BK_VDD         | 3    | 3.8  | 4.25         | V    |
| Supply voltage              | LDO31_VIN      | 3    | 3.8  | 4.25         | V    |
| Input voltage for battery   | BAT_IN         | 3.2  | 3.8  | 4.25         | V    |
| Input voltage for adapter   | ADAP_IN        | 4.5  | 5    | 5.5          | V    |

| continued             |                        |      |      |      |      |  |
|-----------------------|------------------------|------|------|------|------|--|
| Parameter             | Symbol                 | Min. | Тур. | Max. | Unit |  |
| Operation temperature | T <sub>OPERATION</sub> | -20  | +25  | +70  | °C   |  |

**Note:** The PMU output powers, BK\_O, CODEC\_VO, RFLDO\_O, and CLDO\_O are programmed through the EEPROM parameters.

**Table 8-3. BUCK REGULATOR** 

| Parameter                                                        | Min.         | Тур.  | Max.     | Unit    |
|------------------------------------------------------------------|--------------|-------|----------|---------|
| Input Voltage                                                    | 3.0          | 3.8   | 4.25     | V       |
| Output Voltage ( $I_{load}$ = 70 mA and $V_{in}$ = 4V)           | 1.7          | 1.8   | 2.05     | V       |
| Output Voltage Accuracy                                          | _            | ±5    | <u> </u> | %       |
| Output Voltage Adjustable Step                                   | <u>—</u>     | 50    | _        | mV/Step |
| Output Adjustment Range                                          | -0.1         |       | +0.25    | V       |
| Average Load Current (I <sub>LOAD</sub> )                        | 120          | _     | _        | mA      |
| Conversion Efficiency (BAT = 3.8V and I <sub>load</sub> = 50 mA) | <del>_</del> | 88(1) | _        | %       |
| Quiescent Current (PFM)                                          | _            | _     | 40       | μΑ      |
| Output Current (peak)                                            | 200          |       | _        | mA      |
| Shutdown Current                                                 | _            | _     | <1       | μΑ      |

## Note:

- 1. Test condition: Temperature +25°C and wired inductor 10 μH.
- 2. These parameters are characterized, but not tested on the manufactured device.

Table 8-4. LOW DROP REGULATOR

| Parameter                                                                      |          | Min.     | Тур. | Max. | Unit |
|--------------------------------------------------------------------------------|----------|----------|------|------|------|
| Input Voltage                                                                  |          | 3.0      | 3.8  | 4.25 | V    |
| Output Valtage                                                                 | CODEC_VO | <u> </u> | 2.8  | _    | V    |
| Output Voltage                                                                 | LDO31_VO | <u> </u> | 3.3  | _    | V    |
| Output Accuracy (V <sub>IN</sub> = 3.7V, I <sub>LOAD</sub> = 100 mA and +27°C) |          | <u> </u> | ±5   | _    | %    |
| Output current (average)                                                       |          | <u> </u> | _    | 100  | mA   |
| Drop-out voltage (I <sub>load</sub> = maximum output current)                  |          | _        | _    | 300  | mV   |
| Quiescent Current (excluding load and I <sub>load</sub> < 1 mA)                |          |          | 45   | _    | μA   |
| Shutdown Current                                                               |          | _        | _    | <1   | μA   |

- 1. Test condition: Temperature +25°C.
- 2. These parameters are characterized, but not tested on manufactured device.

Table 8-5. BATTERY CHARGER

| Parameter                                                     |                                                            | Min. | Тур. | Max. | Unit |
|---------------------------------------------------------------|------------------------------------------------------------|------|------|------|------|
| Input Voltage (ADAP_IN)                                       |                                                            | 4.5  | 5.0  | 5.5  | V    |
| Supply current to charger only                                |                                                            | _    | 3    | 4.5  | mA   |
| Maximum<br>Battery Fast<br>Charge Current                     | Headroom > 0.7V (ADAP_IN = 5V)                             |      | 350  |      | mA   |
|                                                               | Headroom = 0.3V to 0.7V (ADAP_IN = 4.5V) ( <b>Note 2</b> ) | _    | 175  | _    | mA   |
| Trickle Charge Voltage Threshold                              |                                                            | _    | 3    | _    | V    |
| Battery Charge Termination Current (% of Fast Charge Current) |                                                            | _    | 10   | _    | %    |

## Note:

- 1. Headroom =  $V_{ADAP\_IN}$   $V_{BAT}$ .
- 2. When  $V_{ADAP\ IN}$   $V_{BAT}$  > 2V, the maximum fast charge current is 175 mA for thermal protection.
- 3. These parameters are characterized, but not tested on manufactured device.

Table 8-6. LED DRIVER

| Parameter                     | Min. | Тур. | Max. | Unit |
|-------------------------------|------|------|------|------|
| Open-drain Voltage            | _    | _    | 3.6  | V    |
| Programmable Current Range    | 0    | _    | 5.25 | mA   |
| Intensity Control             | _    | 16   | _    | step |
| Current Step                  | _    | 0.35 | _    | mA   |
| Power-Down Open-drain Current | _    | _    | 1    | μA   |
| Shutdown Current              | _    | _    | 1    | μΑ   |

#### Note:

- 1. Test condition: BK\_O = 1.8V with temperature +25°C.
- 2. These parameters are characterized, but not tested on manufactured device.

Table 8-7. AUDIO CODEC DIGITAL TO ANALOG CONVERTER

| Parameter (Condition)                                         | Min. | Тур. | Max. | Unit           |
|---------------------------------------------------------------|------|------|------|----------------|
| Output Sampling Rate                                          | _    | 128  | _    | f <sub>s</sub> |
| Resolution                                                    | 16   | _    | 20   | Bit            |
| Output Sample Rate                                            | 8    | _    | 48   | kHz            |
| Signal-to-Noise Ratio (Note 2) (SNR @Capless mode) for 48 kHz | _    | 96   | _    | dB             |

| continued                                          |            |        |       |      |        |  |  |
|----------------------------------------------------|------------|--------|-------|------|--------|--|--|
| Parameter (Condition)                              |            | Min.   | Тур.  | Max. | Unit   |  |  |
| Signal-to-Noise Ratio (Note 2)                     |            |        | 00    |      | .ID    |  |  |
| (SNR @single-ended mode) for 48 kHz                |            | _      | 98    |      | dB     |  |  |
| Digital Gain                                       |            | -54    | _     | 4.85 | dB     |  |  |
| Digital Gain Resolution                            |            | 2 to 6 | _     | dB   |        |  |  |
| Analog Gain                                        |            |        | _     | 3    | dB     |  |  |
| Analog Gain Resolution                             |            |        | 1     | _    | dB     |  |  |
| Output Voltage Full-scale Swing (AVDD = 2.8V)      |            | 495    | 742.5 | _    | mV/rms |  |  |
| Maximum Output Power (16 Ohm load)                 |            |        | 34.5  | _    | mW     |  |  |
| Maximum Output Power (32 Ohm load)                 |            |        | 17.2  | _    | mW     |  |  |
| Allowed Load                                       | Resistive  |        | 16    | O.C. | Ohm    |  |  |
| Allowed Load                                       | Capacitive | _      | _     | 500  | pF     |  |  |
| THD+N (16 Ohm load) (Note 3)                       |            | _      | 0.05  | _    | %      |  |  |
| Signal-to-Noise Ratio (SNR @ 16 Ohm load) (Note 4) | _          | _      | 98    | _    | dB     |  |  |

- 1. T = +25°C, VDD = 2.8V, 1 kHz sine wave input, Bandwidth = 20 Hz to 20 kHz.
- 2.  $f_{in}$  = 1 kHz, B/W = 20 HZ to 20 kHz, A-weighted, THD+N < 0.01%, 0 dBFS signal, Load = 100 kOhm.
- 3.  $f_{in}$  = 1 kHz, B/W = 20 HZ to 20 kHz, A-weighted, -1 dBFS signal, Load = 16 Ohm.
- 4.  $f_{in}$  = 1 kHz, B/W = 20 HZ to 20 kHz, A-weighted, THD+N < 0.05%, 0 dBFS signal, Load = 16 Ohm.
- 5. These parameters are characterized, but not tested on manufactured device.

## Table 8-8. AUDIO CODEC ANALOG TO DIGITAL CONVERTER

| Parameter (Condition)                                     | Min. | Тур.     | Max. | Unit   |
|-----------------------------------------------------------|------|----------|------|--------|
| Resolution                                                | _    | <u> </u> | 16   | Bit    |
| Output Sample Rate                                        | 8    | _        | 48   | kHz    |
| Signal-to-Noise Ratio (Note 2) (SNR @MIC or Line-in mode) | _    | 92       | _    | dB     |
| Digital Gain                                              | -54  | _        | 4.85 | dB     |
| Digital Gain Resolution                                   | _    | 2 to 6   | _    | dB     |
| MIC Boost Gain                                            | _    | 20       | _    | dB     |
| Analog Gain                                               | _    | _        | 60   | dB     |
| Analog Gain Resolution                                    | _    | 2.0      | _    | dB     |
| Input full scale at maximum gain (differential)           | _    | 4        | _    | mV/rms |
| Input full scale at minimum gain (differential)           | _    | 800      | _    | mV/rms |

| continued                                  |      |      |          |      |
|--------------------------------------------|------|------|----------|------|
| Parameter (Condition)                      | Min. | Тур. | Max.     | Unit |
| 3 dB bandwidth                             | _    | 20   | _        | kHz  |
| Microphone mode (input impedance)          | _    | 24   | <u> </u> | kOhm |
| THD+N (microphone input) at 30 mVrms input | _    | 0.02 | _        | %    |

- 1. T = +25°C, VDD = 2.8V, 1 kHz sine wave input, Bandwidth = 20 Hz to 20 kHz
- 2.  $f_{in}$  = 1 kHz, B/W = 20 Hz to 20 kHz, A-weighted, THD+N < 1%, 150 mVpp input.
- 3. These parameters are characterized, but not tested on manufactured device.

