

SpW-10X SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

SpW-10X SpaceWire Router User Manual

Ref: UoD_SpW-10X_UserManual

Atmel Part No.: AT7910E

Document Revision: Issue 3.5

Date: 7th January 2015

Prepared by - Chris McClements, University of Dundee

Steve Parkes, University of Dundee Gerald Kempf, Austrian Aerospace

Checked by - Steve Parkes, University of Dundee

ESA Manager - Pierre Fabry, ESTEC

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

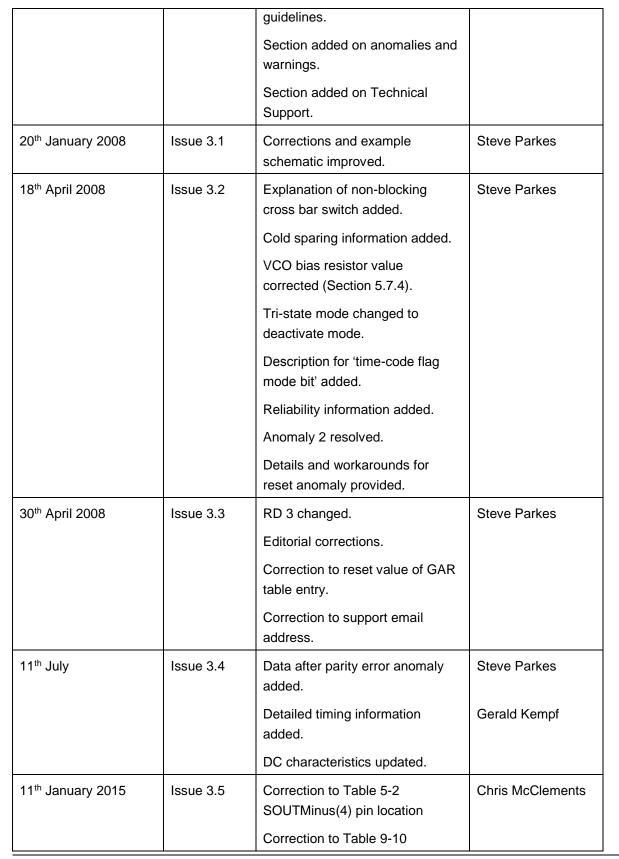
UserManual

Issue: **3.5**

Date: 7th January 2015

Document Change log

Date	Issue	Comments	Author
19th-March-2004	Issue 1.0	Initial draft version	Chris McClements
26th-August-2004	Issue 1.2	Timing for FPGA model added	Chris McClements
16 November 2004	Issue 1.3	Register Definitions Updated	Chris McClements
27 April 2004	Issue 1.4	Latency and Jitter Specifications added	Chris McClements
2 May 2005	Issue 1.5	Footer indicates "Preliminary." Section 8.6 subject to change notice added to front page.	Steve Parkes
21 December 2005	Issue 1.6	RMAP section added	Chris McClements
19 th July 2006	Issue 1.7	Corrections and clarifications	Chris McClements
18 th August 2006	Issue 2.0	Editorial changes and clarifications	Steve Parkes
3 rd July 2007	Issue 2.1	Added sections on ASIC pin placement, ASIC power consumption, bias resistors, phase locked loop and anomalies.	Chris McClements Steve Parkes
28 th September 2007	Issue 2.2	Modifications before handed to Atmel	Chris McClements, Gerald Kempf
4 th October 2007	Issue 2.3	Modifications to SpaceWire signal names (Map pin 1 to 0)	Chris McClements, Gerald Kempf
3 rd December 2007	Issue 2.4	Updates as user manual. Changed document name to UoD_SpW_10X_UserManual.doc	Chris McClements, Gerald Kempf
11 th December 2007	Issue 2.5	Redistribute with PLL settings	Chris McClements Gerald Kempf
18 th January 2008	Issue 3.0	Major edit providing clarifications and additional application details throughout document. Section added on Application Guidelines giving example circuit diagram and PCB layout	Steve Parkes


SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

POR_SEL_TIMEOUT_N reset value polarity.	
Correction to Table 10-1, TBC removed.	

SpW-10X SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_ UserManual**

Issue: **3.5**

Date: 7th January 2015

CONTENTS

СО	ONTENTS	5
ı	LIST OF FIGURES	11
II	LIST OF TABLES	13
1.	INTRODUCTION	15
1.1	TERMS, ACRONYMS AND ABBREVIATIONS	15
1.2	2 DOCUMENTS	16
2.	USER APPLICATIONS	18
2.1	STAND-ALONE ROUTER	18
2.2	NODE INTERFACE	19
2.3	B EMBEDDED ROUTER	19
2.4	EXPANDING THE NUMBER OF ROUTER PORTS	20
3.	FUNCTIONAL OVERVIEW	23
3.1	SPACEWIRE PORTS	24
3.2	2 EXTERNAL PORTS	24
3.3	CONFIGURATION PORT	25
3.4	ROUTING TABLE	25
3.5	ROUTING CONTROL LOGIC AND CROSSBAR	25
3.6	TIME-CODE PROCESSING	26
3.7	CONTROL/STATUS REGISTERS	26
4.	PIN LOCATIONS	27
5.	DEVICE INTERFACE	33
5.1	GLOBAL SIGNALS	33
5.2	SPACEWIRE SIGNALS	34
5.2		
5.2	·	
5.2	2.3 Operation with 5V Powered LVDS Devices	39

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_ UserManual**

Issue: **3.5**

5.3	EXTERNAL PORT DATA SIGNALS	39
5.4	TIME-CODE SIGNALS	41
5.5	STATUS INTERFACE SIGNALS	43
5.6	RESET CONFIGURATION SIGNALS	44
5.7	POWER, GROUND, PLL AND LVDS SIGNALS	47
5.7.1		
5.7.2		
5.7.3		
5.7.4	4 PLL External Components	47
6.	INTERFACE OPERATIONS	49
6.1	EXTERNAL PORT INTERFACE OPERATION	49
6.2	TIME-CODE INTERFACE OPERATION	50
6.3	STATUS INTERFACE OPERATION	51
6.4	RESET CONFIGURATION INTERFACE OPERATION	53
7.	SPACEWIRE ROUTER PACKET TYPES	54
7.1	PACKET ADDRESSES	54
7.2	PACKET PRIORITY	55
7.3	PACKET HEADER DELETION	55
7.4	INVALID ADDRESSES	56
7.5	DATA PACKETS	57
7.6	COMMAND PACKETS	57
7.6.1	1 Supported Commands	57
7.6.2	2 Read Command	58
7.6.3	Read Incrementing Command	62
7.6.4	4 Read Modify Write Command	67
7.6.5		
7.6.6	•	
7.6.7	,	
7.6.8		
7.6.9		
7.6.1	10 Command Packet Fill Bytes	80
8.	CONTROL LOGIC AND OPERATIONAL MODES	81
8.1	SPACEWIRE LINK CONTROL	81
8.1.1	1 Default operating mode	81

SpaceWire Router

User Manual Dat

Ref.: **UoD_SpW-10X_ UserManual**

Issue: **3.5**

8.1.2 Auto-Start	
8.1.3 Link-Start	
8.1.4 Link-Disable	
8.1.5 Automatic deactivate driver mode	
8.1.6 Setting the SpaceWire port transmit data rate	84
8.2 GLOBAL SPACEWIRE LINK CONTROL	
8.2.1 Start on request mode	87
8.2.2 Disable on Silence mode	87
8.3 CONTROL LOGIC AND ROUTING	88
8.3.1 Packet address error	88
8.3.2 Arbitration	88
8.3.2.1 Arbitration of packets with matching priority (1)	89
8.3.2.2 Arbitration of packets with matching priority (2)	90
8.3.2.3 Arbitration of packets with different priority (1)	91
8.3.2.4 Arbitration of packets with different priority (2)	92
8.3.3 Group Adaptive Routing	
8.3.3.1 Normal Group adaptive routing	
8.3.3.2 Group adaptive routing when busy	
8.3.3.3 Group adaptive routing when ports not ready	
8.3.4 Loop-back with Self-Addressing	
8.3.5 Packet Blocking	
8.3.5.1 Blocked destination	
8.3.5.2 Stalled source	
8.3.5.3 Waiting for an output port	
9. REGISTER DEFINITIONS	105
9.1 INTERNAL MEMORY MAP	105
9.2 REGISTER ADDRESSES SUMMARY	106
9.3 GROUP ADAPTIVE ROUTING TABLE REGISTERS	
9.4 PORT CONTROL/STATUS REGISTERS	
9.4.1 Generic port control/status register fields.	
9.4.2 Configuration port control/status register fields	
3	
9.4.3 SpaceWire port control/status register bits.	
9.4.4 External port control/status register bits.	117
9.5 ROUTER CONTROL/STATUS REGISTERS	117
9.5.1 Network Discovery Register	117
9.5.2 Router Identity Register	118
9.5.3 Router Control Register	119
9.5.4 Error active Register	122

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_ UserManual**

Issue: **3.5**

9.5.5 Time-Code Register	
9.5.6 Device Manufacturer and Chip ID Register	
9.5.7 General Purpose Register	
9.5.8 Time-Code Enable Register	
9.5.9 Transmit Clock Control Register	
9.5.10 Destination Key Register	
9.5.11 Unused Registers and Register Bits	
9.6 WRITING TO A READ-ONLY REGISTER	
10. SWITCHING CHARACTERISTICS	130
10.1 CLOCK AND RESET TIMING PARAMETERS	130
10.2 SERIAL SIGNALS TIMING PARAMETERS	130
10.3 EXTERNAL PORT TIMING PARAMETERS	131
10.4 TIME-CODE INTERFACE TIMING PARAMETERS	132
10.5 ERROR/STATUS INTERFACE TIMING PARAMETERS	134
10.6 LATENCY AND JITTER	135
10.6.1 Clock Periods	135
10.6.2 Switching Latency	135
10.6.3 Router Latency	
10.6.4 Time-code Latency	
10.6.5 Time-code Jitter	
10.6.6 200M bits/s Input and Output Bit Rate Example	137
11. ELECTRICAL CHARACTERISTICS	138
11.1 DC CHARACTERISTICS	138
11.2 ABSOLUTE MAXIMUM RATINGS	139
11.3 RELIABILITY INFORMATION	139
12. APPLICATION GUIDELINES	140
12.1 EXAMPLE CIRCUIT DIAGRAM	140
12.2 PCB DESIGN AND LAYOUT GUIDELINES	142
12.2.1 CLK	142
12.2.2 RST_N	142
12.2.3 Chip Test Signals	
12.2.4 Power and Decoupling	
12.2.5 Ground	
12.2.6 SpaceWire	142

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_ UserManual**

Issue: **3.5**

12.2.7	External Ports	
12.2.8	Time-code Interface	
12.2.9	Status / Power On Configuration Interface	
12.2.10) PLL	.144
13. A	NOMALIES AND WARNINGS	.145
13.1	ANOMALIES	.145
13.2	WARNINGS	. 145
13.3	RESET ANOMALY	.147
13.3.1	Data Strobe Reset Waveform	
13.3.2	Data Strobe Disable Waveform	
13.3.3	Reset Anomaly Workarounds	
	PARITY ERROR ANOMALY	
13.4.1	Parity Error Action	
13.4.2 13.4.3	Parity Error Anomaly Parity Error Workaround	
13.4.3	Failty Effor Workaround	. 131
14. T	ECHNICAL SUPPORT	.152
15. D	OCUMENT CHANGES	.153
15.1	ISSUE 3.4 TO ISSUE 3.5	. 153
15.2	ISSUE 3.3 TO ISSUE 3.4	. 153
15.3	ISSUE 3.2 TO ISSUE 3.3	.153
15.4	ISSUE 3.1 TO ISSUE 3.2	.154
15.5	ISSUE 3.0 TO ISSUE 3.1	.154
15.6	ISSUE 2.5 TO ISSUE 3.0	. 155
15.7	ISSUE 2.4 TO ISSUE 2.5	. 155
15.8	ISSUE 2.3 TO ISSUE 2.4	. 155
15.9	ISSUE 2.2 TO ISSUE 2.3	.156
15.10	ISSUE 2.1 TO ISSUE 2.2	.156
15.11	ISSUE 2.0 TO ISSUE 2.1	.156
15.12	ISSUE 1.7 TO ISSUE 2.0	.156
15.13	ISSUE 1.6 TO ISSUE 1.7	.156
15.14	ISSUE 1.5 TO ISSUE 1.6	.156
15.15	ISSUE 1.4 TO ISSUE 1.5	.156

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

157	6 ISSUE 1.3 TO ISSUE 1.4	15.16
157	7 ISSUE 1.2 TO ISSUE 1.3	15.17
157	3 ISSUE 1.1 TO ISSUE 1.2	15.18
157	9 ISSUE 1.0 TO ISSUE 1.1	15.19

SpW-10X SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_ UserManual**

Issue: **3.5**

Date: 7th January 2015

I LIST OF FIGURES

FIGURE 2-1 STAND-ALONE ROUTER	. 18
Figure 2-2 Node Interface	. 19
FIGURE 2-3 EMBEDDED ROUTER	. 20
FIGURE 2-4 EXPANDING THE NUMBER OF SPACEWIRE PORTS (1)	. 21
FIGURE 2-5 EXPANDING THE NUMBER OF SPACEWIRE PORTS (2)	. 22
FIGURE 3-1 SPACEWIRE ROUTER BLOCK DIAGRAM	. 24
FIGURE 5-1 LVDS RECEIVER FAIL-SAFE RESISTORS	. 37
FIGURE 5-2 CONFIGURATION INTERFACE TIMING SPECIFICATION	. 44
FIGURE 5-3 PLL WITH EXTERNAL COMPONENTS	. 48
FIGURE 6-1 EXTERNAL PORT WRITE TIMING SPECIFICATION	. 49
FIGURE 6-2 EXTERNAL PORT READ TIMING SPECIFICATION	. 50
FIGURE 6-3 TIME-CODE INPUT INTERFACE	. 50
FIGURE 6-4 TIME-CODE OUTPUT INTERFACE	. 51
FIGURE 6-5 TIME-CODE RESET INTERFACE	. 51
FIGURE 6-6 STATUS MULTIPLEXER OUTPUT INTERFACE	. 51
FIGURE 6-7 RESET CONFIGURATION INTERFACE TIMING SPECIFICATION	. 53
Figure 7-1 Normal router data packets	. 57
FIGURE 7-2 COMMAND PACKET FORMAT	. 57
FIGURE 7-3 READ SINGLE ADDRESS COMMAND FORMAT	. 59
FIGURE 7-4 READ SINGLE ADDRESS REPLY PACKET FORMAT	. 61
FIGURE 7-5 READ INCREMENTING ADDRESS COMMAND FORMAT	. 64
FIGURE 7-6 READ INCREMENTING ADDRESS REPLY PACKET FORMAT	. 66
FIGURE 7-7 READ-MODIFY-WRITE COMMAND PACKET FORMAT	. 68
FIGURE 7-8 READ-MODIFY-WRITE EXAMPLE OPERATION	. 70
FIGURE 7-9 READ-MODIFY-WRITE REPLY PACKET FORMAT	. 71
FIGURE 7-10 WRITE SINGLE ADDRESS COMMAND PACKET	. 73
FIGURE 7-11 WRITE SINGLE ADDRESS REPLY PACKET	. 75
FIGURE 7-12 SOURCE PATH ADDRESS FIELD DECODING	. 80
FIGURE 7-13 SOURCE PATH ADDRESSES IN REPLY PACKET	. 80
FIGURE 7-14 NORMAL CONFIGURATION PACKET HEADER STRUCTURE	. 80
FIGURE 7-15 FILL BYTES CONFIGURATION HEADER STRUCTURE	. 80
FIGURE 8-1 DEACTIVATE DRIVER OPERATING MODE	. 83
FIGURE 8-2 DEACTIVATED LDVS DRIVER OUTPUT	. 83
FIGURE 8-3 DEACTIVATED LDVS DRIVER OUTPUT CONNECTED TO EXTERNAL BIAS NETWORK ON LVDS INPUT.	. 84
FIGURE 8-4 START ON REQUEST MODE	. 87
FIGURE 8-5 DISABLE ON SILENCE MODE	. 88
FIGURE 8-6 ARBITRATION OF TWO PACKETS WITH MATCHING PRIORITY.	. 89
FIGURE 8-7 ARBITRATION OF THREE PACKETS WITH MATCHING PRIORITY	. 90

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_ UserManual**

Issue: **3.5**

FIGURE 8-8 ARBITRATION OF TWO PACKETS WITH DIFFERENT PRIORITY (1)	91
FIGURE 8-9 ARBITRATION OF TWO PACKETS WITH DIFFERENT PRIORITY (2)	93
FIGURE 8-10 NORMAL GROUP ADAPTIVE ROUTING	94
FIGURE 8-11 GROUP ADAPTIVE ROUTING WHEN OTHER PORTS BUSY	95
FIGURE 8-12 GROUP ADAPTIVE ROUTING WHEN PORTS NOT READY	95
FIGURE 8-13 PACKET SELF-ADDRESSING MODE	96
FIGURE 8-14 DESTINATION NODE BLOCKED (A)	98
FIGURE 8-15 DESTINATION NODE BLOCKED (B)	98
FIGURE 8-16 DESTINATION NODE BLOCKED (C)	99
FIGURE 8-17 DESTINATION NODE BLOCKED: WATCHDOG MODE (A)	99
FIGURE 8-18 DESTINATION NODE BLOCKED: WATCHDOG MODE (B)	99
FIGURE 8-19 DESTINATION NODE BLOCKED: WATCHDOG MODE (C)	100
FIGURE 8-20 DESTINATION NODE BLOCKED: WATCHDOG MODE (D)	100
FIGURE 8-21 SOURCE NODE STALLED (A)	101
FIGURE 8-22 SOURCE NODE STALLED (B)	101
FIGURE 8-23 SOURCE NODE STALLED (C)	101
FIGURE 8-24 SOURCE NODE STALLED (D)	101
FIGURE 8-25 SOURCE NODE STALLED: WATCHDOG MODE (A)	102
FIGURE 8-26 SOURCE NODE STALLED: WATCHDOG MODE (B)	102
FIGURE 8-27 SOURCE NODE STALLED: WATCHDOG MODE (C)	102
FIGURE 8-28 SOURCE NODE STALLED: WATCHDOG MODE (D)	102
FIGURE 9-1 ROUTER INTERNAL MEMORY MAP	105
FIGURE 9-2 GAR REGISTER FIELDS	107
FIGURE 9-3 SPACEWIRE PORT CONTROL/STATUS REGISTER FIELDS	114
FIGURE 9-4 NETWORK DISCOVERY REGISTER FIELDS	118
FIGURE 9-5 ROUTER CONTROL REGISTER FIELDS.	119
FIGURE 9-6 ERROR ACTIVE REGISTER FIELDS	122
FIGURE 9-7 TIME-CODE REGISTER FIELDS	123
FIGURE 9-8 DEVICE MANUFACTURER AND CHIP ID REGISTER FIELDS	124
FIGURE 9-9 TIME-CODE ENABLE REGISTER FIELDS.	125
FIGURE 9-10 TRANSMIT CLOCK CONTROL REGISTER	127
FIGURE 10-1 DS MINIMUM CONSECUTIVE EDGE SEPARATION	130
FIGURE 10-2 EXTERNAL PORT INPUT FIFO TIMING PARAMETERS	131
FIGURE 10-3 EXTERNAL PORT OUTPUT FIFO TIMING PARAMETERS	131
FIGURE 10-4 TIME-CODE INPUT INTERFACE	132
FIGURE 10-5 TIME-CODE OUTPUT INTERFACE	133
FIGURE 10-6 TIME_CODE TIME_CTR_RST INTERFACE	133
FIGURE 12-1 PLL LAYOUT RECOMMENDATIONS	
FIGURE 13-1 RESET WAVEFORM	148
FIGURE 13-2 RESET WAVEFORM WITH DATA AND STROBE BOTH HIGH	148
FIGURE 13-3 GLITCHES ON DATA OR STROBE DURING RESET	148
FIGURE 13-4 SIMULTANEOUS TRANSITION OF DATA AND STROBE DURING RESET	148

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_ UserManual**

Issue: **3.5**

Date: 7th January 2015

FIGURE 13-5 LINK DISCONNECT WAVEFORMS	149
FIGURE 13-6 DATA AFTER PARITY ERROR ANOMALY	150
FIGURE 13-7 NO ERROR END OF PACKET INSERTED AFTER PARITY ERROR	151

II LIST OF TABLES

TABLE 1-1 APPLICABLE DOCUMENTS	
TABLE 1-2 REFERENCE DOCUMENTS	
TABLE 5-1 GLOBAL SIGNALS	
TABLE 5-2 DATA AND STROBE SPACEWIRE SIGNALS	35
TABLE 5-3 EXTERNAL PORT INTERFACE SIGNALS	39
TABLE 5-4 TIME-CODE SIGNALS	41
TABLE 5-5 LINK ERROR INDICATION SIGNALS	43
TABLE 5-6 RESET CONFIGURATION SIGNALS	45
TABLE 5-7 POWER, GROUND AND SPECIAL SIGNALS	47
TABLE 6-1 MULTIPLEXED STATUS PINS BIT ASSIGNMENT	52
TABLE 7-1 PACKET ADDRESS MAPPING	54
TABLE 7-2 PACKET PRIORITY MAPPING	55
TABLE 7-3 PACKET HEADER DELETION MAPPING	56
TABLE 7-4 SUPPORTED RMAP COMMAND CODES	58
TABLE 7-5 READ SINGLE ADDRESS CHARACTERISTICS	59
TABLE 7-6 READ SINGLE ADDRESS COMMAND PACKET FIELDS	60
TABLE 7-7 READ SINGLE ADDRESS REPLY PACKET FIELDS	61
TABLE 7-8 READ INCREMENTING ADDRESS CHARACTERISTICS	63
TABLE 7-9 READ INCREMENTING ADDRESS COMMAND PACKET FIELDS	64
TABLE 7-10 READ INCREMENTING ADDRESS REPLY PACKET FIELDS	66
TABLE 7-11 READ-MODIFY-WRITE COMMAND CHARACTERISTICS	67
TABLE 7-12 READ-MODIFY-WRITE COMMAND PACKET FIELDS	69
TABLE 7-13 READ-MODIFY-WRITE REPLY PACKET FIELDS	71
TABLE 7-14 WRITE COMMAND CHARACTERISTICS	72
TABLE 7-15 WRITE SINGLE ADDRESS COMMAND PACKET FIELDS	
TABLE 7-16 WRITE SINGLE ADDRESS REPLY PACKET FIELDS	
TABLE 7-17 CONFIGURATION PORT ERRORS SUMMARY	76
TABLE 7-18 SOURCE PATH ADDRESS REFERENCE TABLE	79
TABLE 8-1 SETTING SPACEWIRE TRANSMIT DATA RATE	85
TABLE 9-1 TYPES OF REGISTER WITHIN CONFIGURATION PORT	106
TABLE 9-2 CONFIGURATION REGISTER ADDRESSES	107
TABLE 9-3 GAR TABLE REGISTER DESCRIPTION	109
TABLE 9-4 CONFIGURATION PORT CONTROL/STATUS REGISTER FIELDS	110
TABLE 9-5 CONFIGURATION PORT CONTROL/STATUS REGISTER FIELDS	112

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_
UserManual

Issue: **3.5**

Table 9-6 SpaceWire Port Control/Status Register Fields	115
Table 9-7 External Port Control/Status Fields	117
Table 9-8 Network Discovery Register Fields	118
Table 9-9 Router Identity Register Field	119
Table 9-10 Router Control Register Fields	120
Table 9-11 Error Active Register Fields	123
Table 9-12 Time-Code Register Fields	124
TABLE 9-13 DEVICE MANUFACTURER AND CHIP ID REGISTER FIELDS	124
Table 9-14 Time-Code Enable Register Fields	126
Table 9-15 Transmit Clock Control Register Bits	128
Table 9-16 Destination Key Register	129
TABLE 10-1 CLOCK AND RESET TIMING PARAMETERS	130
Table 10-2 Serial signal timing parameters	131
TABLE 10-3 EXTERNAL PORT TIMING PARAMETERS	132
TABLE 10-4 TIME-CODE INTERFACE TIMING PARAMETERS	133
Table 10-5 Status Multiplexer timing parameters	134
TABLE 10-6 SPACEWIRE ROUTER LATENCY AND JITTER MEASUREMENTS (BIT RATE = 200MBITS/S	137
Table 11-1 Operating Conditions	138
Table 11-2 Absolute Maximum Ratings	139
Table 11-3 Reliabilty Information	

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

1. INTRODUCTION

This document is a technical reference for the implementation and operation of the SpW-10X SpaceWire Router device (Atmel part number AT7910E).

Note: Detailed timing information for the ASIC implementation will be available in 1Q08.

1.1 TERMS, ACRONYMS AND ABBREVIATIONS

3V3 3.3 volt interface levels.

AAe Austrian Aerospace GmbH

ACK Acknowledge

AD Applicable Document

CLK Clock (Input clock to the SpaceWire router)

CRC Cyclic Redundancy Check

DC Direct Current

ECSS European Cooperation for Space Standarization

EEP Error end of packet, used to denote an error occurred during packet transfer

EOP End of packet used to denote a normal end of packet in SpaceWire

FIFO First in - First out buffer used to transfer data between logic

FPGA Field Programmable Gate Array

GND Ground

LVDS Low voltage differential signalling

NACK Negative acknowledge (error acknowledge)

PLL Phase Locked Loop

RD Read

RMAP Remote Memory Access Protocol

RST Asynchronous reset to the SpaceWire router

SpW SpaceWire

TBA To be advised

TBC To be confirmed

UoD University of Dundee

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

VCO Voltage Controlled Oscillator

VDD Drain Voltage (power pin of SpW-10X device)

VSS Source Voltage (ground pin of SpW-10X device)

WR Write

1.2 DOCUMENTS

In this section the documents referenced in this document are listed.

Table 1-1 Applicable Documents			
REF Document Number Document Title		Document Title	
AD1	ECSS-E-ST-50-12C	SpaceWire - links, nodes, routers and networks.	
AD2	ECSS-E-ST-50-52C	SpaceWire Remote Memory Access Protocol	
AD3	Atmel SMD 5962-09A03	SpW_10X Standard Microcircuit Drawing	
		(http://www.atmel.com/Images/smd_5962_09A03.pdf)	

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Table 1-2 Reference Documents			
REF Document Number Document Title		Document Title	
RD1		LVDS Owner's Manual, National Semiconductor. Downloadable from: http://www.national.com/appinfo/lvds/files/National_LVDS_Owners_Manual_4th_Edition_2008.pdf	
RD2	AN-1194	Application Note AN-1194, Failsafe Biasing of LVDS Interfaces, Downloadable from: http://www.national.com/an/AN/AN-1194.pdf#page=1	
RD3		MH1RT Rad Hard 1.6M Used Gates 0.35 Micron CMOS Sea of Gates / Embedded Gates ASIC families. Downloadable from: http://www.atmel.com/dyn/resources/prod_documents/doc4110.pdf	

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

2. USER APPLICATIONS

The SpW-10X SpaceWire router device may be used in several different ways as described in the following sub-sections.

Note: SpW-10X is pronounced "SpaceWire Ten X". This name derives from the abbreviation for SpaceWire (SpW), the fact that the router has eight SpaceWire ports and two external ports giving ten ports in total, and the used of "X" to represent a cross-bar switch.

2.1 STAND-ALONE ROUTER

The SpaceWire Router may be used as a stand-alone router with up to eight SpaceWire links connected to it. Configuration of the routing tables etc. may be done by sending SpaceWire packets containing configuration commands to the router.