#### Table 8-9. TRANSMITTER SECTION FOR BDR AND EDR

| Parameter                       | Min. | Тур.             | Max. | Bluetooth specification | Unit |
|---------------------------------|------|------------------|------|-------------------------|------|
| Transmit power                  | _    | 2 <sup>(3)</sup> | 4    | -6 to 4                 | dBm  |
| EDR/BDR relative transmit power | -4   | -1.8             | 1    | -4 to 1                 | dB   |

#### Note:

- 1. The RF Transmit power is modulation value.
- 2. The RF Transmit power is calibrated during production using the MP tool software and MT8852 Bluetooth test equipment.
- 3. Test condition: VCC\_RF = 1.28V, temperature +25°C.

## Table 8-10. RECEIVER SECTION FOR BDR AND EDR

| Parameter                | Packet Type | Min. | Тур. | Max. | Bluetooth specification | Unit |
|--------------------------|-------------|------|------|------|-------------------------|------|
| Sensitivity at 0.1% BER  | GFSK        | _    | -89  | _    | ≤-70                    | dBm  |
| Sensitivity at 0.01% BER | π/4 DQPSK   | _    | -93  | _    | ≤-70                    | dBm  |
| Sensitivity at 0.01% BER | 8 DPSK      | _    | -86  |      | ≤-70                    | dBm  |

## Note:

- 1. Test condition: VCC\_RF = 1.28V, temperature +25°C.
- 2. These parameters are characterized, but not tested on manufactured device.

## Table 8-11. IS2062GM SYSTEM CURRENT CONSUMPTION

| System Status                                                       | Тур.         | Max.         | Unit |  |  |  |  |
|---------------------------------------------------------------------|--------------|--------------|------|--|--|--|--|
| System Off mode                                                     | <del>_</del> | 10           | μΑ   |  |  |  |  |
| Stop Advertising (Samsung S5 (SM-G900I)/Android <sup>™</sup> 4.4.2) |              |              |      |  |  |  |  |
| Standby mode                                                        | 0.57         | <del>_</del> | mA   |  |  |  |  |
| Link mode                                                           | 0.5          | <del>_</del> | mA   |  |  |  |  |
| ESCO Link                                                           | 15.1         | <del>_</del> | mA   |  |  |  |  |
| A2DP Link                                                           | 14.3         | <del>_</del> | mA   |  |  |  |  |

| continued                             |      |      |      |
|---------------------------------------|------|------|------|
| System Status                         | Тур. | Max. | Unit |
| Stop Advertising (iPhone®6 / iOS 8.4) |      |      |      |
| Standby mode                          | 0.6  | _    | mA   |
| Link mode                             | 0.6  | _    | mA   |
| SCO Link                              | 15.3 | _    | mA   |
| A2DP Link                             | 15.4 | _    | mA   |

- 1. Standby mode: Power-on without Bluetooth link; Link mode: With Bluetooth link in Low-Power mode
- 2. Current consumption values are considered with the BM62 EVB as a test platform, BAT\_IN = 3.8V. The distance between smart phone and EVB is 30 cm and the speaker is without loading.

Table 8-12. IS2064GM-0L3 SYSTEM CURRENT CONSUMPTION

| Modes                          | Condition                           | Role   | Package<br>Type | Class 1 | Class 2 | Unit |
|--------------------------------|-------------------------------------|--------|-----------------|---------|---------|------|
| SCO/eSCO connection            | CVSD                                | Master | disable 3M      | 22.1    | 17.1    | mA   |
| (mute at both far end and near | (mute at both far end and near end) |        | enable 3M       | 22.2    | 18.0    | mA   |
| end)                           |                                     |        | disable 3M      | 22.3    | 17.5    | mA   |
|                                |                                     |        | enable 3M       | 21.2    | 17.3    | mA   |
|                                | mSBC                                | Master | disable 3M      | 22.9    | 18.7    | mA   |
|                                |                                     |        | enable 3M       | 22.9    | 18.7    | mA   |
| S                              |                                     | Slave  | disable 3M      | 22.3    | 18.9    | mA   |
|                                |                                     |        | enable 3M       | 22.8    | 18.9    | mA   |

| continued                                               |                                        |                                      |                        |            |            |      |      |    |  |  |  |           |      |      |    |
|---------------------------------------------------------|----------------------------------------|--------------------------------------|------------------------|------------|------------|------|------|----|--|--|--|-----------|------|------|----|
| Modes                                                   | Condition                              | Role                                 | Package<br>Type        | Class 1    | Class 2    | Unit |      |    |  |  |  |           |      |      |    |
| A2DP connection                                         | SBC, 44.1 kHz, I2S                     | Master                               | disable 3M             | 20.2       | 16.8       | mA   |      |    |  |  |  |           |      |      |    |
| (1 kHz tone, mute)                                      | output                                 |                                      | enable 3M              | 19.4       | 17.7       | mA   |      |    |  |  |  |           |      |      |    |
|                                                         |                                        | Slave                                | disable 3M             | 17.3       | 16.1       | mA   |      |    |  |  |  |           |      |      |    |
|                                                         |                                        |                                      | enable 3M              | 18.1       | 16.7       | mA   |      |    |  |  |  |           |      |      |    |
|                                                         | LDAC, 96.0 kHz, I2S                    | Master                               | disable 3M             | 29.5       | 24.5       | mA   |      |    |  |  |  |           |      |      |    |
|                                                         | output 330 KBPS                        |                                      | enable 3M              | 29.5       | 22.8       | mA   |      |    |  |  |  |           |      |      |    |
|                                                         |                                        | Slave                                | disable 3M             | 28.1       | 21.4       | mA   |      |    |  |  |  |           |      |      |    |
|                                                         |                                        |                                      | enable 3M              | 28         | 21.7       | mA   |      |    |  |  |  |           |      |      |    |
|                                                         | output 660 KBPS LDAC, 96.0 kHz, I2S    | output 660 KBPS  LDAC, 96.0 kHz, I2S | Master                 | disable 3M | 26.1       | 25.4 | mA   |    |  |  |  |           |      |      |    |
|                                                         |                                        |                                      |                        | enable 3M  | 26.4       | 23   | mA   |    |  |  |  |           |      |      |    |
|                                                         |                                        |                                      | LDAC, 96.0 kHz, I2S Ma | Slave      | disable 3M | 24.3 | 21.3 | mA |  |  |  |           |      |      |    |
|                                                         |                                        |                                      |                        |            |            |      |      |    |  |  |  | enable 3M | 24.8 | 22.4 | mA |
|                                                         |                                        |                                      |                        | Master     | disable 3M | 28.2 | 25.5 | mA |  |  |  |           |      |      |    |
|                                                         | output 990 KBPS                        |                                      | enable 3M              | 28.1       | 24.98      | mA   |      |    |  |  |  |           |      |      |    |
|                                                         |                                        | Slave                                | disable 3M             | 25.36      | 22.67      | mA   |      |    |  |  |  |           |      |      |    |
|                                                         |                                        |                                      | enable 3M              | 26.15      | 22.9       | mA   |      |    |  |  |  |           |      |      |    |
| Sniff mode (linked to mobile)                           | sniff interval = 500<br>ms, 1 attempt  | Master                               | -                      | 900        | 690        | uA   |      |    |  |  |  |           |      |      |    |
| ,                                                       | sniff interval = 1280<br>ms, 1 attempt | Master                               | -                      | 730        | 670        | uA   |      |    |  |  |  |           |      |      |    |
| Page Scan (not discoverable, yet ready to be connected) | Page Scan interval=<br>1.28s           | -                                    | -                      | 810        | 730        | uA   |      |    |  |  |  |           |      |      |    |
| System off                                              | -                                      | -                                    | -                      | 70         | 16.1       | uA   |      |    |  |  |  |           |      |      |    |

- 1. The measurements are taken on the BM64L EVB.
- 2. The distance between the DUT and the smartphone is 30cm. The values mentioned in the preceding table was measured using an Android phone with version 8.0.0.
- 3. BAT\_IN is 3.7V.
- 4. The current consumption values reflect the average current consumption.