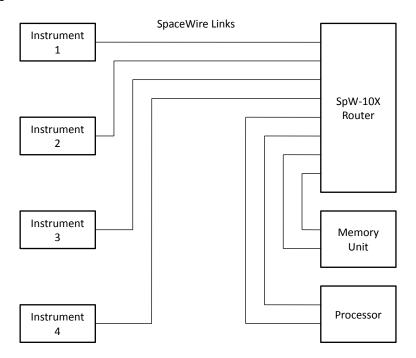


Figure 2-1 Stand-Alone Router

In Figure 2-1 an example of use of the SpW-10X device as a stand-alone router is illustrated. There are four instruments connected to the SpW-10X device along with a memory unit and processor. The processor can communicate with all the instruments and memory unit to control them and is also able to configure the SpW-10X device. The instruments can send data to the memory unit for storage or to the processor for immediate processing. The processor can also read data from the memory for later processing, writing the processed data back into memory. A pair of SpW-10X devices can be used to provide a redundant configuration.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

2.2 NODE INTERFACE

The SpaceWire Router has two external ports which enable the device to be used as a node interface. The equipment to be connected to the SpaceWire network is attached to one or both external ports. One or more SpaceWire ports are used to provide the connection into the SpaceWire network. Unused SpaceWire ports may be disabled and their outputs deactivated to save power. In this arrangement configuration of the routing tables and other parameters may be done by sending configuration packets from the local host via an external port or from a remote network manager via a SpaceWire port.

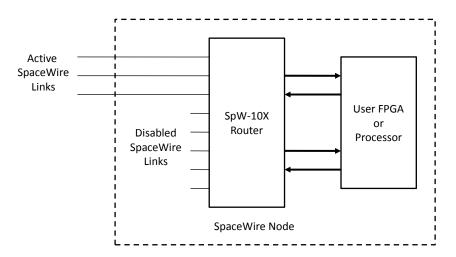


Figure 2-2 Node Interface

In Figure 2-2 a SpW-10X router is used as an interface to a user FPGA or processor, which may be part of a SpaceWire enabled instrument, control processor or other sub-system. The interface to the user FPGA or processor is via the external FIFO ports of the SpW-10X router. Only three SpaceWire links are needed for this SpaceWire node so the other five links are disabled to save power.

2.3 EMBEDDED ROUTER

The SpaceWire Router device can also be used to provide a node with an embedded router. In this case the external ports are used to provide the local connections to the node and the SpaceWire ports are used to make connections to other ports in the network. The difference between this configuration and that of section 2.2 is just a conceptual one with the Node interface configuration normally using fewer SpaceWire ports than the Embedded Router configuration.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

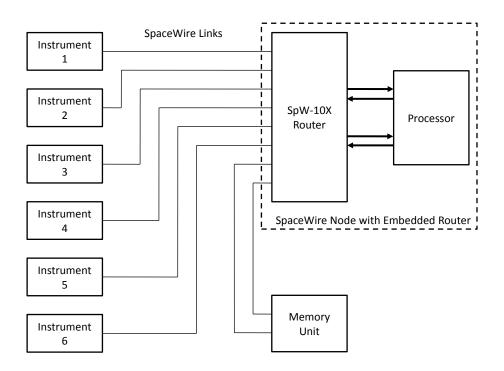


Figure 2-3 Embedded Router

In Figure 2-3 a SpaceWire system similar to that shown in Figure 2-1 is shown with the SpW-10X router embedded in a SpaceWire node along with a processor. The processor interfaces can interface to the SpW-10X router using the external FIFO ports saving some SpaceWire ports for connecting to additional instruments. For redundancy a pair of the SpaceWire nodes with embedded routers may be used.

2.4 EXPANDING THE NUMBER OF ROUTER PORTS

If a routing switch with a larger number of SpaceWire (or external) ports is required then this can be accomplished by joining together two or more routers using some of the SpaceWire links. For example using two SpaceWire links to join together two router devices would create an effective router with twelve SpaceWire ports and four external ports. Note, however, that an extra path addressing byte is needed to route packets between the two routers and that there is additional routing delay.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

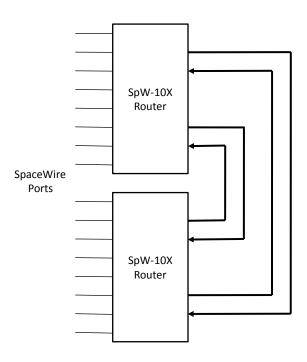
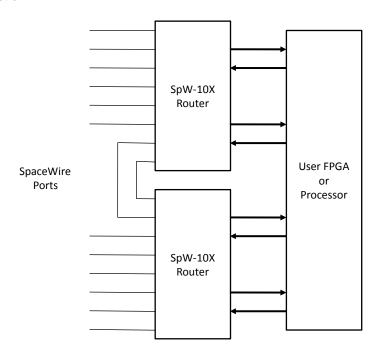



Figure 2-4 Expanding the number of SpaceWire Ports (1)

Figure 2-4 shows a pair of SpW-10X routers connected together using the external FIFO ports to provide a 16 port router. A small amount of external logic is required to connect the external FIFO ports in this way. Note that the bandwidth between the two SpW-10X devices is limited by the two external FIFO ports used to interconnect them. Each FIFO port can handle one SpaceWire packet at a time in each direction.

SpW-10X SpaceWire Router User Manual

Ref.: **UoD_SpW-10X_ UserManual**

Issue: **3.5**

Date: 7th January 2015

Figure 2-5 Expanding the number of SpaceWire Ports (2)

Figure 2-5 shows two SpW-10X router devices interconnected using two of the SpaceWire ports on each router. This leaves twelve SpaceWire ports for connection to other SpaceWire nodes. The External FIFO ports of each router are used to connect to user logic in an FPGA or to a processing device.

SpW-10X SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_ UserManual

Issue: **3.5**

Date: 7th January 2015

3. FUNCTIONAL OVERVIEW

A SpaceWire routing switch comprises a number of SpaceWire ports and a routing matrix. The routing matrix enables packets arriving at one SpaceWire port to be transferred to and sent out of another port on the routing switch. A SpaceWire routing switch is thus able to connect together many SpaceWire nodes, providing a means of routing packets between the nodes connected to it.

The SpW-10X SpaceWire router comprises the following functional logic blocks:

- Eight SpaceWire bi-directional serial ports.
- Two external parallel input/output ports each comprising an input FIFO and an output FIFO.
- A crossbar switch connecting any input port to any output port.
- An internal configuration port accessible via the crossbar switch from the external parallel input/output port or the SpaceWire input/output ports.
- A routing table accessible via the configuration port which holds the logical address to output port mapping.
- Control logic to control the operation of the switch, performing arbitration and group adaptive routing.
- Control registers than can be written and read by the configuration port and which hold control information e.g. link operating speed.
- An external time-code interface comprising tick_in, tick_out and current tick count value.
- Internal status/error registers accessible via the configuration port.
- Watchdog timers on all ports.
- Internal status/error registers accessible via the configuration port using the RMAP protocol [2].
- External status/error signals.

A block diagram of the routing switch is given in Figure 3-1.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

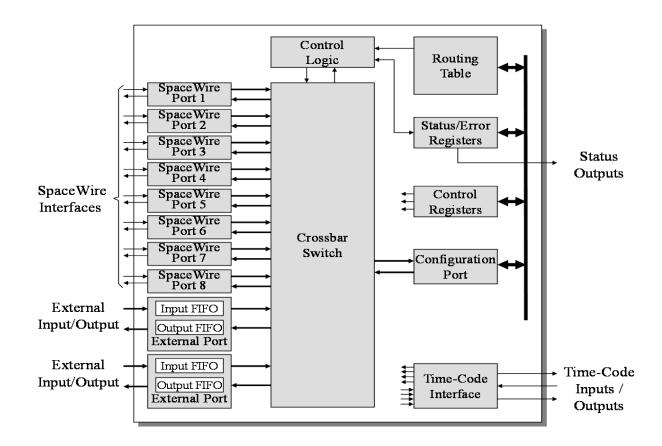


Figure 3-1 SpaceWire router block diagram

The following paragraphs define the SpaceWire router functional logic blocks in more detail.

3.1 SPACEWIRE PORTS

The SpaceWire router has eight bi-directional SpaceWire links each conformant with the SpaceWire standard. Each SpaceWire link is controlled by an associated link register and routing control logic. Network level error recovery is performed when an error is detected on the SpaceWire link as defined in the SpaceWire standard. Packets received on SpaceWire links are routed by the routing control logic to the configuration port, other SpaceWire link ports or the external FIFO ports. Packets with invalid addresses are discarded by the SpaceWire router dependent on the packet address. The SpaceWire link status is recorded in the associated link register and error status is held by the router until cleared by a configuration command.

3.2 EXTERNAL PORTS

The SpaceWire router has two bi-directional parallel FIFO interfaces that can be used to connect the router to an external host system. The external port FIFO is two data characters deep. Each FIFO is

SpW-10X SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

written to or read from synchronously with the 30MHz system clock. An eight-bit data interface and an extra control bit for end of packet markers are provided by each external port FIFO. Packets received by the external port are routed by the routing control logic to the configuration port, SpaceWire link ports or the other external port dependent on the packet address. Packets with invalid addresses are discarded by the SpaceWire router.

3.3 CONFIGURATION PORT

The SpaceWire router has one configuration port which performs read and write operations to internal router registers. Packets are routed to the configuration port when a packet with a leading address byte of zero is received. The Remote Memory Access Protocol (RMAP) [AD2] to access the configuration port. A detailed description of the RMAP command packet format is provided in section 7.6. If an invalid command packet is received then the error is flagged to an associated status register and the packet is discarded. The internal router registers are described in section 9.

3.4 ROUTING TABLE

The SpaceWire router routing table is set by the router command packets to assign logical addresses to physical destination ports on the router. A group of destination ports can be set, in each routing table location, to enable group adaptive routing. In group adaptive routing a packet can be routed to its destination through one of a set of output ports dependent on which ports in the set are free to use. When a packet is received with a logical address the routing table is checked by the routing control logic and the packet is routed to the destination port when the port is ready.

Routing table locations are set to invalid at power on or at reset. An invalid routing address will cause the packet to be spilled by the control logic. The routing table logical addresses can also be set to support high priority and header deletion. High priority packets are routed before low priority packets and header deletion of logical addresses can be used to support regional logical addressing (see AD1).

3.5 ROUTING CONTROL LOGIC AND CROSSBAR

The routing control logic is responsible for arbitration of output ports, group adaptive routing and the crossbar switching. Arbitration is performed when two or more source ports are requesting to use the same destination port. A priority based arbitration scheme with two priority levels, high and low, is used where high priority packets are routed before low priority packets. Fair arbitration is performed on packets which have the same priority levels to ensure each packet gets equal access to the output port.

Group adaptive routing control selects one of a number of output ports for sending out the source packet.

SpW-10X SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

The crossbar switch connects an input port to an output port allowing data to flow from the input port to the output port. Several input ports may be connected simultaneously to several output ports all passing data. Two or more input ports may not be connected to a single output port. The crossbar switch is a "non-blocking" type because the connection of one input port to an output port does not prevent another input port being connected to another output port at the same time. It is possible for all eight input ports to be each connected to an output port so that all input ports and output ports are being used.

3.6 TIME-CODE PROCESSING

An internal time-code register is used in the router to allow the router to be a time-code master or a time-code slave.

In master mode the time-code interface is used to provide a tick-in to the SpaceWire routing causing time-codes to be propagated through the network. Two modes of time master operation are supported, an automatic mode where a time-code is propagated on each external tick-in and a normal mode where the time-code is propagated dependent on the external time-in signal.

In time-code slave mode a valid received time-code, one plus the value of the router time-code register, causes a tick-out to be sent to the SpaceWire links and the external time-code interface. The time-code is propagated to all time-code ports except the port on which the time-code was received. If the time-code received is not one plus the value of the time-code register then the time-code register is updated but the tick-out is not performed. In this way circular network paths do not cause a constant stream of time-codes to be sent in a loop.

3.7 CONTROL/STATUS REGISTERS

The control and status registers in the SpaceWire router provide the means to control the operation of the router, set the router configuration and parameters or monitor the status of the device. The registers are accessed using RMAP [AD2] command packets received by the configuration port.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

4. PIN LOCATIONS

The SpaceWire router package is a 196 pin MQFPF package.