Table 8-13. IS2064S/B SYSTEM CURRENT CONSUMPTION

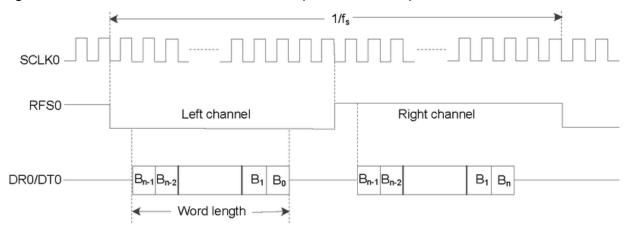
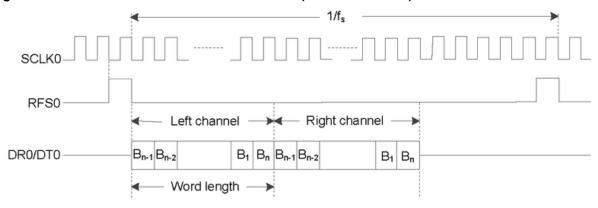
| Modes                                       | Condition                                        | Role                          | Packet Type | IS2064B | IS2064S | Unit |       |      |      |     |
|---------------------------------------------|--------------------------------------------------|-------------------------------|-------------|---------|---------|------|-------|------|------|-----|
| Default UI<br>(1 kHz tone,<br>without LEDs) | Standalone BT<br>mode, with<br>default UI table  | Master                        | -           | 10.3    | 10.1    | mA   |       |      |      |     |
|                                             |                                                  |                               | HV3         | 10.6    | 11      | mA   |       |      |      |     |
| SCO/eSCO                                    |                                                  | Master                        | 2EV3        | 9.3     | 10.7    | mA   |       |      |      |     |
| connection                                  | Mono audio                                       |                               | 3EV3        | NS      | NS      | mA   |       |      |      |     |
| (mute at both far end and near end)         | codec output                                     |                               | HV3         | 12.8    | 14.7    | mA   |       |      |      |     |
| ond and nodi ond)                           |                                                  | Slave                         | 2EV3        | 13.6    | 14.7    | mA   |       |      |      |     |
|                                             |                                                  |                               | 3EV3        | NS      | NS      | mA   |       |      |      |     |
|                                             | Internal Codec,                                  | Master                        | DH5         | 11.4    | 11.1    | mA   |       |      |      |     |
| A2DP connection                             | Android Slave                                    | iviasici                      | 2DH5        | 10.7    | 10.1    | mA   |       |      |      |     |
| (1 kHz tone, mute,                          | Internal Codec,<br>iOS Master                    | Internal Codec,<br>iOS Master | · ·         | ·       | ·       |      | DH5   | 10.3 | 9.7  | mA  |
| no load)                                    |                                                  |                               |             |         |         | · ·  | Slave | 2DH5 | 10.3 | 9.7 |
|                                             |                                                  |                               | 3DH5        | 10.3    | 9.7     | mA   |       |      |      |     |
| Sniff mode                                  | Connection                                       | Master                        | -           | 423     | 427     | μΑ   |       |      |      |     |
| (linked to<br>smartphone, BLE<br>off)       | established, but<br>no activity<br>(system idle) | Slave                         | -           | 423     | 427     | μΑ   |       |      |      |     |
| Inquiry Scan                                | With LEDs                                        | -                             | -           | 3.8     | 3.8     | mA   |       |      |      |     |
| (discoverable by smartphone)                | Without LEDs                                     | -                             | -           | 1.1     | 1.2     | mA   |       |      |      |     |
| System-off                                  | 3.8V at BAT_IN                                   | -                             | -           | 18      | 20      | μΑ   |       |      |      |     |

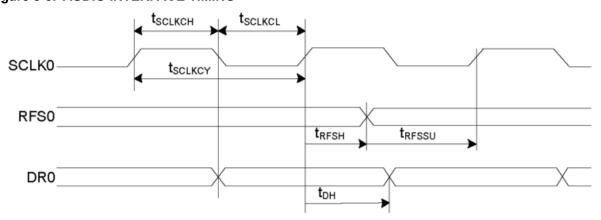
- 1. NS = Not Supported.
- 2. The measurements are taken on the IS2064S-114 and IS2064B-114 Validation Platform.
- 3. The distance between the DUT and the smartphone is 20 cm.
- 4. iOS version 10.3.2 and Android version 5.1.1.
- 5. BAT\_IN = 3.8V.
- 6. The current consumption values reflect the average current consumption.

# 8.1 Timing Specifications

The following figures illustrate the timing diagram of the IS2062/64 SoC in I<sup>2</sup>S and PCM modes.

Figure 8-1. TIMING DIAGRAM FOR I<sup>2</sup>S MODES (MASTER/SLAVE)



Figure 8-2. TIMING DIAGRAM FOR PCM MODES (MASTER/SLAVE)



- 1. f<sub>s</sub>: 8, 16, 32, 44.1, 48, 88.2 and 96 kHz.
- 2. SCLK0: 64 x f<sub>s</sub> / 256 x f<sub>s</sub>.
- 3. Word length: 16-bit and 24-bit.

The following figure illustrates the audio interface timing diagram.

Figure 8-3. AUDIO INTERFACE TIMING



The following table provides the timing specifications of the audio interface.

Table 8-14. AUDIO INTERFACE TIMING SPECIFICATIONS

| Parameter                             | Symbol              | Min. | Тур. | Max. | Unit |
|---------------------------------------|---------------------|------|------|------|------|
| SCLK0 duty ratio                      | d <sub>SCLK</sub>   | _    | 50   | _    | %    |
| SCLK0 cycle time                      | t <sub>SCLKCY</sub> | 50   | _    | _    | ns   |
| SCLK0 pulse width high                | t <sub>SCLKCH</sub> | 20   | _    | _    | ns   |
| SCLK0 pulse width low                 | t <sub>SCLKCL</sub> | 20   | _    | _    | ns   |
| RFS0 setup time to SCLK0 rising edge  | t <sub>RFSSU</sub>  | 10   | _    | _    | ns   |
| RFS0 hold time from SCLK0 rising edge | t <sub>RFSH</sub>   | 10   | _    | _    | ns   |
| DR0 hold time from SCLK0 rising edge  | t <sub>DH</sub>     | 10   | _    | _    | ns   |

Note: Test Conditions: Slave mode,  $f_s$  = 48 kHz, 24-bit data and SCLK0 period = 256  $f_s$ 

# 9. Packaging Information

This section provides information on package marking, package details and footprint dimensions of the IS2062/64 SoC.

## 9.1 Package Marking Information

The following figures illustrate the package marking information of the IS2062GM, IS2064GM, IS2064S and IS2064B.

Figure 9-1. PACKAGE MARKING INFORMATION



Example



56 LGA ( 7x7x1.0 mm)

Pb-free JEDEC designator for SAC305

#### Example



61 BGA ( 5x5x0.9 mm) (C1) Solder ball: SAC 305

## Example



Example



68 LGA ( 8x8x1.0 mm)

Pb-free JEDEC designator for SAC305

Example



68 QFN ( 8x8x0.9 mm)



#### Legend:

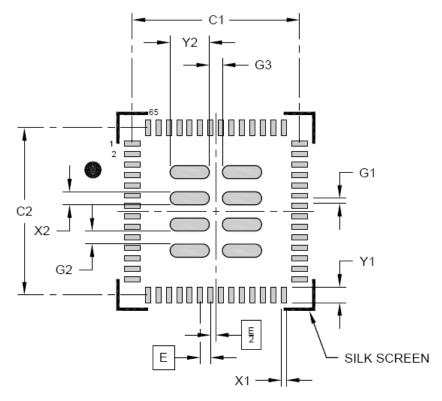
XXX: Chip serial number version and

Pb-free JEDEC designator for SAC305

YY: Year code (last 2 digits of calendar year)
WW: Week code (week of January 1 is week "01")

NNN: Alphanumeric traceability code

#### Note


(1) SAC305 is the pre-solder version. Customer need to take care solder paste before screen printing.

# 9.2 Package Details

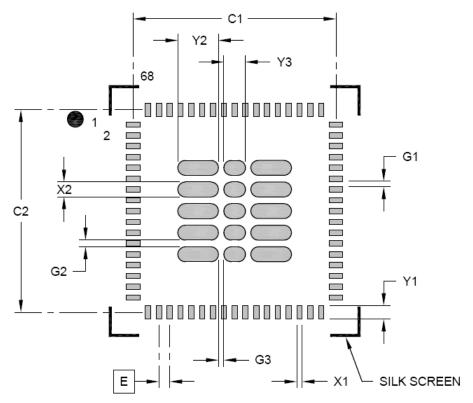
## 9.2.1 56-Lead Land Grid Array (VZ) - 7x7x1 mm Body (LGA)

The following figure illustrates the footprint dimensions of the IS2062GM SoC.

Figure 9-2. IS2062GM FOOTPRINT DIMENSIONS



## RECOMMENDED LAND PATTERN


|                            |          | MILLIMETER | S        |      |
|----------------------------|----------|------------|----------|------|
| Dimensio                   | n Limits | MIN        | NOM      | MAX  |
| Contact Pitch              | Е        |            | 0.40 BSC |      |
| Center Pad Width (X8)      | X2       |            |          | 0.50 |
| Center Pad Length (X8)     | Y2       |            |          | 1.50 |
| Contact Pad Spacing        | C1       |            | 6.40     |      |
| Contact Pad Spacing        | C2       |            | 6.40     |      |
| Contact Pad Width (X56)    | X1       |            |          | 0.20 |
| Contact Pad Length (X56)   | Y1       |            |          | 0.60 |
| Contact Pad to Pad (X52)   | G1       | 0.20       |          |      |
| Center Pads Clearance (X6) | G2       |            | 0.50     |      |
| Center Pads Clearance X4)  | G3       |            | 0.50     |      |

- 1. Dimensioning and tolerance per ASME Y14.5M
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias if used, must be filled or tended to avoid solder loss during reflow process.
- 3. For the most current package drawings, see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

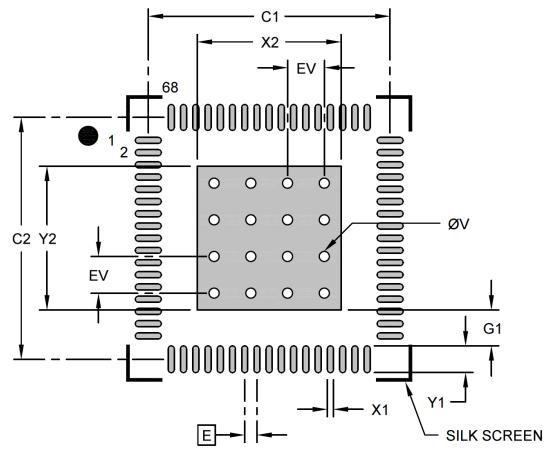
## 9.2.2 68-Lead Land Grid Array (VZ) - 8x8x1 mm Body (LGA)

The following figure illustrates the footprint dimensions of the IS2064GM SoC.