Type definition:

- 3V3......3.3 Volt power

- GND.....Ground

- PICCMOS input

- PRD4.....pull-down resistor (min.16kΩ, max. 80kΩ)

- PLL pins

- PFILVDSZP.....LVDS cold sparing input

- PFILVDSZPB.....LVDS cold sparing input, negative input

- PFOLVDS33ZPLVDS output 3.3V

- PFOLVDS33ZPB.....LVDS output 3.3V, negative output

- PFOLVDSREFZLVDS reference

- PO44F.....4x driving strength output (fast, minimum slew rate control)

- PO22F-tri.....2x driving strength output with tristate (fast, minimum slew rate control)

Pin	Signal	Туре	Description
1	VDDB	3V3	Power
2	CLK	PIC	System clock
3	RSTN	PIC	Reset
4	TestIOEn	PIC PRD4	Chip test pin
5	TestEn	PIC PRD4	Chip test pin
6	FEEDBDIV(0)	PIC PRD4	PLL divider bit 0 (LS)
7	VSSA1	GND	Ground
8	VDDA1	3V3	Power
9	FEEDBDIV(1)	PIC PRD4	PLL divider bit 1
10	FEEDBDIV(2)	PIC PRD4	PLL divider bit 2 (MS)
11	VSSB	GND	Ground
12	VDDPLL	PLL	PLL power
13	VCOBias	PLL	PLL VCO bias
14	LoopFilter	PLL	PLL loop filter
15	VSSPLL	PLL	PLL ground
16	VDDB	3V3	Power
17	DINPlus(1)	PFILVDSZP	SpW port 1 input data +

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

18	DINMinus(1)	PFILVDSZPB	SpW port 1 input data -
19	SINPlus(1)	PFILVDSZP	SpW port 1 input strobe +
20	SINMinus(1)	PFILVDSZPB	SpW port 1 input strobe -
21	SOUTMinus(1)	PFOLVDS33ZPB	SpW port 1 output strobe -
22	SOUTPlus(1)	PFOLVDS33ZP	SpW port 1 output strobe +
23	DOUTMinus(1)	PFOLVDS33ZPB	SpW port 1 output data -
24	DOUTPlus(1)	PFOLVDS33ZP	SpW port 1 output data +
25	DINPlus(2)	PFILVDSZP	SpW port 2 input data +
26	DINMinus(2)	PFILVDSZPB	SpW port 2 input data -
27	SINPlus(2)	PFILVDSZP	SpW port 2 input strobe +
28	SINMinus(2)	PFILVDSZPB	SpW port 2 input strobe -
29	VSSB	GND	Ground
30	VDDB	3V3	Power
31	SOUTMinus(2)	PFOLVDS33ZPB	SpW port 2 output strobe -
32	SOUTPlus(2)	PFOLVDS33ZP	SpW port 2 output strobe +
33	DOUTMinus(2)	PFOLVDS33ZPB	SpW port 2 output data -
34	DOUTPlus(2)	PFOLVDS33ZP	SpW port 2 output data +
35	DINPlus(3)	PFILVDSZP	SpW port 3 input data +
36	DINMinus(3)	PFILVDSZPB	SpW port 3 input data -
37	SINPlus(3)	PFILVDSZP	SpW port 3 input strobe +
38	SINMinus(3)	PFILVDSZPB	SpW port 3 input strobe -
39	SOUTMinus(3)	PFOLVDS33ZPB	SpW port 3 output strobe -
40	SOUTPlus(3)	PFOLVDS33ZP	SpW port 3 output strobe +
41	VSSB	GND	Ground
42	VSSA2	GND	Ground
43	VDDA2	3V3	Power
44	VDDB	3V3	Power
45	DOUTMinus(3)	PFOLVDS33ZPB	SpW port 3 output data -
46	DOUTPlus(3)	PFOLVDS33ZP	SpW port 3 output data +
47	DINPlus(4)	PFILVDSZP	SpW port 4 input data +
48	DINMinus(4)	PFILVDSZPB	SpW port 4 input data -
49	LVDSRef	PFOLVDSREFZ	LVDS reference
50	SINPlus(4)	PFILVDSZP	SpW port 4 input strobe +
51	SINMinus(4)	PFILVDSZPB	SpW port 4 input strobe -
52	SOUTMinus(4)	PFOLVDS33ZPB	SpW port 4 output strobe -
53	SOUTPlus(4)	PFOLVDS33ZP	SpW port 4 output strobe +
54	DOUTMinus(4)	PFOLVDS33ZPB	SpW port 4 output data -
55	DOUTPlus(4)	PFOLVDS33ZP	SpW port 4 output data +
56	VSSA3	GND	Ground
57	VDDA3	3V3	Power

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

58	VSSB	GND	Ground
59	VDDB	3V3	Power
60	DINPlus(5)	PFILVDSZP	SpW port 5 input data +
61	DINMinus(5)	PFILVDSZPB	SpW port 5 input data -
62	SINPlus(5)	PFILVDSZP	SpW port 5 input strobe +
63	SINMinus(5)	PFILVDSZPB	SpW port 5 input strobe -
64	SOUTMinus(5)	PFOLVDS33ZPB	SpW port 5 output strobe -
65	SOUTPlus(5)	PFOLVDS33ZP	SpW port 5 output strobe +
66	DOUTMinus(5)	PFOLVDS33ZPB	SpW port 5 output data -
67	DOUTPlus(5)	PFOLVDS33ZP	SpW port 5 output data +
68	DINPlus(6)	PFILVDSZP	SpW port 6 input data +
69	DINMinus(6)	PFILVDSZPB	SpW port 6 input data -
70	SINPlus(6)	PFILVDSZP	SpW port 6 input strobe +
71	SINMinus(6)	PFILVDSZPB	SpW port 6 input strobe -
72	VSSB	GND	Ground
73	VDDB	3V3	Power
74	SOUTMinus(6)	PFOLVDS33ZPB	SpW port 6 output strobe -
75	SOUTPlus(6)	PFOLVDS33ZP	SpW port 6 output strobe +
76	DOUTMinus(6)	PFOLVDS33ZPB	SpW port 6 output data -
77	DOUTPlus(6)	PFOLVDS33ZP	SpW port 6 output data +
78	DINPlus(7)	PFILVDSZP	SpW port 7 input data +
79	DINMinus(7)	PFILVDSZPB	SpW port 7 input data -
80	SINPlus(7)	PFILVDSZP	SpW port 7 input strobe +
81	SINMinus(7)	PFILVDSZPB	SpW port 7 input strobe -
82	SOUTMinus(7)	PFOLVDS33ZPB	SpW port 7 output strobe -
83	SOUTPlus(7)	PFOLVDS33Z	SpW port 7 output strobe +
84	VSSB	GND	Ground
85	VDDB	3V3	Power
86	DOUTMinus(7)	PFOLVDS33ZPB	SpW port 7 output data -
87	DOUTPlus(7)	PFOLVDS33ZP	SpW port 7 output data +
88	DINPlus(8)	PFILVDSZP	SpW port 8 input data +
89	DINMinus(8)	PFILVDSZPB	SpW port 8 input data -
90	SINPlus(8)	PFILVDSZP	SpW port 8 input strobe +
91	VSSA4	GND	Ground
92	VDDA4	3V3	Power
93	SINMinus(8)	PFILVDSZPB	SpW port 8 input strobe -
94	SOUTMinus(8)	PFOLVDS33ZPB	SpW port 8 output strobe -
95	SOUTPlus(8)	PFOLVDS33ZP	SpW port 8 output strobe +
96	DOUTMinus(8)	PFOLVDS33ZPB	SpW port 8 output data -
97	DOUTPlus(8)	PFOLVDS33ZP	SpW port 8 output data +

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

98	VSSB	GND	Ground
99	VDDB	3V3	Power
100	EXTOUTDATA9(0)	PO44F	External FIFO port 9 output data
101	EXTOUTDATA9(1)	PO44F	External FIFO port 9 output data
102	EXTOUTDATA9(2)	PO44F	External FIFO port 9 output data
103	EXTOUTDATA9(3)	PO44F	External FIFO port 9 output data
104	EXTOUTDATA9(4)	PO44F	External FIFO port 9 output data
105	VSSA5	GND	Ground
106	VDDA5	3V3	Power
107	EXTOUTDATA9(5)	PO44F	External FIFO port 9 output data
108	VSSB	GND	Ground
109	VDDB	3V3	Power
110	EXTOUTDATA9(6)	PO44F	External FIFO port 9 output data
111	EXTOUTDATA9(7)	PO44F	External FIFO port 9 output data
112	EXTOUTDATA9(8)	PO44F	External FIFO port 9 output data
113	EXTOUTEMPTYN9	PO44F	External FIFO port 9 output empty
114	EXTOUTREADN9	PIC	External FIFO port 9 output read
115	EXTINDATA9(0)	PIC	External FIFO port 9 input data
116	EXTINDATA9(1)	PIC	External FIFO port 9 input data
117	EXTINDATA9(2)	PIC	External FIFO port 9 input data
118	EXTINDATA9(3)	PIC	External FIFO port 9 input data
119	EXTINDATA9(4)	PIC	External FIFO port 9 input data
120	EXTINDATA9(5)	PIC	External FIFO port 9 input data
121	EXTINDATA9(6)	PIC	External FIFO port 9 input data
122	EXTINDATA9(7)	PIC	External FIFO port 9 input data
123	EXTINDATA9(8)	PIC	External FIFO port 9 input data
124	EXTINFULLN9	PO44F	External FIFO port 9 input full
125	VSSB	GND	Ground
126	VDDB	3V3	Power
127	EXTINWRITEN9	PIC	External FIFO port 9 input write
128	EXTOUTDATA10(0)	PO44F	External FIFO port 10 output data
129	EXTOUTDATA10(1)	PO44F	External FIFO port 10 output data
130	EXTOUTDATA10(2)	PO44F	External FIFO port 10 output data
131	EXTOUTDATA10(3)	PO44F	External FIFO port 10 output data
132	EXTOUTDATA10(4)	PO44F	External FIFO port 10 output data
133	EXTOUTDATA10(5)	PO44F	External FIFO port 10 output data
134	VSSB	GND	Ground
135	VDDB	3V3	Power
136	EXTOUTDATA10(6)	PO44F	External FIFO port 10 output data
137	EXTOUTDATA10(7)	PO44F	External FIFO port 10 output data

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

138	EXTOUTDATA10(8)	PO44F	External FIFO port 10 output data
139	EXTOUTEMPTYN10	PO44F	External FIFO port 10 output empty
140	VSSA6	GND	Ground
141	VDDA6	3V3	Power
142	EXTOUTREADN10	PIC	External FIFO port 10 output read
143	EXTINDATA10(0)	PIC	External FIFO port 10 input data
144	EXTINDATA10(1)	PIC	External FIFO port 10 input data
145	EXTINDATA10(2)	PIC	External FIFO port 10 input data
146	EXTINDATA10(3)	PIC	External FIFO port 10 input data
147	EXTINDATA10(4)	PIC	External FIFO port 10 input data
148	EXTINDATA10(5)	PIC	External FIFO port 10 input data
149	EXTINDATA10(6)	PIC	External FIFO port 10 input data
150	EXTINDATA10(7)	PIC	External FIFO port 10 input data
151	EXTINDATA10(8)	PIC	External FIFO port 10 input data
152	EXTINFULLN10	PO44F	External FIFO port 10 input full
153	EXTINWRITEN10	PIC	External FIFO port 10 input wrte
154	VSSA7	GND	Ground
155	VDDA7	3V3	Power
156	VSSB	GND	Ground
157	VDDB	3V3	Power
158	EXTTICKIN	PIC	Time-code tick in
159	EXTTIMEIN(0)	PIC	Time-code input
160	EXTTIMEIN(1)	PIC	Time-code input
161	EXTTIMEIN(2)	PIC	Time-code input
162	EXTTIMEIN(3)	PIC	Time-code input
163	EXTTIMEIN(4)	PIC	Time-code input
164	EXTTIMEIN(5)	PIC	Time-code input
165	EXTTIMEIN(6)	PIC	Time-code input
166	EXTTIMEIN(7)	PIC	Time-code input
167	SELEXTTIME	PIC	Time-code counter/input selection
168	TIMECTRRST	PIC	Time-code counter reset
169	EXTTICKOUT	PO44F	Time-code tick out
170	EXTTIMEOUT(0)	PO44F	Time-code output
171	EXTTIMEOUT(1)	PO44F	Time-code output
172	EXTTIMEOUT(2)	PO44F	Time-code output
173	EXTTIMEOUT(3)	PO44F	Time-code output
174	VSSB	GND	Ground
175	VDDB	3V3	Power
176	EXTTIMEOUT(4)	PO44F	Time-code output
177	EXTTIMEOUT(5)	PO44F	Time-code output

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

178	EXTTIMEOUT(6)	PO44F	Time-code output
179	EXTTIMEOUT(7)	PO44F	Time-code output
180	STATMUXADDR(0)	PIC	Status output multiplexer address
181	STATMUXADDR(1)	PIC	Status output multiplexer address
182	STATMUXADDR(2)	PIC	Status output multiplexer address
183	STATMUXADDR(3)	PIC	Status output multiplexer address
184	VSSB	GND	Ground
185	VDDB	3V3	Power
186	STATMUXOUT(0)	PO22F-tri PIC	Status output /configuration input
187	STATMUXOUT(1)	PO22F-tri PIC	Status output /configuration input
188	STATMUXOUT(2)	PO22F-tri PIC	Status output /configuration input
189	VSSA8	GND	Ground
190	VDDA8	3V3	Power
191	STATMUXOUT(3)	PO22F-tri PIC	Status output /configuration input
192	STATMUXOUT(4)	PO22F-tri PIC	Status output /configuration input
193	STATMUXOUT(5)	PO22F-tri PIC	Status output /configuration input
194	STATMUXOUT(6)	PO22F-tri PIC	Status output /configuration input
195	STATMUXOUT(7)	PO22F-tri PIC	Status output /configuration input
196	VSSB	GND	Ground

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: 3.5

Date: 7th January 2015

5. DEVICE INTERFACE

The device pins used by each interface are described in this section. There is a table for each type of interface listing the signals in that interface. These tables have the following fields:

Pin No: The device pin number

Signal: The name of the signal

Dir: The direction of the signal; in, out or in/out

Description: An explanation of what the signal does.

Type: The type of signal

The sections below define the pin out of the SpaceWire router. Its interfaces are split into several types, separated by headings for clarity:

5.1 Global signals: clock and reset

5.2 SpaceWire interface signals

5.3 External port signals

5.4 Time-code interface signals

5.5 Configuration signals

5.6 Reset configuration signals

5.7 Power and Ground

The following signal types are used in the SpaceWire Router:

CMOS3V3 3.3 Volt CMOS logic

LVDS Low Voltage Differential Signal

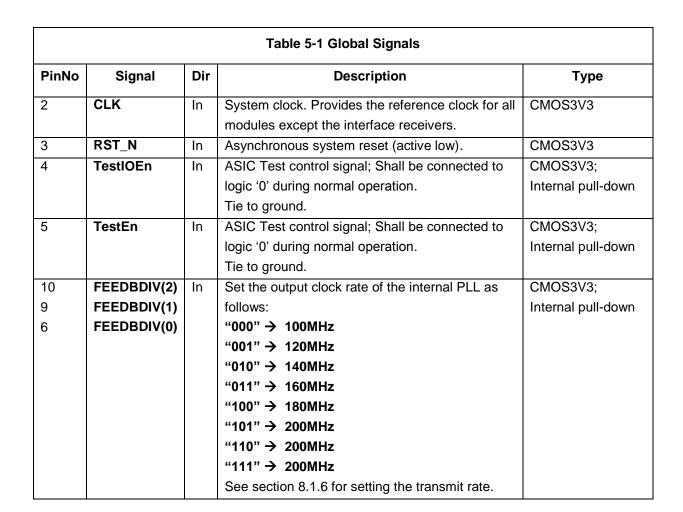
3V3
 3.3 Volt power

GND Ground

5.1 GLOBAL SIGNALS

The global system clock and reset signals are listed in Table 5-1.