Figure 9-3. IS2064GM FOOTPRINT DIMENSIONS



RECOMMENDED LAND PATTERN


|                             | Units  | N    | VILLIMETER: | S    |
|-----------------------------|--------|------|-------------|------|
| Dimension                   | Limits | MIN  | NOM         | MAX  |
| Contact Pitch               | E      |      | 0.40 BSC    |      |
| Center Pad Width (X10)      | X2     |      |             | 0.55 |
| Center Pad Length (X10)     | Y2     |      |             | 1.50 |
| Center Pad Length (X5)      | Y3     |      |             | 0.80 |
| Contact Pad Spacing         | C1     |      | 7.50        |      |
| Contact Pad Spacing         | C2     |      | 7.50        |      |
| Contact Pad Width (X68)     | X1     |      |             | 0.20 |
| Contact Pad Length (X68)    | Y1     |      |             | 0.50 |
| Contact Pad to Pad (X68)    | G1     | 0.20 |             |      |
| Center Pads Clearance (X12) | G2     | 0.20 |             |      |
| Center Pads Clearance (X10) | G3     | 0.20 |             |      |

- 1. Dimensioning and tolerance per ASME Y14.5M
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias if used, must be filled or tended to avoid solder loss during reflow process.
- 3. For the most current package drawings, see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

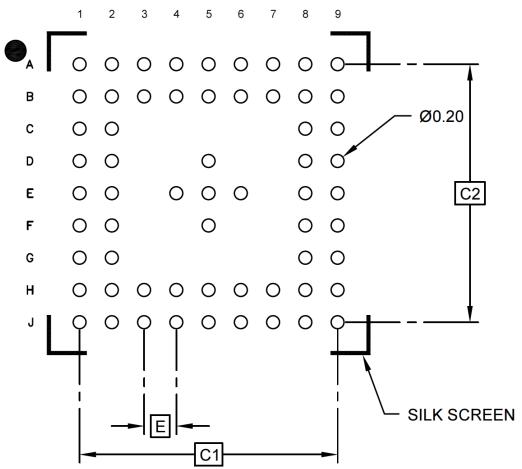
## 9.2.3 68-Lead Very Thin Plastic Quad Flat, No Lead Package (VZ) - 8x8x0.9 mm Body (VQFN)

The following figure illustrates the footprint dimensions of the IS2064S SoC.

Figure 9-4. IS2064S FOOTPRINT DIMENSIONS



# **RECOMMENDED LAND PATTERN**


|                                 | Units  | MILLIMETERS |          |      |
|---------------------------------|--------|-------------|----------|------|
| Dimension                       | Limits | MIN         | NOM      | MAX  |
| Contact Pitch                   | Е      |             | 0.40 BSC |      |
| Optional Center Pad Width       | X2     |             |          | 4.70 |
| Optional Center Pad Length      | Y2     |             |          | 4.70 |
| Contact Pad Spacing             | C1     |             | 7.90     |      |
| Contact Pad Spacing             | C2     |             | 7.90     |      |
| Contact Pad Width (X68)         | X1     |             |          | 0.20 |
| Contact Pad Length (X68)        | Y1     |             |          | 0.85 |
| Contact Pad to Center Pad (X68) | G1     | 0.20        |          |      |
| Thermal Via Diameter            | V      |             | 0.33     |      |
| Thermal Via Pitch               | EV     |             | 1.20     |      |

- 1. Dimensioning and tolerance per ASME Y14.5M
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias if used, must be filled or tended to avoid solder loss during reflow process.
- 3. For the most current package drawings, see the Microchip Packaging Specifications located at http://www.microchip.com/packaging.

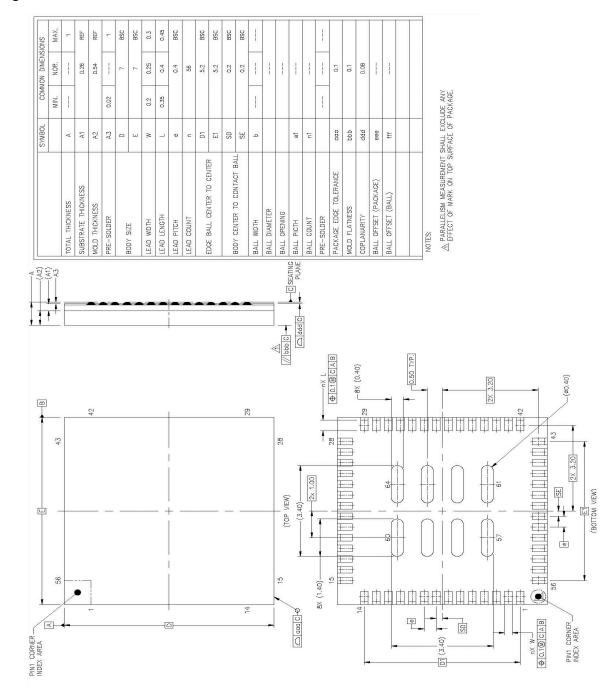
## 9.2.4 61-Ball Very Thin Fine Pitch Ball Grid Array (5HX) - 5x5x0.9 mm Body (VFBGA)

The following figure illustrates the footprint dimensions of the IS2064B SoC.

Figure 9-5. IS2064B FOOTPRINT DIMENSIONS



# RECOMMENDED LAND PATTERN

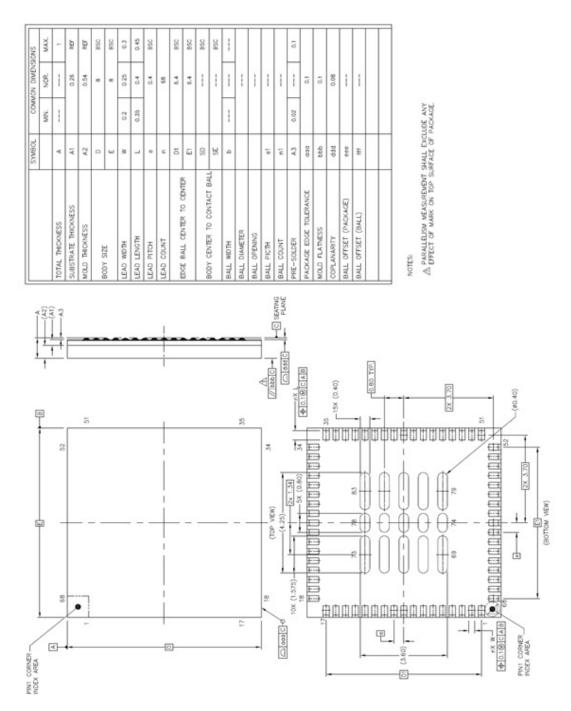

|                            | Units  | N   | <b>IILLIMETER</b> | S    |
|----------------------------|--------|-----|-------------------|------|
| Dimension                  | Limits | MIN | NOM               | MAX  |
| Contact Pitch              | Е      |     | 0.50 BSC          |      |
| Contact Pad Spacing        | C1     |     | 4.00              |      |
| Contact Pad Spacing        | C2     |     | 4.00              |      |
| Contact Pad Diameter (X61) | X1     |     |                   | 0.20 |

- 1. Dimensioning and tolerance per ASME Y14.5M
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For the most current package drawings, see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

#### 9.2.5 IS2062GM-SAC305

The following figure illustrates the package details of the IS2062GM-SAC305.

Figure 9-6. IS2062GM-SAC305 PACKAGE DETAILS




**Note:** For the most current package drawings, see the Microchip Packaging Specification located at <a href="http://www.microchip.com/packaging">http://www.microchip.com/packaging</a>.

## 9.2.6 IS2064GM-SAC305

The following figure illustrates the package details of the IS2064GM-SAC305.

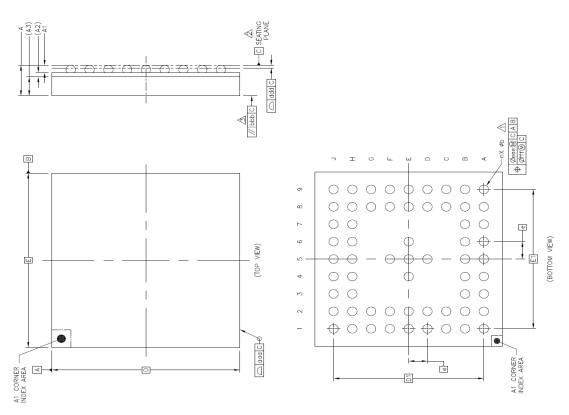
Figure 9-7. IS2064GM-SAC305 PACKAGE DETAILS



**Note:** For the most current package drawings, see the Microchip Packaging Specification located at <a href="http://www.microchip.com/packaging">http://www.microchip.com/packaging</a>.

## 9.2.7 IS2064S-QFN

The following figure illustrates the package details of the IS2064S-QFN.


Figure 9-8. IS2064S-QFN PACKAGE DETAILS

|                             | SYMBOL | COMM | COMMON DIMENSIONS | SNOI |
|-----------------------------|--------|------|-------------------|------|
|                             |        | MIN. | NOR.              | MAX. |
| TOTAL THICKNESS             | ٨      | -    | -                 | 0.9  |
| STAND OFF                   | 1A     | 0.11 |                   | 0.21 |
| SUBSTRATE THICKNESS         | A2     |      | 0.125             | REF  |
| MOLD THICKNESS              | A3     |      | 0.54              | REF  |
| 3213 >000                   | Q      |      | 2                 | BSC  |
| BOUT SIZE                   | Е      |      | 2                 | BSC  |
| BALL DIAMETER               |        |      | 0.25              |      |
| BALL OPENING                |        |      | 0.25              |      |
| BALL WDTH                   | q      | 0.2  | -                 | 0.3  |
| BALL PITCH                  | 9      |      | 0.5               | BSC  |
| BALL COUNT                  | u      |      | 19                |      |
|                             | D1     |      | 4                 | BSC  |
| EUGE BALL CENIER IU CENIER  | 13     |      | 4                 | BSC  |
| DODY CENTED TO CONTACT BALL | SD     |      |                   | BSC  |
|                             | SE     |      | -                 | BSC  |
| PACKAGE EDGE TOLERANCE      | DDD    |      | 0.1               |      |
| MOLD FLATNESS               | ppp    |      | 0.2               |      |
| COPLANARITY                 | ppp    |      | 0.08              |      |
| BALL OFFSET (PACKAGE)       | 999    |      | 0.15              |      |
| BALL OFFSET (BALL)          | ţţţ    |      | 0.08              |      |
|                             |        |      |                   |      |
|                             |        |      |                   |      |
|                             |        |      |                   |      |
|                             |        |      |                   |      |
|                             |        |      |                   |      |
|                             |        |      |                   |      |

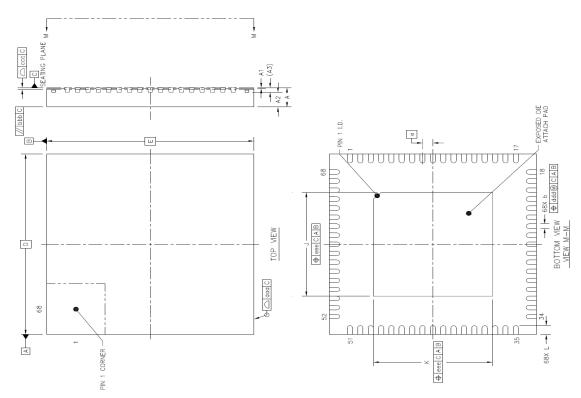
△ DIMENSION B IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO DATUM PLANE C.

△ DATUM C (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

△ PARALLES MARASURENT SHALL EXCLUDE ANY EFFECT



**Note:** For the most current package drawings, see the Microchip Packaging Specifications located at <a href="http://www.microchip.com/packaging">http://www.microchip.com/packaging</a>.


## 9.2.8 IS2064B-BGA

The following figure illustrates the package details of the IS2064B-BGA.

Figure 9-9. IS2064B-BGA PACKAGE DETAILS

| TOTAL THICKNESS STAND OFF MOLD THICKNESS L/F THICKNESS |     |      |           | MAN  |   |
|--------------------------------------------------------|-----|------|-----------|------|---|
| STAND OFF<br>MOLD THICKNESS<br>L/F THICKNESS           | Ą   | 0.8  | 0.85      | 6.0  |   |
| MOLD THICKNESS<br>L/F THICKNESS                        | A1  | 0    | 0.035     | 0.05 | _ |
| L/F THICKNESS                                          | A2  | 1    | 0.65      | 0.67 | _ |
|                                                        | A3  |      | 0.203 REF |      | _ |
| EAD WIDTH                                              | q   | 0.15 | 0.2       | 0.25 | _ |
| X                                                      | Q   |      | 8 BSC     |      | _ |
| Y Y                                                    | ш   |      | 8 BSC     |      | _ |
| LEAD PITCH                                             | e   |      | 0.4 BSC   |      | _ |
| X X                                                    | ~   | 4.5  | 4.6       | 4.7  | _ |
| 7 Jack                                                 | ×   | 4.5  | 4.6       | 4.7  |   |
| EAD LENGTH                                             | _   | 0.35 | 0.4       | 0.45 | _ |
| PACKAGE EDGE TOLERANCE                                 | 000 |      | 1.0       |      | _ |
| MOLD FLATNESS                                          | qqq |      | 0.1       |      | _ |
| COPLANARITY                                            | 222 |      | 0.08      |      | _ |
| LEAD OFFSET                                            | ppp |      | 0.1       |      | _ |
| EXPOSED PAD OFFSET                                     | eee |      | 0.1       |      | _ |
|                                                        |     |      |           |      | _ |
|                                                        |     |      |           |      |   |
|                                                        |     |      |           |      |   |
|                                                        |     |      |           |      | _ |
|                                                        |     |      |           |      |   |

NOTES 1.0 COPLANARITY APPLES TO LEADS, CORNER LEADS AND DIE ATTACH PAD.



**Note:** For the most current package drawings, see the Microchip Packaging Specifications located at <a href="http://www.microchip.com/packaging">http://www.microchip.com/packaging</a>.

# 10. Reflow Profile and Storage Condition

This section describes about the Solder Reflow Recommendation and Storage Condition of the IS2062GM/64GM SoC.

#### 10.1 Solder Reflow Recommendation

Refer to Microchip Technology Application Note "AN233 Solder Reflow Recommendation" (DS00000233) for the soldering reflow recommendations from the Microchip website: http://ww1.microchip.com/downloads/en/appnotes/00233d.pdf.

## 10.2 Storage Condition

Users must follow these specific storage conditions for the IS2062/64 SoC.

- Calculated shelf life in the sealed bag: 24 months at <40°C and <90% Relative Humidity (RH)</li>
- Once the bag is opened, devices that are subjected to reflow solder or other high temperature process must be mounted within 168 hours of factory conditions, that is <30°C /60% RH</li>

The following figure illustrates the IS2062/64 SoC bag label details.

Figure 10-1. STORAGE CONDITIONS



# Caution This bag contains MOISTURE-SENSITIVE DEVICES



| 1. | Calculated shelf life in sealed bag: 24 months at < 40°C at | nd |
|----|-------------------------------------------------------------|----|
|    | <90% relative humidity (RH)                                 |    |

| 2. | Peak | package | body | temperature: |                            | C  |
|----|------|---------|------|--------------|----------------------------|----|
|    |      | ,       |      |              | see adjacent bar code labe | el |

- After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
  - a) Mounted within: 168 hours of factory conditions If blank, see adjacent bar code label ≤30°C/60% RH, or
  - b) Stored per J-STD-033
- 4. Devices require bake, before mounting, if:
  - a) Humidity Indicator Card reads > 10% for level 2a 5a devices or > 60% for level 2 devices when read at 23±5°C
  - b) 3a or 3b are not met.
- If baking is required, refer to IPC/JEDEC J-STD-033 for bake procedure.

| Bag Seal Date: |                                       |  |
|----------------|---------------------------------------|--|
|                | If blank, see adjacent bar code label |  |

Note: Level and body temperature defined by IPC/JEDEC J-STD-020

© 2019 Microchip Technology Inc. Datasheet DS60001409G-page 66

# 11. Ordering Information

The following table provides the ordering information of the IS2062/64 SoC.

**Table 11-1. ORDERING INFORMATION** 

| Device   | Description                                                                                  | Package                                     | Part Number   |
|----------|----------------------------------------------------------------------------------------------|---------------------------------------------|---------------|
| IS2062GM | Bluetooth Audio Dual mode,<br>Flash SoC, 2 microphones,<br>Analog output                     | <ul><li>7x7x1.0 mm</li><li>56-LGA</li></ul> | IS2062GM-012  |
| IS2064GM | Bluetooth Audio Dual mode,<br>Flash SoC, 1 microphone,<br>Analog and I <sup>2</sup> S output | • 8x8x1.0 mm<br>• 68-LGA                    | IS2064GM-012  |
|          | Bluetooth Audio Dual mode,<br>Flash SoC, 1 microphone,<br>LDAC and I <sup>2</sup> S output   |                                             | IS2064GM-0L3  |
| IS2064S  | Bluetooth Audio Dual mode,<br>ROM SoC, 1 microphone,<br>Analog and I <sup>2</sup> S output   | <ul><li>8x8x0.9 mm</li><li>68-QFN</li></ul> | IS2064S-114SM |
| IS2064B  | Bluetooth Audio Dual mode,<br>ROM SoC, 2 microphone,<br>Analog and I <sup>2</sup> S output   | • 5x5x0.9 mm<br>• 61-BGA                    | IS2064B-114SM |

**Note:** The IS2062/64 SoC is purchased through a Microchip representative. Visit http://www.microchip.com/ for ordering information.

# 12. Reference Circuit

This section provides the reference schematics of IS2062GM, IS2064GM, IS2064S and IS2064B used in a stereo headset application.

The following figures illustrate the IS2062GM reference schematics for the stereo headset application.

Figure 12-1. IS2062GM REFERENCE CIRCUIT FOR STEREO HEADSET

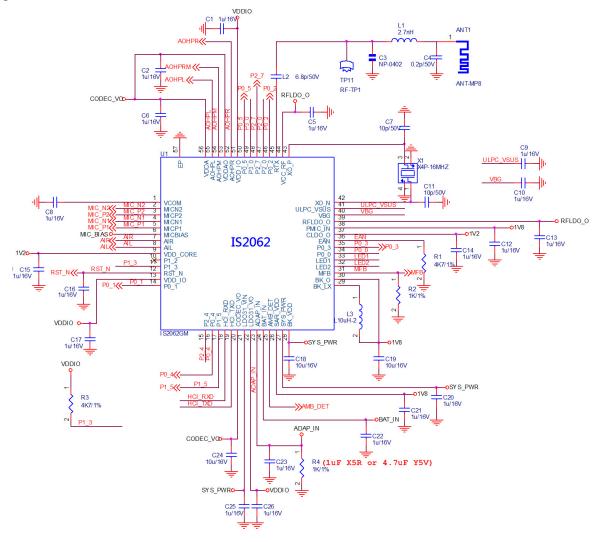
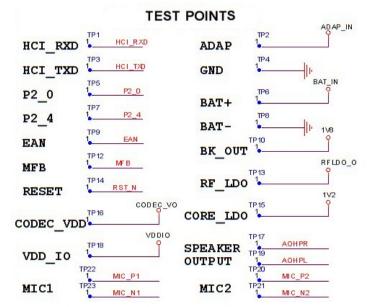




Figure 12-2. IS2062GM REFERENCE CIRCUIT FOR STEREO HEADSET



|      | <b>GPIO Description (General)</b> |
|------|-----------------------------------|
| P0_0 | TX_IND                            |
| P0_1 | FWD                               |
| P0_2 | Play/Pause                        |
| P0_3 | REV                               |
| P0_4 | NFC                               |
|      | External Amplifier Enable         |
| P0_5 | Volume down                       |
| P1_5 | SLIDE SWITCH                      |
| F1_0 | External Amplifier Enable         |
| P2_0 | System Configuration              |
| P2_4 | System Configuration              |
| P2_7 | Volume up                         |
| P3_0 | Line-in detection                 |