SpaceWire Router


User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: 3.5

Date: 7th January 2015

See section 10.1 for timing details.

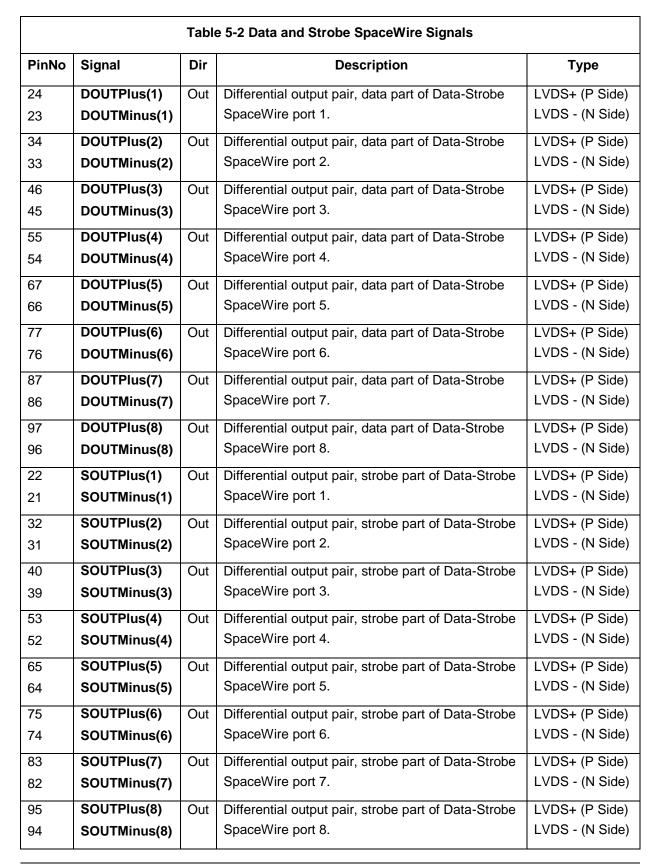
WARNING

Simultaneous data/strobe transitions can occur during reset and power up. This is not a problem when connected to SpaceWire compliant devices but is a problem when connected to IEEE-1355 devices.

5.2 SPACEWIRE SIGNALS

5.2.1 SpW-10X SpaceWire Signals

The SpaceWire interface signals are listed in Table 5-2. For further details about SpaceWire see the SpaceWire standard [AD1]. The LVDS inputs and outputs are cold sparing [RD3].


SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

SpaceWire port 6.

SpaceWire port 7.

SpaceWire port 8.

Differential input pair, strobe part of Data-Strobe

Differential input pair, strobe part of Data-Strobe

See section 10.2 for timing details.

SINMinus(6)

In

In

SINPlus(7)

SINPlus(8)

SINMinus(7)

SINMinus(8)

71 80

81 90

93

LVDS - (N Side)

LVDS+ (P Side)

LVDS - (N Side)

LVDS+ (P Side)

LVDS - (N Side)

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_ UserManual

Issue: **3.5**

Date: 7th January 2015

5.2.2 SpaceWire Input Fail Safe Resistors

If a SpaceWire input becomes disconnected then no current flows through the termination resistor. The differential voltage across this resistor is then zero. A small noise current, induced by electromagnetic interference on PCB tracks or on any part of the SpaceWire cable still attached to the receiver, will cause a small differential voltage across the termination resistor. If this is positive the receiver output will be logic 1 and if it the noise current flows in the other direction, giving a negative differential voltage the receiver output will be logic 0. Just a small amount of noise is sufficient to cause the output of the LVDS receiver to transition from 0 to 1 and back continuously. This noise can sometime start a SpaceWire link erroneously.

To overcome this problem a small bias current can be passed through the termination resistor generating a small positive voltage across the bias resistor and forcing the output of the LVDS receiver to logic 1. Now any noise current smaller than this bias current will not cause the receiver to transition. The bias current can be supplied by a pair of resistors connected to the power and ground rails, as illustrated in Figure 5-1.

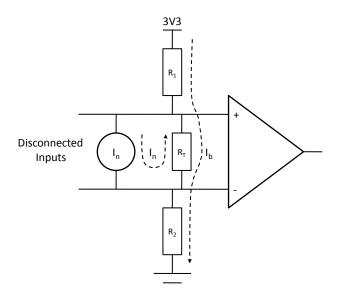


Figure 5-1 LVDS Receiver Fail-Safe Resistors

The current generator, I_n , represents any noise picked up by the disconnected SpaceWire cable or PCB tracks. In Figure 5-1, I_n is shown as a negative current which causes a negative differential voltage across the termination resistor R_T . The bias resistors R_1 and R_2 cause a bias current , I_n , to flow through the termination resistor. Provided that the bias current is greater than any negative noise current the output of the LVDS receiver will be logic 1. If the noise current is positive then the LVDS receiver output is logic 1 anyway.

The bias resistors must be chosen to give a bias current through the termination resistor greater than any expected noise current when the input is disconnected. Note that careful PCB design can reduce electro-magnetic interference and reduce the noise current.

pacevine Rout

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

The bias resistor values are determined as follows:

1. Determine the amount of noise protection required.

E.g. if the maximum noise voltage expected is less than 10 mV then the bias current required is I_b =10 mV/100 Ω = 0.1 mA. Note: the bias current should be at least an order of magnitude lower than the 3 mA current loop used for normal LVDS operation.

2. Determine the total resistance, R_B , from bias supply V_{DD} to ground, $R_B = V_{DD} / I_b$.

E.g. $R_B = 3.3 \text{ V/}0.1 \text{ mA} = 33 \text{ k}\Omega$. Since R_T is much smaller than this value it can be ignored.

3. Determine the ratio of R2 to the total resistance, R_B.

The line common mode voltage, V_{cm} , should be 1.25 V so the ratio of R2 to R_B is $R2/R_B = 1.25 \text{ V}/3.3 \text{ V} = 0.379$.

4. Calculate the value of R2 and round down to a standard value.

E.g. R2 = 0.379 x 33 k Ω = 12.5 k Ω , so the nearest standard value is 12 k Ω (E24 series).

5. Now recalculate the value of R_B to give the required line common mode voltage

E.g. $R_B = 12k\Omega / 0.379 V = 31.6 kΩ$.

6. Calculate the value of R1, R1 = R_B - R2, and round to a standard value.

E.g. R1 = 31.6 k Ω – 12 k Ω = 19.6 k Ω , so the nearest standard value is 20 k Ω (E24 series) or 19.6 k Ω (E48 series).

7. Check the maximum noise voltage and common mode voltage.

E.g. V_n = 3.3 V x 100 Ω / 32 k Ω = 10.3 mV and V_{cm} = 3.3 V x 12 k Ω /32 k Ω = 1.24 V

If the noise on the disconnected inputs is likely to be higher than 10 mV then other resistor values need to be calculated.

For further details see RD1 and RD2.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

5.2.3 Operation with 5V Powered LVDS Devices

WARNING

Since LVDS is based on a current loop it should not matter what the supply voltage is to an LVDS device connected to the SpW-10X router. However, there is a potential problem when connecting to devices with power supplies greater than 3.3 V, which is the supply voltage of the SpW-10X device. It should be emphasised that during normal operation there is no problem, but if the LVDS device connected to the SpW-10X device can fail in such a way as to put a higher voltage than 3.3 V on to the pins of the SpW-10X device then this can cause a problem. The simplest way to overcome this potential problem is to ensure that the LVDS devices driving the SpW-10X device are all powered by 3.3V.

5.3 EXTERNAL PORT DATA SIGNALS

The External port signals are listed in Table 5-3. The timing of these signals is shown in Figure 6-1 External port write timing specification and Figure 6-2 External port read timing specification.

	Table 5-3 External Port Interface Signals				
PinNo	Signal	Dir	Description	Туре	
112	EXT9_OUT_DATA(8)	Out	Output data from external port number one	CMOS3V3	
111	EXT9_OUT_DATA (7)		FIFO. Bit eight determines the type - data,		
110	EXT9_OUT_DATA(6)		EOP or EEP. The encodings are defined as:		
107	EXT9_OUT_DATA(5)				
104	EXT9_OUT_DATA(4)		(8) (70) – Bits		
103	EXT9_OUT_DATA(3)		(0) (dddddddd) - Data byte		
102	EXT9_OUT_DATA(2)		(1) (XXXXXXX0) - EOP .		
101	EXT9_OUT_DATA(1)		(1) (XXXXXXX1) - EEP .		
100	EXT9_OUT_DATA(0)				
			Bit 7 is the most significant bit of the data byte.		
113	EXT9_OUT_EMPTY_N	Out	FIFO ready signal for external output port	CMOS3V3	
			zero. When high the FIFO has data. When low		
			the FIFO is empty.		
114	EXT9_OUT_READ_N	In	Asserted (low) to read from the external output	CMOS3V3	
			port zero FIFO.		
			A pull-up resistor (e.g. 4k7 Ω) should be		
			connected to this input if External FIFO port 9		
			is not being used.		
123	EXT9_IN_DATA(8)	In	Input data to external port number one FIFO.	CMOS3V3	
122	EXT9_IN_DATA(7)		Bit eight determines the type - data, eop or		
121	EXT9_IN_DATA(6)		eep. The encodings are defined as:		

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

100	EVTO IN DATA(E)	ı	T	T
120	EXT9_IN_DATA(5)			
119	EXT9_IN_DATA(4)		(8) (70) – Bits	
118	EXT9_IN_DATA(3)		(0) (dddddddd) - Data byte	
117	EXT9_IN_DATA(2)		(1) (XXXXXXXX)) - EOP .	
116	EXT9_IN_DATA(1)		(1) (XXXXXXX1) - EEP.	
115	EXT9_IN_DATA(0)			
			Bit 7 is the most significant bit of the data byte.	
			Pull-up resistors (e.g. 4k7 Ω) should be	
			connected to these inputs if External FIFO port	
			·	
404	EVTO IN FULL N	0	9 is not being used.	CMCC2)/2
124	EXT9_IN_FULL_N	Out	FIFO ready signal for external input port zero.	CMOS3V3
			When high there is space in the FIFO so it can	
			be written to. When low the FIFO is full.	
127	EXT9_IN_WRITE_N	In	Asserted (low) to write to the external input	CMOS3V3
			port zero FIFO.	
			A pull-up resistor (e.g. 4k7 Ω) should be	
			connected to this input if External FIFO port 9	
			is not being used.	
138	EXT10_OUT_DATA(8)	Out	Output data from external port number two	CMOS3V3
137	EXT10_OUT_DATA(7)		FIFO . Bit eight determines the type - data,	
136	EXT10_OUT_DATA(6)		eop or eep. The encodings are defined as:	
133	EXT10_OUT_DATA(5)			
132	EXT10_OUT_DATA(4)		(8) (70) – Bits	
131	EXT10_OUT_DATA(3)		(0) (dddddddd) - Data byte	
130	EXT10_OUT_DATA(2)		(1) (XXXXXXXX)) - EOP .	
129	EXT10_OUT_DATA(1)		(1) (XXXXXXX1) - EEP.	
128	EXT10_OUT_DATA(0)		(1) (ΔΛΛΛΛΛΛ1) - LLΓ.	
			Bit 7 is the most significant bit of the data byte.	
120	EXT10 OUT EMPTY N	Out		CMOS3V3
139	LATIU_OUT_EWIFTT_N	Out	FIFO ready signal for external output port one.	CIVICOSVS
			When high the FIFO has data. When low the	
4.46	EVT40 OUT BEAD '	1.	FIFO is empty.	0140001/0
142	EXT10_OUT_READ_N	In	Asserted (low) to read from the external output	CMOS3V3
			port one FIFO.	
			A pull-up resistor (e.g. 4k7 Ω) should be	
			connected to this input if External FIFO port 10	
			is not being used.	
151	EXT10_IN_DATA(8)	In	Input data to external port number two FIFO.	CMOS3V3
150	EXT10_IN_DATA(7)		Bit eight determines the type - data, eop or	
149	EXT1IN_DATA(6)		eep. The encodings are defined as:	
148	EXT10_IN_DATA(5)			
147	EXT10_IN_DATA(4)		(8) (70) – Bits	
			· · · · · · · · · · · · · · · · · · ·	

SpaceWire Router

Issue:

Ref.:

3.5 7th January 2015 Date:

UoD_SpW-10X_ **UserManual**

User Manual

			is not being used.	
			connected to this input if External FIFO port 10	
			A pull-up resistor (e.g. 4k7 Ω) should be	
			port one FIFO.	
153	EXT10_IN_WRITE_N	In	Asserted (low) to write to the external input	CMOS3V3
			be written to. When low the FIFO is full.	
			When high there is space in the FIFO so it can	
152	EXT10_IN_FULL_N	Out	FIFO ready signal for external input port one.	CMOS3V3
			10 is not being used.	
			connected to these inputs if External FIFO port	
			Pull-up resistors (e.g. 4k7 Ω) should be	
			Bit 7 is the most significant bit of the data byte.	
143	EXT10_IN_DATA(0)			
144	EXT10_IN_DATA(1)		(1) (XXXXXXX1) - EEP.	
145	EXT10_IN_DATA(2)		(1) (XXXXXXX0) - EOP .	
146	EXT10_IN_DATA(3)		(0) (dddddddd) - Data byte	

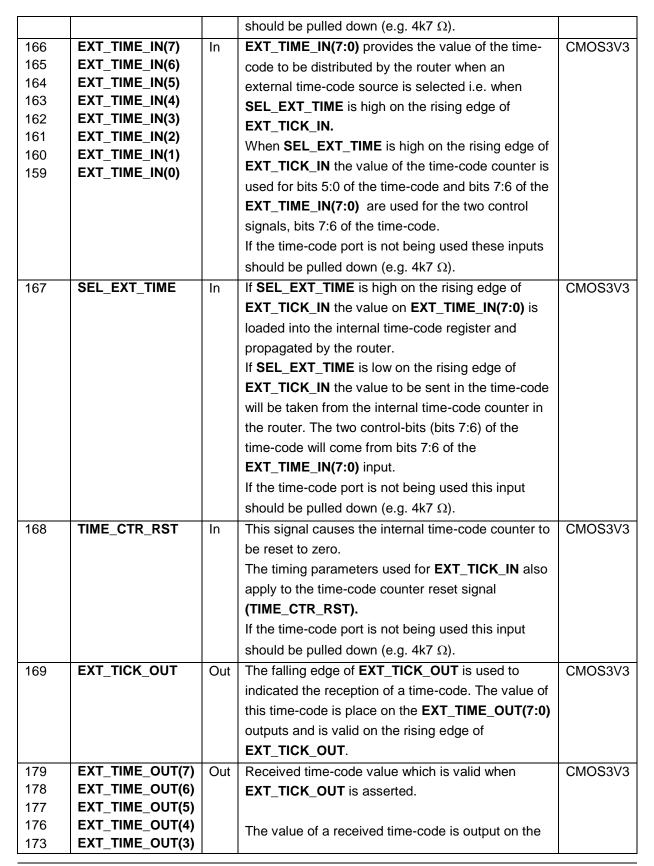
See section 6.1 for information on the operation of the external ports and section 10.3 for timing details.

5.4 TIME-CODE SIGNALS

The time-code interface signals are listed in Table 5-4. The timing of this interface is shown in Figure 6-3 and Figure 6-4.

Table 5-4 Time-Code Signals					
Signal	Dir	Description	Туре		
EXT_TICK_IN	In	The rising edge of the EXT_TICK_IN signal is used to indicate when a time-code is to be sent. On the rising edge of the EXT_TICK_IN signal the SEL_EXT_TIME signal is sampled to determine if the time-code value is to be provided by the internal time-counter or by the external time input EXT_TIME_IN(7:0). The SEL_EXT_TIME and the EXT_TIME_IN(7:0) signals must be set up prior to the rising edge of EXT_TICK_IN and must be held static sometime afterwards. See section 10.4 for timing details.	CMOS3V3		
E		Signal Dir	Signal Dir Description In The rising edge of the EXT_TICK_IN signal is used to indicate when a time-code is to be sent. On the rising edge of the EXT_TICK_IN signal the SEL_EXT_TIME signal is sampled to determine if the time-code value is to be provided by the internal time-counter or by the external time input EXT_TIME_IN(7:0). The SEL_EXT_TIME and the EXT_TIME_IN(7:0) signals must be set up prior to the rising edge of EXT_TICK_IN and must be held static sometime		

SpaceWire Router


User Manual

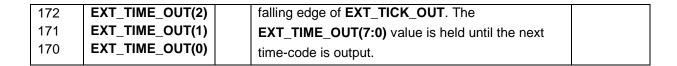
Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

SpaceWire Router


User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

See section 6.2 for information on the operation of the time-code interface and section 10.4 for timing details.

5.5 STATUS INTERFACE SIGNALS

The status interface signals are listed in Table 5-5.

	Table 5-5 Link error indication Signals				
PinNo	Signal	Dir	Description	Signal Type	
183 182 181 180	STAT_MUX_ADDR(3) STAT_MUX_ADDR(2) STAT_MUX_ADDR(1) STAT_MUX_ADDR(0)	in	Select the error indication status signals to be output on STAT_MUX_OUT as defined in Table 6-1. These inputs should be driven or pulled up or down (e.g. $4k7~\Omega$) depending on what information is required from the status outputs.	CMOS3V3	
195 194 193 192 191 188 187 186	STAT_MUX_OUT(7) STAT_MUX_OUT(6) STAT_MUX_OUT(5) STAT_MUX_OUT(4) STAT_MUX_OUT(3) STAT_MUX_OUT(2) STAT_MUX_OUT(1) STAT_MUX_OUT(0)	inout	Multi function pin. Power on Configuration After reset the STAT_MUX_OUT pins are inputs which define the power on configuration status of the router. The pin mappings are listed in section 5.6. These pins should be pulled up or down (e.g. 4k7 Ω) to provide the required power on configuration input values. Normal Operation After the power on reset configuration of the router has been read from STAT_MUX_OUT the pins are driven as outputs by the router. The function of these output pins is defined by STAT_MUX_ADDR(3:0). Further details are given in section 6.3.	CMOS3V3	

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

Date: 7th January 2015

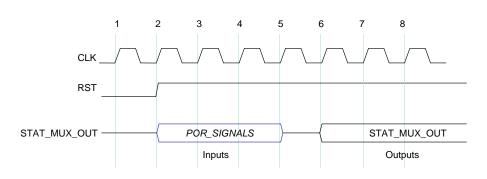


Figure 5-2 Configuration interface timing specification

The POR configuration signals (POR_SIGNALS) listed in Table 5-6 are loaded into the appropriate internal configuration registers of the router after RST is de-asserted. To make sure that the POR configuration signal values are loaded properly they should be held stable for at least three CLK cycles following RST being de-asserted. The status output STAT_MUX_OUT is driven on the fourth CLK cycle after RST is de-asserted.

See section 6.3 for information on the operation of the status/power on configuration interface and section 10.5 for timing details.

5.6 RESET CONFIGURATION SIGNALS

The Reset Configuration signals are listed in Table 5-6. These signals are input on **STAT_MUX_OUT** after reset to initialise the router. They are not used at any other time except immediately after reset. The Reset Configuration signals set relevant bits in the configuration registers (see section 9). Following reset the values of these signals are synchronously loaded into the router. The timing of the Reset Configuration signals is illustrated in Figure 6-7.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

Table 5-6 Reset Configuration Signals			
Signal	Dir	Description	Signal Type
STAT_MUX_OUT(2:0)	In	Sets the transmitter maximum data rate after	CMOS3V3
[maps to -> POR_TX_RATE(2:0)]		reset. The data rate can subsequently be	
		changed during normal operation using port	
		configuration commands. The values are	
		listed below.	
		"111" – Full data rate after link start-up.	
		"110" – 1/2 data rate after link start-up.	
		"101" – 1/3 data rate after link start-up.	
		"100" – 1/4 data rate after link start-up.	
		"011" – 1/5 data rate after link start-up.	
		"010" – 1/6 data rate after link start-up.	
		"001" – 1/7 data rate after link start-up.	
		"000" – 1/8 data rate after link start-up.	
		Note: POR_TX_RATE affects all SpaceWire	
		ports in the router.	
		Note: The data rate is dependent on	
		FEEDBDIV at reset	
STAT_MUX_OUT(3)	In	If asserted (low) after reset allows a router	CMOS3V3
[maps to ->		port to address itself and therefore cause an	
POR_ADDR_SELF_N		input packet to be returned through the same	
		input port. This mode may only be suitable for	
		debug and test operations.	
		This signal is active low.	211222112
STAT_MUX_OUT(4)	In	Power on reset signal which determines if	CMOS3V3
[maps to ->		output port timeouts are enabled at start-up.	
POR_TIMEOUT_EN_N]		When asserted (low) the port timeouts are	
		enabled. When de-asserted (high) they are disabled.	
		This signal is active low.	
		An external pull down resistor (e.g. 4k7 Ω) is	
		recommended on this pin so to enable the	
		watchdog timers.	
STAT_MUX_OUT(5)	In	Power on reset value which determines the	CMOS3V3
[maps to -> in initial timeout value. The following values		SIVIOUSVS	
POR_SEL_TIMEOUT0_N]		determine which timeout is selected at power	
		astermine miner amount to oblocted at power	

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

		up.	
		'1' => Timeout period is ~ 60-80 us.	
		'0' => Timeout period is ~ 1.3 ms.	
		Timeout Period is:	
		'1' => 200x(2^2)x(10 MHz clk period)	
		'0' => 200x(2^16)x(10 MHz clk period)	
		An external pull down resistor (e.g. 4k7 Ω) is	
		recommended on this pin to provide the	
		longer timeout interval.	
STAT_MUX_OUT(6)	In	Power on reset signal which determines if the	CMOS3V3
[maps to ->		output ports automatically start up when they	
POR_START_ON_REQ_N]		are the destination address of a packet.	
		When asserted (low) the output port will	
		automatically start on request.	
		This signal is active low.	
STAT_MUX_OUT(7)	In	Power on reset signal which determines if the	CMOS3V3
[maps to ->		output ports are disabled when no activity is	
POR_DSBLE_ON_SILENCE_N]		detected on an output port for the current	
		timeout period.	
		When asserted (low) an output port is	
		disabled when it has not sent any information	
		for longer than the current timeout period.	
		This signal is active low.	

WARNING

In most onboard applications it is recommended to have Stat_mux_out(4) pulled low by default in order to enable the watchdog timers on reset.

WARNING

When the watchdog timers are not enabled the SpaceWire and external ports can block indefinitely if, for example, a source stops sending data in the middle of a packet. If watchdog timers are not enabled then it must be possible for a network manager to detect blocking situations and to reset the router or node creating the problem.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: 3.5

Date: 7th January 2015

Note: The recommended method for setting the POR signals is to use external pull up/down resistors (e.g. $4k7 \Omega$) in which case the timing of the POR signals is not critical.

See section 6.3 and 6.4 for further information on the operation of the status/ power on configuration interface and section 10.5 for timing details.

5.7 POWER, GROUND, PLL AND LVDS SIGNALS

5.7.1 General

The Power, Ground and special signal connections are listed in Table 5-7.

Table 5-7 Power, Ground and Special Signals					
Signal	Dir	Description	Signal Type		
Power	-	3.3 V power for the device	3V3		
Ground	-	Ground connection for the device	GND		
VCOBias		PLL VCO Bias	analogue		
VSSPLL		PLL Supply	3V3		
VDDPLL		PLL Supply	GND		
LoopFilter		PLL Loop Filter	analogue		
LVDSref		LVDS Buffer reference	analogue		

5.7.2 Decoupling

The power pins should be decoupled to the ground plane. One 100 nF decoupling capacitor should be used for each power pin.

5.7.3 LVDS Reference

An external resistor is required to provide a reference for the LVDS buffers. A resistor with a value between 16.3 k Ω and 16.7 k Ω must be connected between LVDSref and ground.

5.7.4 PLL External Components

An internal PLL is used to provide the base transmit clock signal for the SpaceWire interfaces from the CLK input. External components are required to implement the PLL loop filter and to provide a bias for the PLL VCO. These components are illustrated in Figure 5-3. Note that R_{VCO}, C and CO are all connected to a quiet common ground track.

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

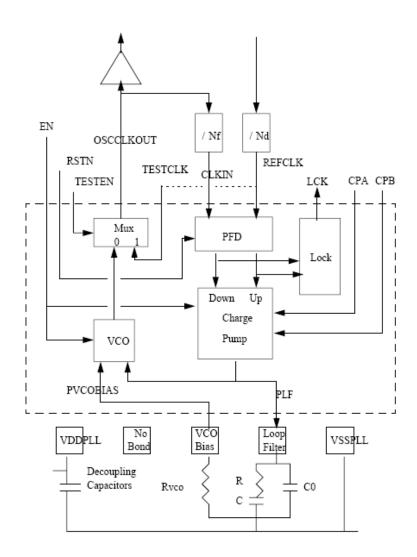


Figure 5-3 PLL with external components

The PLL loop filter component values to be used are

 $R = 10 \text{ k}\Omega$

C = 120 pF

C0 = 3.3 pf.

The VCO bias resistor depends on the required VCO frequency range which is determined by the PLL feedback divider (NF in Figure 5-3). The VCO bias resistor values to use are

Rvco = $4.7 \text{ k}\Omega$ for 100-150MHz (FEEDBDIV = 0b000, 0b001, or 0b010),

Rvco = $1.8 \text{ k}\Omega$ for 150 MHz - 200 MHz (FEEDBDIV = 0 b 011, 0 b 100, 0 b 101 or 0 b 110, or 0 b 111).

See section 5.1 for information about the FEEDBDIV inputs.

A dedicated decoupling capacitors (100 nF and 1µF) are required for the PLL power supply.

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

6. INTERFACE OPERATIONS

This section describes the operation of the external FIFO port, time-code interface and status/power on configuration interface.

First a note on the terminology used: Signals are given a name (e.g. EXT_IN_FULL) and a logic level (e.g. _N). The term asserted is used when the signal state reflects the signal name e.g. EXT_IN_FULL is asserted when the external input FIFO is full. The term de-asserted is used when the signal state is the inverse of the signal name e.g. EXT_IN_FULL is de-asserted when the external input FIFO is not full. The logic level when a signal is asserted is indicated by the logic level extension to the signal name. If there is no extension then when the signal is asserted it is logic 1 (high). If the _N extension is present then when the signal is asserted it is logic 0 (low). For example, EXT_IN_FULL_N asserted means that the physical signal is logic 0 (low) when the external input FIFO is full.

6.1 EXTERNAL PORT INTERFACE OPERATION

In this section the external port interface operation is described.