Figure 12-3. IS2062GM REFERENCE CIRCUIT FOR STEREO HEADSET

# NFC(OPTIONAL) **SLIDE SWITCH(OPTIONAL)** For MXP 203F MFC type, which build-in rectifier circuit R13 1 K/1 % C37 1u/16V **SWITCH** 100K PLAY/PAUSE <u>P0 2</u> ≫P0\_2 AMB DET P0\_3 >>> P0\_3 P0\_1>>P0\_1 REV R26 1M/1% R30 86 K6/1% P0\_5 >>> P0\_5 P2\_7 >>>P2\_7 VOL\_DM VOL\_UP 7 NCP15WF104F03 Reset (OPTIONAL)

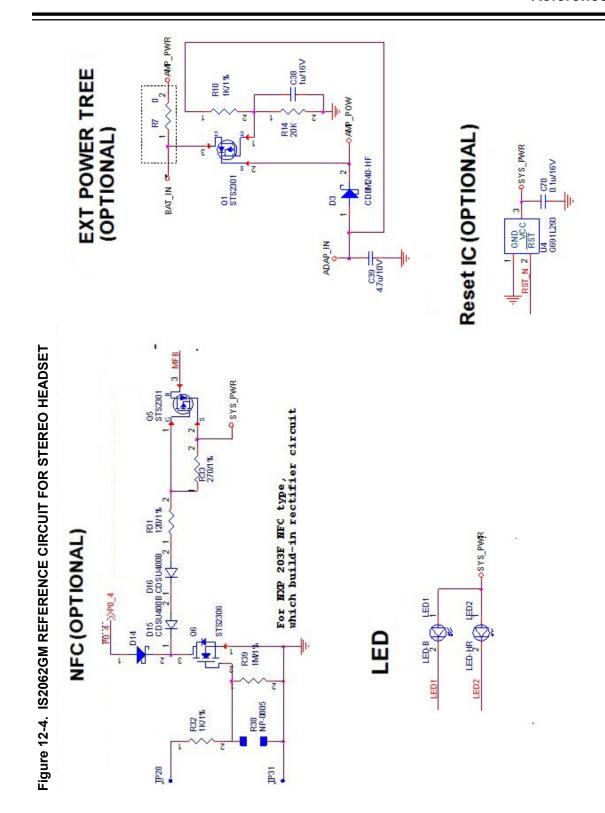
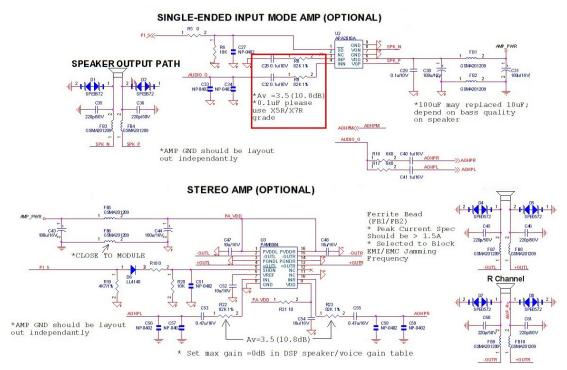
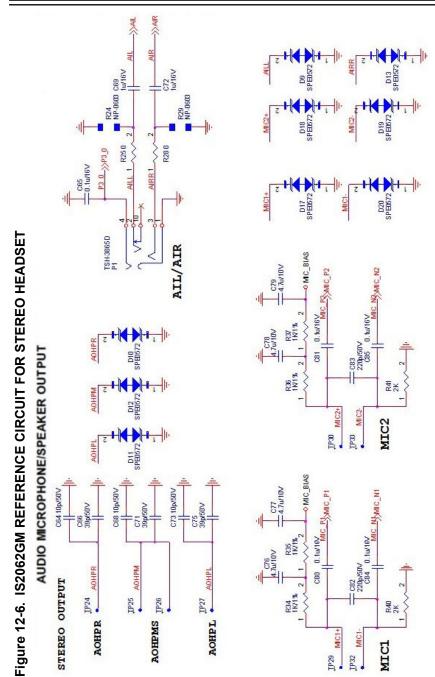





Figure 12-5. IS2062GM REFERENCE CIRCUIT FOR STEREO HEADSET





The following figures illustrate the IS2064GM (IS2064GM-012/IS2064GM-0L3) reference schematics for the stereo headset application.

**Note:** The AOHPR, AOHPL, and AOHPM pins shown in the following schematic are not applicable for IS2064GM-0L3 as there is no analog audio output pin. These pins should be left unconnected.

Figure 12-7. IS2064GM REFERENCE CIRCUIT FOR STEREO HEADSET

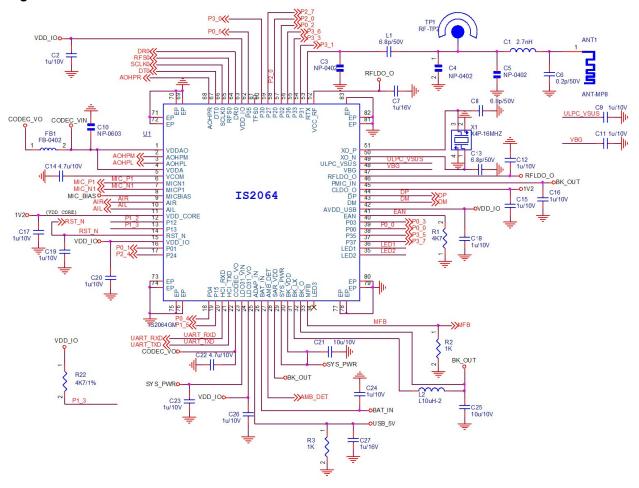
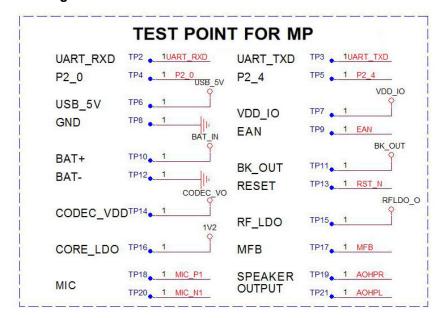




Figure 12-8. IS2064GM REFERENCE CIRCUIT FOR STEREO HEADSET



## **GPIO DESCRIPTION**

| MFB  | UART_RX_IND; MFB      |
|------|-----------------------|
| P0_0 | SLIDE SWITCH          |
| P0_2 | PLAY/PAUSE            |
| P0_4 | AMP_EN/NFC            |
| P0_5 | VOL-                  |
| P2_7 | VOL+                  |
| P3_0 | AUX IN Detection      |
| P3_7 | UART_TX_IND           |
| P1_5 | AMP_EN/SLIDE SWITCH   |
|      | Single/Double setting |
| P3_6 | Single/Double setting |
| P2_0 | System Configuration  |
| EAN  | System Configuration  |

Figure 12-9. IS2064GM REFERENCE CIRCUIT FOR STEREO HEADSET

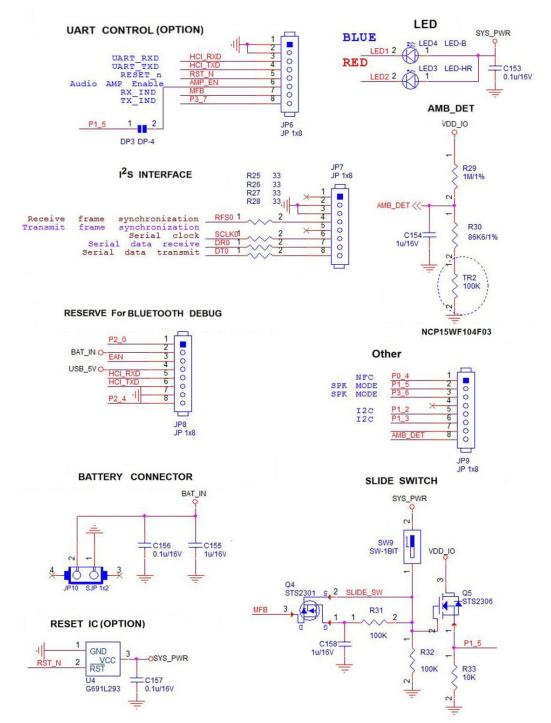
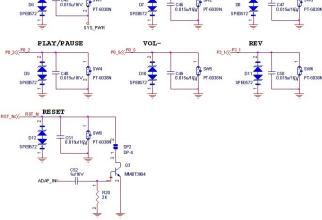




Figure 12-10. IS2064GM REFERENCE CIRCUIT FOR STEREO HEADSET

# **USB CONNECTOR** STEREO SPEAKER OUTPUT SPK JACK P3 PJ-2001-5K **MIC INPUT** STEREO AUX LINE INPUT **PUSH BUTTON**



Note: All ESD diodes in these schematics are reserved for the testing.

The following figures illustrate the IS2064S reference schematics for a stereo headset application.

DS60001409G-page 78

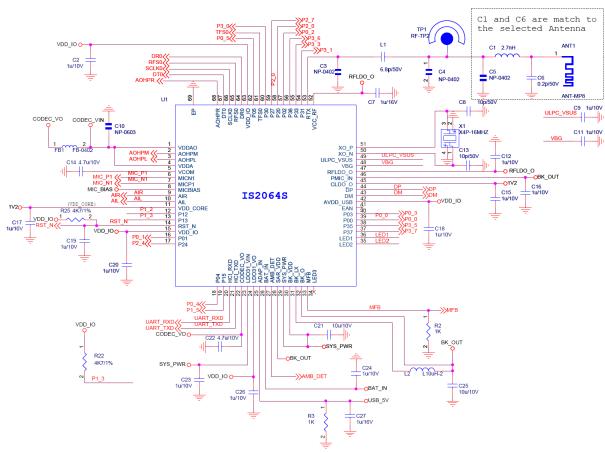



Figure 12-11. IS2064S REFERENCE CIRCUIT FOR STEREO HEADSET

Figure 12-12. IS2064S REFERENCE CIRCUIT FOR STEREO HEADSET

### TEST POINT FOR MP

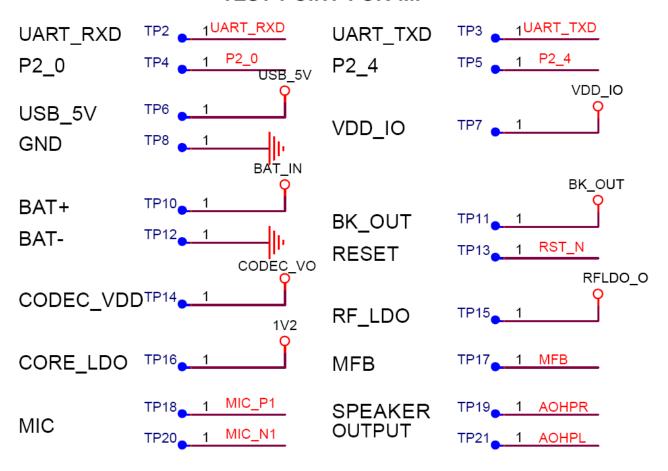
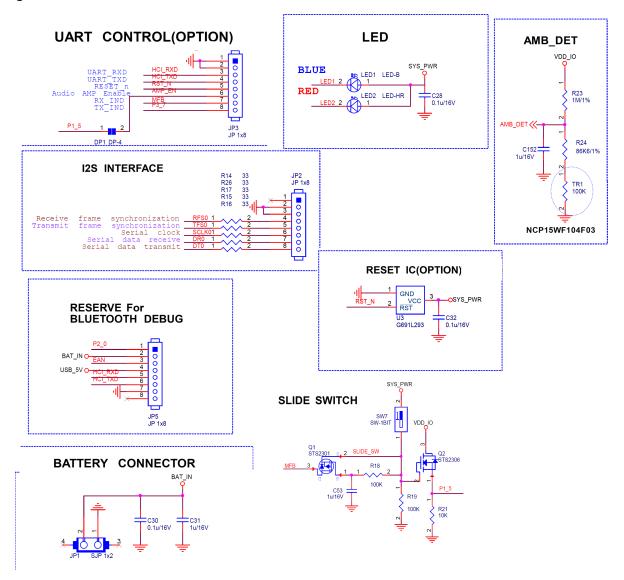
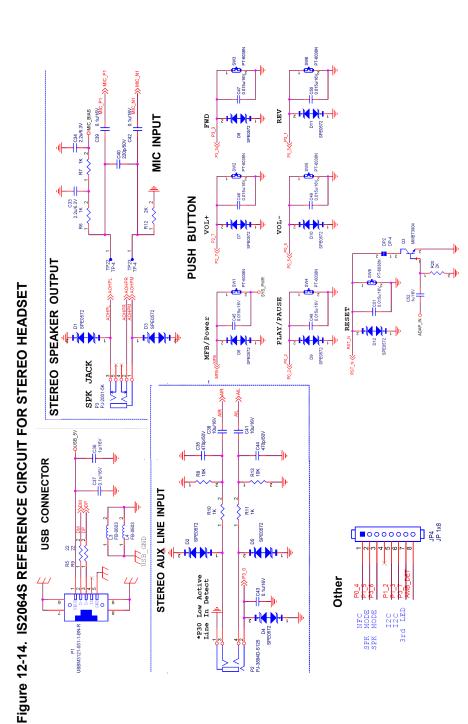
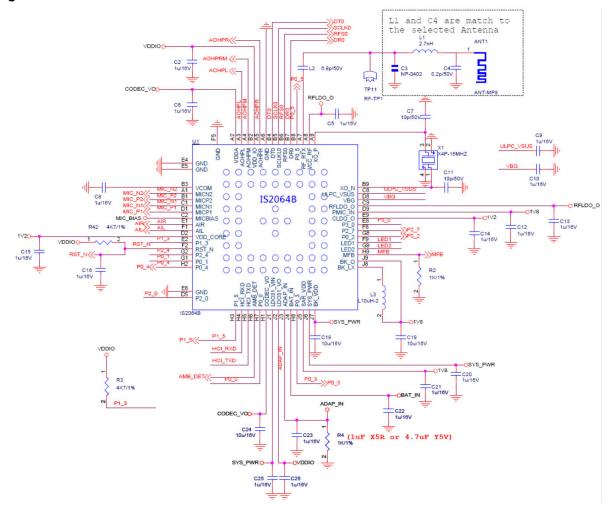





Figure 12-13. IS2064S REFERENCE CIRCUIT FOR STEREO HEADSET






Note: All EDS diodes in these schematics are reserved for testing and can be removed, if ESD is passed without adding it.

The following figures illustrate the IS2064B reference schematics for the stereo headset application.

Figure 12-15. IS2064B REFERENCE CIRCUIT FOR STEREO HEADSET





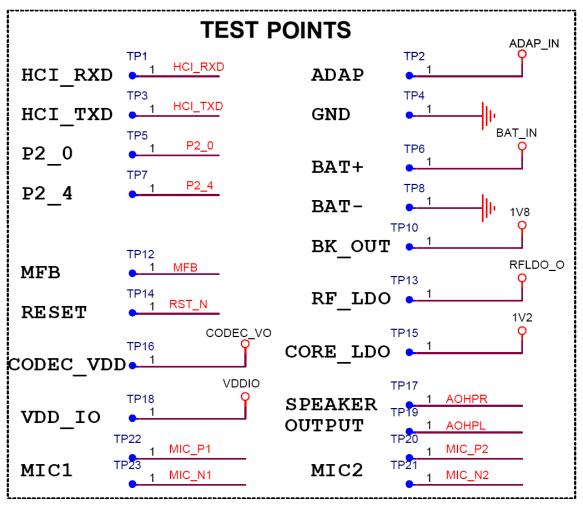
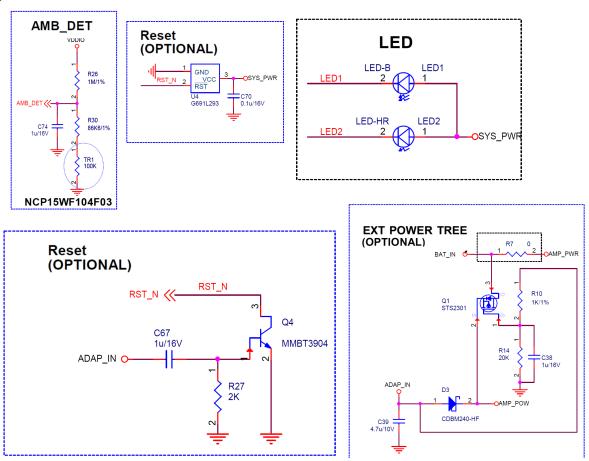
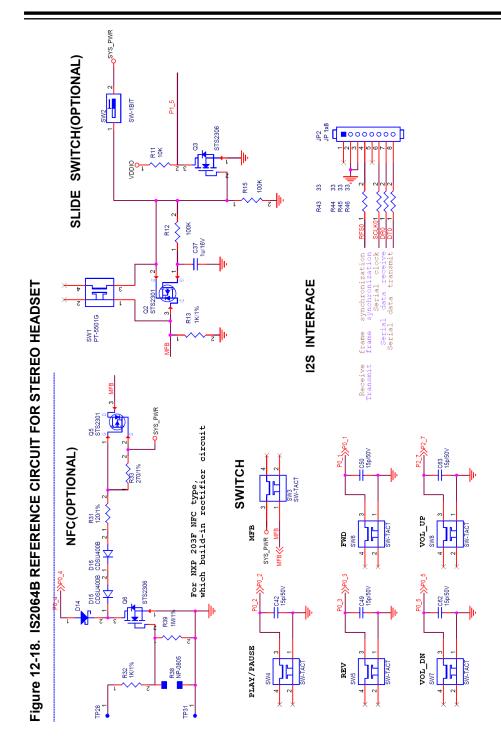
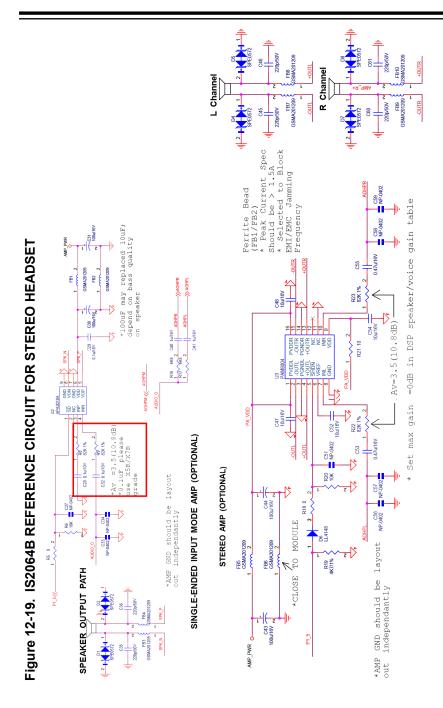
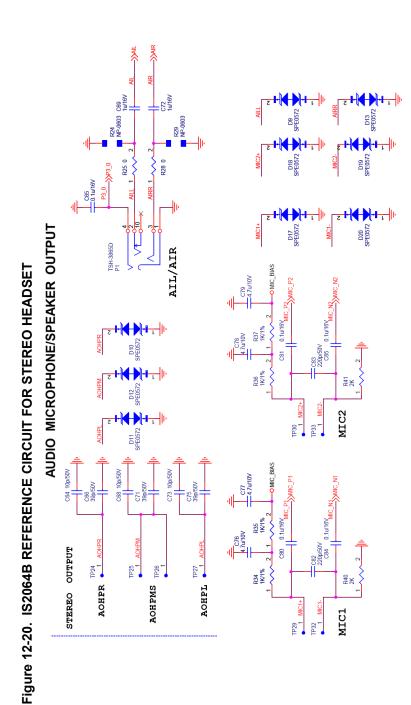







Figure 12-17. IS2064B REFERENCE CIRCUIT FOR STEREO HEADSET









Note: All ESD diodes in these schematics are reserved for testing and can be removed, if ESD is passed without adding it.