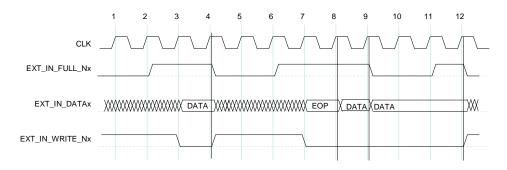


Figure 6-1 External port write timing specification

The operation of the External port during write operations starts with the EXT_IN_FULL_N signals being de-asserted (going high) by the router (at clock cycle 2 in Figure 6-1) to indicate to the external system that the router has room for more data and is ready to receive it through the External port. The External system then puts data onto the EXT_IN_DATA data lines and asserts EXT_IN_WRITE_N (goes low) to transfer data into the External port on the next rising edge of SYSCLK. As long as there is room for new data (EXT_IN_FULL_N is de-asserted (high) the writer access is performed as long as EXT_IN_WRITE_N is asserted (low). If no room is available the write access is ignored (cycle 9 and 10 in Figure 6-1) and will be performed when room has become available if EXT_IN_WRITE_N is still asserted (low). Therefore the data (EXT_IN_DATA) must be valid at that time.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

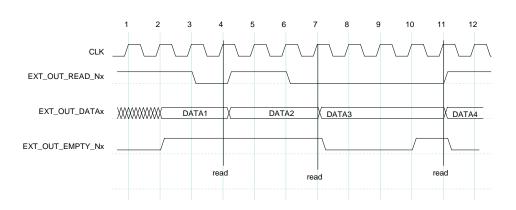


Figure 6-2 External port read timing specification

Reading of the External port is illustrated in Figure 6-2. When data is available in the External port FIFO then it is placed on the EXT_OUT_DATA bus and the EXT_OUT_EMPTY_N signal is asserted to signal to the external system that data is available. This is done synchronously to the SYSCLK signal (e.g. clock cycle 2 in Figure 6-2). When it is ready the external system asserts the EXT_OUT_READ_N signal synchronously with the SYSCLK signal (e.g. clock cycle 3) and the data is then read out of the external port on the next rising edge of the SYSCLK (e.g. start of clock cycle 4). If there is no more data available in the FIFO then the EXT_OUT_EMPTY_N is de-asserted once the data has been read. If the FIFO contains more data to transfer then the EXT_OUT_EMPTY_N remains asserted, the new data is placed on the EXT_OUT_DATA bus and the external system can read it as soon as it is ready. The read access is ignored if there is no data available (EXT_OUT_EMPTY_N is active).

6.2 TIME-CODE INTERFACE OPERATION

In this section the time-code interface operation is defined.

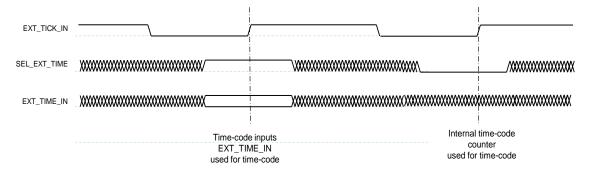


Figure 6-3 Time-Code Input Interface

Time-codes can be generated by the router on request of the external system to which it is attached. A time-code is generated whenever the router detects a rising edge on the **EXT_TICK_IN** signal as illustrated in Figure 6-3. The value of the time-code to be transmitted is either taken from the inputs or from the time-code counter inside the router. The time-code source used depends on the value of the

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

SEL_EXT_TIME signal when **EXT_TICK_IN** signal has a rising edge. If **SEL_EXT_TIME** is 1 then the **EXT_TIME_IN(7:0)** inputs are used to provide the contents of the time-code. If **SEL_EXT_TIME** is 0 then the internal time-code counter provides the least-significant 6-bits of the time-code and the **EXT_TIME_IN(7:6)** inputs provide the most-significant 2-bits. When using the **EXT_TIME_IN(7:0)** inputs to provide the complete time-code, the time-code is only broadcast if it is a valid time-code i.e. if the count in bits 5:0 is one more than the internal time register of the router (see SpaceWire standard [AD1]). Note that only one router or node in a SpaceWire network should normally operate as a time master generating time codes (see SpaceWire standard [AD1]).

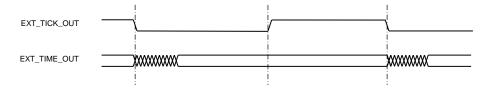


Figure 6-4 Time-Code Output Interface

When a valid time-code is received by the router the value of this time-code (flags plus time value) will be placed on the <code>EXT_TIME_OUT</code> outputs and the <code>EXT_TICK_OUT</code> signal will be set to zero. The <code>EXT_TICK_OUT</code> signal is set to one a short time later, once the <code>EXT_TIME_OUT</code> outputs have stabilised, to indicate that these outputs are valid. They then remain valid until the next time-code is received and the <code>EXT_TICK_OUT</code> signal will be set to zero.

Figure 6-5 Time-code reset interface

When a rising edge is detected on TIME_CTR_RST then the time-code register is reset to zero.

6.3 STATUS INTERFACE OPERATION

The **STAT_MUX_ADDR** signal determines the output status on **STAT_MUX_OUT** as shown in Figure 6-6 and in Table 6-1.

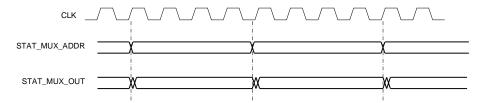


Figure 6-6 Status Multiplexer output interface

When STAT_MUX_ADDR is stable STAT_MUX_OUT is output from after each clock edge.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

Many	Ctatus Daniston	Status Simpl	Ctatus	Ctatura
Mux Address	Status Register	Status Signal	Status Register Bits	Status Output Bits
0	Configuration Port	Packet return address error	1	0
		Output port timeout error	2	1
		Checksum error	3	2
		Packet too short error	4	3
		Packet too long error	5	4
		Packet EEP termination	6	5
		Protocol byte error	7	6
		Invalid address/data error	8	7
1 - 8	SpaceWire Ports	Packet Address Error	1	0
	1 - 8 respectively	Output Port Timeout	2	1
		Disconnect Error	3	2
		Parity Error	4	3
		Escape Error	5	4
		State A	8	5
		State B	9	6
		State C	10	7
9 - 10	External Ports	Error Active	0	0
	0 - 1 respectively	Packet Address Error	1	1
		Output Port Timeout	2	2
		Input Buffer Empty	3	3
		Input Buffer Full	4	4
		Output Buffer Empty	5	5
		Output Buffer Full	6	6
11	Network Discovery	Return port	7:4	7:4
	Router Identity	Least-significant 4-bits	3:0	3:0
12	Router Control	Timeout Enable	0	0

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

Date: 7th January 2015

		Timeout Selection	3:1	3:1
		Enable Disconnect-on-silence	4	4
		Enable Start-on-Request	5	5
		Enable Self-Addressing	6	6
13	Error Active	Configuration Port Error	0	0
		SpaceWire Ports 1-5 Error	5 :1	5 :1
		External Ports 1,2 Error	10 :9	7 :6
14	Time-code	Time-code	7:0	7:0
15	General Purpose	Least Significant 8-bits	7:0	7:0

6.4 RESET CONFIGURATION INTERFACE OPERATION

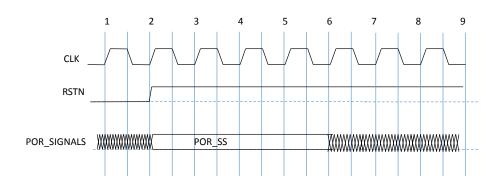


Figure 6-7 Reset configuration interface timing specification

The POR configuration signals (POR_SIGNALS) listed above are loaded into the appropriate internal configuration registers of the router on the first rising edge of the system clock, **CLK**, after **RSTN** is deasserted. To make sure that the POR configuration signal values are loaded properly STATMUXOUT inputs must be stable from end of reset (rising edge of RSTN) till 4 CLK periods after the end of reset.

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

7. SPACEWIRE ROUTER PACKET TYPES

This section describes how the routing control logic interprets packets.

7.1 PACKET ADDRESSES

The routing control logic interprets the first byte of each received packet as the packet address. The packet address defines the physical ports through which the routing control logic will use to route the packet towards its destination.

Packets which have a path address (0-31) as the first byte are always routed to the corresponding physical port number on the router. Packets which have a logical address (32-255) are routed to physical ports dependent on the contents of the routing table. The internal SpaceWire router routing table can be set up to assign logical addresses to the physical ports, except the configuration port (port 0) which can only be accessed by path addressing

The physical port addresses for the SpaceWire router and the expected packet type is defined in the table below. The packet types can be viewed in section 0.

Table 7-1 Packet Address Mapping					
Packet Address	Expected Packet Type	Physical Port type			
0	Command packet	Configuration port			
1	Any type	SpaceWire link port 1			
2	Any type	SpaceWire link port 2			
3	Any type	SpaceWire link port 3			
4	Any type	SpaceWire link port 4			
5	Any type	SpaceWire link port 5			
6	Any type	SpaceWire link port 6			
7	Any type	SpaceWire link port 7			
8	Any type	SpaceWire link port 8			
9	Any type	External FIFO port 1			
10	Any type	External FIFO port 2			
11-31	N/A	Invalid addresses			
32-255	Any type	Logical addresses			

Note that logical address 255 is reserved in the SpaceWire standard [AD1].

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

7.2 PACKET PRIORITY

Each packet which is input to the router has an associated priority level, either as a result of the packet address or the internal routing table. Two priority levels HIGH and LOW are supported.

The table below defines the priority levels for packet addresses

	Table 7-2 Packet Priority Mapping					
Packet Address	Packet Priority	Physical Port type				
0	HIGH	Configuration port				
1	HIGH	SpaceWire link port 1				
2	HIGH	SpaceWire link port 2				
3	HIGH	SpaceWire link port 3				
4	HIGH	SpaceWire link port 4				
5	HIGH	SpaceWire link port 5				
6	HIGH	SpaceWire link port 6				
7	HIGH	SpaceWire link port 7				
8	HIGH	SpaceWire link port 8				
9	HIGH	External FIFO port 1				
10	HIGH	External FIFO port 2				
11-31	N/A	Invalid addresses				
32-255	Dependent on routing table	Logical addresses				
	- Default LOW					
	- May be configured HIGH (see section					
	9.3)					

7.3 PACKET HEADER DELETION

Header deletion is performed on packets dependent on the packet address. Packets which have path addresses or logical addresses which have the header deletion bit set in the routing table have the header address byte removed before the packet is routed to the destination.

The table below defines the header deletion settings for each address.

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: 3.5 Date: 7th January 2015

Table 7-3 Packet Header Deletion Mapping				
Packet Address	Header Deletion	Physical Port type		
0	Enabled	Configuration port		
1	Enabled	SpaceWire link port 1		
2	Enabled	SpaceWire link port 2		
3	Enabled	SpaceWire link port 3		
4	Enabled	SpaceWire link port 4		
5	Enabled	SpaceWire link port 5		
6	Enabled	SpaceWire link port 6		
7	Enabled	SpaceWire link port 7		
8	Enabled	SpaceWire link port 8		
9	Enabled	External FIFO port 1		
10	Enabled	External FIFO port 2		
11-31	N/A	Invalid addresses		
32-255	Dependent on routing table (default not enabled)	Logical addresses		

Note that header deletion is always enabled for path addresses and cannot be changed by configuration. Header deletion for logical addresses can be enabled or disabled via a configuration register (see section 9.3).

7.4 INVALID ADDRESSES

Packets which have invalid addresses are discarded by the routing control logic. Path addresses which are in the range 11-31, logical addresses which are set as invalid in the routing table and empty packets (packets with no address or cargo) input to the external port are flagged as invalid packet addresses.

A packet address error is also generated when a packet address causes the packet to be routed back through the port on which the packet was received, i.e. a loop-back, and the router control register bit address self is not enabled.

When an invalid address packet is received by the router then the routing control logic flags the error to the corresponding port status register, spills the packet address, data and end of packet marker and waits for the next packet.

User Manual

Ref.: UoD_SpW-10X_ UserManual

Issue: **3.5**

Date: 7th January 2015

7.5 DATA PACKETS

Packets which have addresses in the range 1 to 255 are routed to the SpaceWire ports and the external ports dependent on the packet address. Data packets have an address header byte a cargo field and an end of packet marker. The normal packet structure is show below.

Figure 7-1 Normal router data packets

7.6 COMMAND PACKETS

Command packets are routed to the internal configuration port when the packet address is zero. Command packets perform write and read operations to registers in the SpaceWire router. Command packets accepted by the SpaceWire router are in the form shown in Figure 7-2.

Configuration read packets are in the form:

Figure 7-2 Command Packet Format

The SpaceWire router supports the Remote Memory Access Protocol (RMAP) [AD2] for configuration of the internal router control registers and monitoring of the router status.

The following sections define the RMAP commands which are supported and the format of the RMAP commands used by the SpaceWire Router.

7.6.1 Supported Commands

The RMAP Command set is listed in Table 7-4 and the supported RMAP commands are defined. The commands which are not used are depicted with a grey background.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

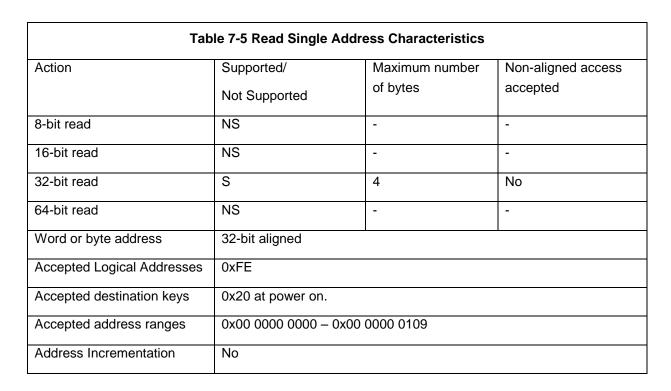
Date: 7th January 2015

Table 7-4 Supported RMAP Command Codes				
RMAP Command Code	Description	Supported in SpaceWire Router		
"0000"	Not used	-		
"0001"	Not used	-		
"0010"	Read single address	Yes		
"0011"	Read incrementing address	Yes		
"0100"	Not used	-		
"0101"	Not used	-		
"0110"	Not used	-		
"0111"	Read-modify-write incrementing address	Yes		
"1000"	Write single address, no verify, no acknowledge	No		
"1001"	Write incrementing address, no verify, no acknowledge.	No		
"1010"	Write single address, no verify, send acknowledge	No		
"1011"	Write incrementing address, no verify, send acknowledge.	No		
"1100"	Write single address, verify data, no acknowledge	No		
"1101"	Write incrementing address, verify data, no acknowledge.	No		
"1110"	Write single address, verify data, send acknowledge	Yes		
"1111"	Write incrementing address, verify data, send acknowledge.	No		

7.6.2 Read Command

The read single address characteristics of the SpaceWire router are defined in Table 7-5.