### 13. **Document Revision History**

### Revision A (May 2016)

This is the initial released version of this document.

### Revision B (December 2016)

This revision includes the following changes and minor updates to text and formatting, which were incorporated throughout the document.

**Table 13-1. MAJOR SECTION UPDATES** 

| Section                 | Changes                                                                                                                                                 |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Audio Codec             | Updated the I <sup>2</sup> S digital audio applicability.                                                                                               |
| Peripherals             | Updated the USB version details.                                                                                                                        |
| Device Overview         | Updated Figure 1-1 and Figure 1-2. Added "USB" details and updated "Customized voice prompt" details in Table 1-1. Updated Table 1-1 through Table 1-3. |
| Codec                   | Added a note for internal codec support and addition of trailing zeros.                                                                                 |
| Application Information | Added Note 2 for usage of BAT_IN or ADAP_IN pins. Updated Figure 6-1. Updated Table 6-4 and deleted Table 6-5.                                          |
| Reference Circuit       | Updated Figure 12-8 and Figure 12-9.                                                                                                                    |

### Revision C (July 2017)

This revision includes the following changes and minor updates to text and formatting, which were incorporated throughout the document.

**Table 13-2. MAJOR SECTION UPDATES** 

| Section  | Changes                                                                                                                      |
|----------|------------------------------------------------------------------------------------------------------------------------------|
| Document | <ul> <li>Added ROM variant information of IS2062/64 family.</li> <li>Updated the document as per latest template.</li> </ul> |

### Revision D (June 2017)

This revision includes the following changes and minor updates to text and formatting, which were incorporated throughout the document.

DS60001409G-page 88 **Datasheet** 

### **Table 13-3. MAJOR SECTION UPDATES**

| Section  | Changes                                                                                                                      |
|----------|------------------------------------------------------------------------------------------------------------------------------|
| Document | <ul> <li>Added ROM variant information of IS2062/64 family.</li> <li>Updated the document as per latest template.</li> </ul> |

### Revision E (August 2018)

This revision includes the update related to IS2064GM-0L3 device variant and text update, which were incorporated throughout the document.

### **Table 13-4. MAJOR SECTION UPDATES**

| Section          | Changes                                                             |
|------------------|---------------------------------------------------------------------|
| Document         | Updated Bluetooth version 4.2 to 5.0                                |
| Introduction     | Updated Flash-based devices description                             |
| Audio Codec      | Updated with LDAC decoding for IS2064GM-0L3 devices                 |
| 1.1 Key Features | Updated the table with IS2064GM-0L3 device features                 |
| Figure 1-2       | Updated an image with '*' and added a note                          |
| Table 1-2        | Updated the table IS2064GM-0L3 device details                       |
| Figure 2-2       | Updated an image with LDAC feedback                                 |
| Table 6-1        | Updated System Configuration Settings table                         |
| Table 8-12       | Added a table                                                       |
| Figure 9-1       | Updated an images with IS2064GM-0L3 device                          |
| Table 11-1       | Updated the table with IS2064GM-0L3 device variant ordering details |

### **Revision F (September 2018)**

| Section    | Changes                             |
|------------|-------------------------------------|
| Features   | Added BLE data rate feature         |
| Figure 6-8 | Updated figure and figure footnotes |

### Revision G (May 2019)

| Section         | Changes                                   |
|-----------------|-------------------------------------------|
| Pin Description | Changed pin type for HCI_RXD and HCI_TXD. |

# The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

# **Customer Change Notification Service**

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

# Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

# Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- · There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.

**Datasheet** DS60001409G-page 90 © 2019 Microchip Technology Inc.

 Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

# **Legal Notice**

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

### **Trademarks**

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-4563-0

# **Quality Management System Certified by DNV**

### ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.



# **Worldwide Sales and Service**

| AMERICAS                         | ASIA/PACIFIC          | ASIA/PACIFIC            | EUROPE                |
|----------------------------------|-----------------------|-------------------------|-----------------------|
| Corporate Office                 | Australia - Sydney    | India - Bangalore       | Austria - Wels        |
| 2355 West Chandler Blvd.         | Tel: 61-2-9868-6733   | Tel: 91-80-3090-4444    | Tel: 43-7242-2244-39  |
| Chandler, AZ 85224-6199          | China - Beijing       | India - New Delhi       | Fax: 43-7242-2244-393 |
| Tel: 480-792-7200                | Tel: 86-10-8569-7000  | Tel: 91-11-4160-8631    | Denmark - Copenhagen  |
| Fax: 480-792-7277                | China - Chengdu       | India - Pune            | Tel: 45-4450-2828     |
| Technical Support:               | Tel: 86-28-8665-5511  | Tel: 91-20-4121-0141    | Fax: 45-4485-2829     |
| http://www.microchip.com/support | China - Chongqing     | Japan - Osaka           | Finland - Espoo       |
| Web Address:                     | Tel: 86-23-8980-9588  | Tel: 81-6-6152-7160     | Tel: 358-9-4520-820   |
| http://www.microchip.com         | China - Dongguan      | Japan - Tokyo           | France - Paris        |
| Atlanta                          | Tel: 86-769-8702-9880 | Tel: 81-3-6880- 3770    | Tel: 33-1-69-53-63-20 |
| Duluth, GA                       | China - Guangzhou     | Korea - Daegu           | Fax: 33-1-69-30-90-79 |
| Tel: 678-957-9614                | Tel: 86-20-8755-8029  | Tel: 82-53-744-4301     | Germany - Garching    |
| Fax: 678-957-1455                | China - Hangzhou      | Korea - Seoul           | Tel: 49-8931-9700     |
| Austin, TX                       | Tel: 86-571-8792-8115 | Tel: 82-2-554-7200      | Germany - Haan        |
| Tel: 512-257-3370                | China - Hong Kong SAR | Malaysia - Kuala Lumpur | Tel: 49-2129-3766400  |
| Boston                           | Tel: 852-2943-5100    | Tel: 60-3-7651-7906     | Germany - Heilbronn   |
| Westborough, MA                  | China - Nanjing       | Malaysia - Penang       | Tel: 49-7131-72400    |
| Tel: 774-760-0087                | Tel: 86-25-8473-2460  | Tel: 60-4-227-8870      | Germany - Karlsruhe   |
| Fax: 774-760-0088                | China - Qingdao       | Philippines - Manila    | Tel: 49-721-625370    |
| Chicago                          | Tel: 86-532-8502-7355 | Tel: 63-2-634-9065      | Germany - Munich      |
| Itasca, IL                       | China - Shanghai      | Singapore               | Tel: 49-89-627-144-0  |
| Tel: 630-285-0071                | Tel: 86-21-3326-8000  | Tel: 65-6334-8870       | Fax: 49-89-627-144-44 |
| Fax: 630-285-0075                | China - Shenyang      | Taiwan - Hsin Chu       | Germany - Rosenheim   |
| Dallas                           | Tel: 86-24-2334-2829  | Tel: 886-3-577-8366     | Tel: 49-8031-354-560  |
| Addison, TX                      | China - Shenzhen      | Taiwan - Kaohsiung      | Israel - Ra'anana     |
| Tel: 972-818-7423                | Tel: 86-755-8864-2200 | Tel: 886-7-213-7830     | Tel: 972-9-744-7705   |
| Fax: 972-818-2924                | China - Suzhou        | Taiwan - Taipei         | Italy - Milan         |
| Detroit                          | Tel: 86-186-6233-1526 | Tel: 886-2-2508-8600    | Tel: 39-0331-742611   |
| Novi, MI                         | China - Wuhan         | Thailand - Bangkok      | Fax: 39-0331-466781   |
| Tel: 248-848-4000                | Tel: 86-27-5980-5300  | Tel: 66-2-694-1351      | Italy - Padova        |
| Houston, TX                      | China - Xian          | Vietnam - Ho Chi Minh   | Tel: 39-049-7625286   |
| Tel: 281-894-5983                | Tel: 86-29-8833-7252  | Tel: 84-28-5448-2100    | Netherlands - Drunen  |
| Indianapolis                     | China - Xiamen        |                         | Tel: 31-416-690399    |
| Noblesville, IN                  | Tel: 86-592-2388138   |                         | Fax: 31-416-690340    |
| Tel: 317-773-8323                | China - Zhuhai        |                         | Norway - Trondheim    |
| Fax: 317-773-5453                | Tel: 86-756-3210040   |                         | Tel: 47-72884388      |
| Tel: 317-536-2380                |                       |                         | Poland - Warsaw       |
| Los Angeles                      |                       |                         | Tel: 48-22-3325737    |
| Mission Viejo, CA                |                       |                         | Romania - Bucharest   |
| Tel: 949-462-9523                |                       |                         | Tel: 40-21-407-87-50  |
| Fax: 949-462-9608                |                       |                         | Spain - Madrid        |
| Tel: 951-273-7800                |                       |                         | Tel: 34-91-708-08-90  |
| Raleigh, NC                      |                       |                         | Fax: 34-91-708-08-91  |
| Tel: 919-844-7510                |                       |                         | Sweden - Gothenberg   |
| New York, NY                     |                       |                         | Tel: 46-31-704-60-40  |
| Tel: 631-435-6000                |                       |                         | Sweden - Stockholm    |
| San Jose, CA                     |                       |                         | Tel: 46-8-5090-4654   |
| Tel: 408-735-9110                |                       |                         | UK - Wokingham        |
| Tel: 408-436-4270                |                       |                         | Tel: 44-118-921-5800  |
| Canada - Toronto                 |                       |                         | Fax: 44-118-921-5820  |
| Tel: 905-695-1980                |                       |                         |                       |
| Fax: 905-695-2078                |                       |                         |                       |