SpaceWire Router


User Manual

Ref.: UoD_SpW-10X_

Issue: **3.5**

Date: 7th January 2015

UserManual

The RMAP read single address command is supported in the SpaceWire router. The single address command is used to read a single 32 bit register location from the router registers.

In Figure 7-3 the format of a read single address command is illustrated. The first byte received by the SpaceWire router configuration logic is the port address followed by the destination logical address. Fields which are depicted in bold text are expected values. Fields which are shaded are optional.

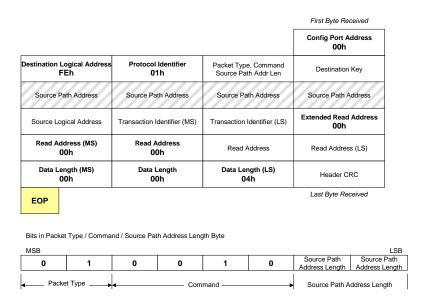


Figure 7-3 Read Single Address Command Format

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

Table 7-6 Read Single Address Command Packet Fields				
Field	Description	Bytes		
Config Port	The configuration port address field routes the packet to the configuration	1		
Address	port of the router. The configuration port address (00h) is always present			
	when configuring the SpaceWire Router.			
Destination	The destination logical address field is not used in the SpaceWire Router.	1		
Logical	The SpaceWire router accepts packets which have the default destination			
Address	logical address of 254h (FEh).			
Protocol	The RMAP protocol identifier is 01h.	1		
Identifier				
Command	The command byte indicates a read single address packet. The Source path	1		
Byte	address length fields are set to the number of source path addresses			
	required as defined in section 7.6.9.			
Destination	The destination key identifier must match the contents of the destination key	1		
Key	register, see section 9.5.10. The default (power-on) destination key is 20h.			
Source	The source path address field is used to add source path addresses to the	0,4,8,12		
Path	head of the reply packet. The expected number of source path addresses is			
Address	specified in the command byte. See section 7.6.9 for source path address			
	decoding.			
Source	The source logical address should be set to the logical address of the node	1		
Logical	which sent the command.			
Address				
Transaction	The transaction identifier identifies the command packet and reply packet	2		
Identifier	with a unique number.			
Extended	The extended read address is not used in the SpaceWire router and shall	1		
Read	always be set to zero.			
Address				
Read	The read address identifies the register address to read from. The valid read	4		
Address	addresses are defined in section 9.			
Data	The data length of a read single address command shall be set to 4 to read	3		

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

Length	one 32 bit register location.	
Header	The header CRC is the eight bit CRC code used to detect errors in the	1
CRC	command packet. The CRC code is checked before the command is executed	

In Figure 7-4 the format of the reply to a read single address command is illustrated. The first byte sent by the SpaceWire router configuration logic is the port address followed by the destination logical address. Fields which are depicted in bold text are expected values. Fields which are shaded are optional. Note that the reply is always sent out of the same port as the command was received on. The Source Path Address should not include the output port of the router being commanded as the reply will be automatically sent out of the same port that the command arrived on. See section 7.6.8.

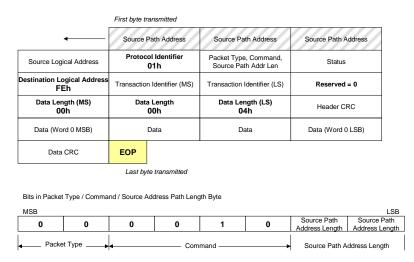
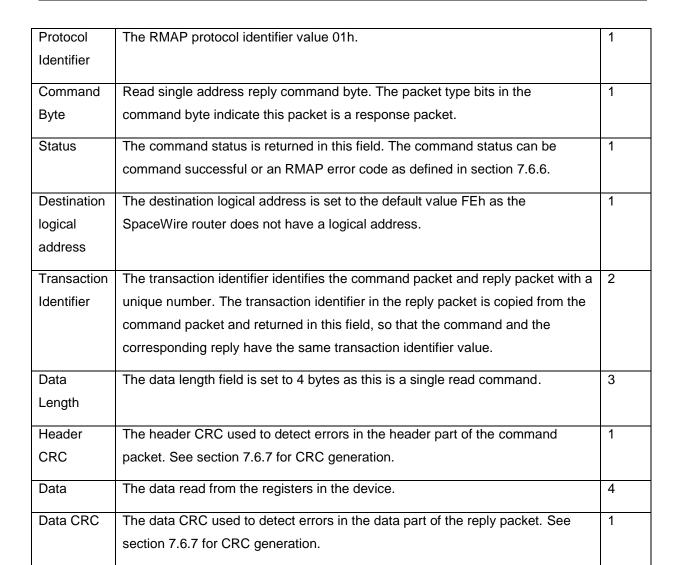


Figure 7-4 Read Single Address Reply Packet Format

source	>=0
al	
path	1
of the	
(of the


User Manual

Ref.: **UoD_SpW-10X_**

UserManual

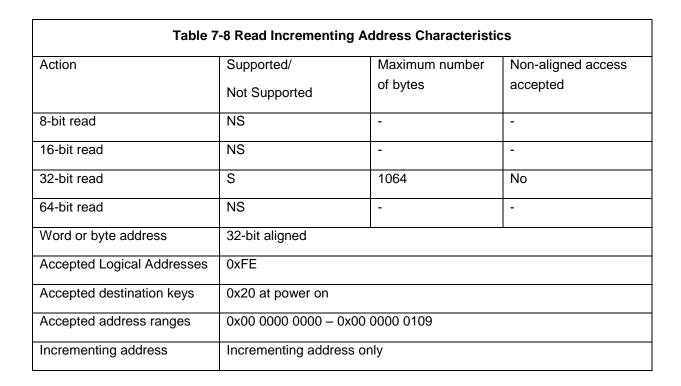
Issue: **3.5**

Date: 7th January 2015

7.6.3 Read Incrementing Command

The read incrementing address characteristics of the SpaceWire router are defined in Table 7-8.

SpaceWire Router


User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

The RMAP read incrementing address command is supported in the SpaceWire router. The read incrementing address is used to read a continuous block of registers from the SpaceWire router, e.g. the complete group adaptive routing table can be read in one command or all the status registers for the SpaceWire links can be read in one command.

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

In Figure 7-5 the first byte received by the SpaceWire router configuration logic is the port address followed by the destination logical address. Fields which are depicted in bold text are expected values. Fields which are shaded are optional.

			First Byte Received
			Config Port Address 00h
Destination Logical Address FEh	Protocol Identifier 01h	Packet Type, Command Source Path Addr Len	Destination Key
Source Path Address	Source Path Address	Source Path Address	Source Path Address
Source Logical Address	Transaction Identifier (MS)	Transaction Identifier (LS)	Extended Read Address 00h
Read Address (MS) 00h	Read Address 00h	Read Address	Read Address (LS)
Data Length (MS) 00h	Data Length	Data Length (LS)	Header CRC
ЕОР			Last Byte Received

Figure 7-5 Read Incrementing Address Command Format

Field	Description	Bytes
Config Port	The configuration port address field routes the packet to the configuration	1
Address	port of the router. The configuration port address is always present when	
	configuring the SpaceWire Router.	
Destination	The destination logical address is not used in the SpaceWire Router. The	1
Logical	SpaceWire router accepts packets which have the default destination logical	
Address	address of 254h (FEh).	
Protocol	The RMAP protocol identifier is 01h.	1
Identifier		
Command	The command byte indicates a read incrementing packet. The Source path	1
Byte	address length fields are set to the number of source path addresses	
	required as defined in section 7.6.9.	

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

register, see section 9.5.10. The source path address field is used to add source path addresses to the	
The source path address field is used to add source path addresses to the	
	0,4,8,12
nead of the reply packet. The expected number of source path addresses is	
specified in the command byte. See section 7.6.9 for source path address	
decoding.	
The source logical address should be set to the logical address of the node	1
which sent the command or it should be set to the default value of FEh.	
The transaction identifier identifies the command packet and reply packet	2
with a unique number.	
The extended read address is not used in the SpaceWire router and shall	1
always be set to zero.	
The read address identifies the start address for the read incrementing	4
command. The valid starting read addresses are defined in section 9.	
The data length defines the number of bytes to read from the router. Valid	3
data lengths are in the range 4-1064. 1064 allows the all the router registers	
o be read in one command. If the data length field is not a multiple of four	
bytes then the command is rejected by the SpaceWire router.	
The header CRC is the eight bit CRC code used to detect errors in the	1
command packet. The CRC code is checked before the command is	
executed.	
	The source logical address should be set to the logical address of the node which sent the command or it should be set to the default value of FEh. The transaction identifier identifies the command packet and reply packet with a unique number. The extended read address is not used in the SpaceWire router and shall always be set to zero. The read address identifies the start address for the read incrementing ommand. The valid starting read addresses are defined in section 9. The data length defines the number of bytes to read from the router. Valid ata lengths are in the range 4-1064. 1064 allows the all the router registers to be read in one command. If the data length field is not a multiple of four yets then the command is rejected by the SpaceWire router. The header CRC is the eight bit CRC code used to detect errors in the ommand packet. The CRC code is checked before the command is

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

In Figure 7-6 the format of the reply to a read incrementing address command is illustrated. The first byte sent by the SpaceWire router configuration logic is the port address followed by the destination logical address. Fields which are depicted in bold text are expected values. Fields which are shaded are optional. Note that the reply is always sent out of the same port as the command was received on. The Source Path Address should not include the output port of the router being commanded as the reply will be automatically sent out of the same port that the command arrived on. See section 7.6.8.

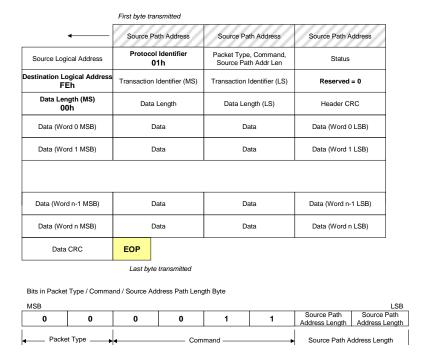


Figure 7-6 Read Incrementing Address Reply Packet Format

Table 7-10 Read Incrementing Address Reply Packet Fields			
Field	Description	Bytes	
Source	Optional source path addresses specified in the command packet. If no source	0-12	
Path	path addresses are specified then the first byte will be the source logical		
Address	address.		
Source	The source logical address specified in the command packet. If source path	1	
Logical	addresses are not used then the source logical address is the address of the		
Address	return packet.		
Protocol	The RMAP protocol identifier value 01h.	1	
Identifier			

User Manual

Ref.: UoD_SpW-10X_

UserManual

3.5 Issue:

7th January 2015 Date:

Command	Read incrementing address reply command byte. The packet type bits in the	1
Byte	command byte indicate this packet is a reply packet.	
Status	The command status is returned in this field. The command status can be	1
	command successful or an RMAP error code as defined in section 7.6.6.	
Destination	The destination logical address is set to the default value FEh as the	1
logical	SpaceWire router does not have a logical address.	
address		
Transaction	The transaction identifier identifies the command packet and reply packet with a	2
Identifier	unique number. The transaction identifier in the reply packet is copied from the	
	command packet and returned in this field, so that the command and the	
	corresponding reply have the same transaction identifier value.	
Data	The data length field is the number of bytes read from the router as specified in	3
Length	the data length field of the command packet.	
Header	The header CRC used to detect errors in the header part of the command	1
CRC	packet. See section 7.6.7 for CRC generation.	
Data	The data read from the registers in the device. The data is returned in 32 bit	>=4
	words starting from the address specified in read address in the command	
	packet.	
Data CRC	The data CRC used to detect errors in the data part of the reply packet. See	1
	section 7.6.7 for CRC generation.	

7.6.4 Read Modify Write Command

The read-modify-write command characteristics are defined in Table 7-8.

Table 7-11 Read-Modify-Write Command Characteristics				
Action	Supported/	Maximum number	Non-aligned access	
	Not Supported	of bytes	accepted	
8-bit read-modify-write	NS	-	-	
16-bit read-modify-write	NS	-	-	

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

32-bit read-modify-write	S	4	No	
64-bit read-modify-write	NS	-	-	
Word or byte address	32-bit aligned			
Accepted Logical Addresses	0xFE			
Accepted destination keys	0x20 at power on			
Accepted address ranges	0x00 0000 0000 – 0x00 0000 0109			
Incrementing address	No			

The RMAP read-modify-write command is supported by the SpaceWire router. The read modify write command is used to set or reset a single or number of bits in a router register. The Read-Modify-Write command is useful when it is desirable to set a link register setting without upsetting the other settings in one command, i.e. set the start bit without modifying the data rate.

In Figure 7-7 the first byte received by the SpaceWire router configuration logic is the port address followed by the destination logical address. Fields which are depicted in bold text are expected values. Fields which are shaded are optional.

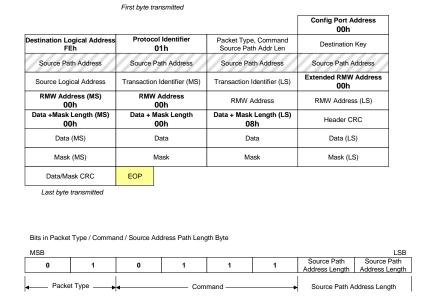


Figure 7-7 Read-Modify-Write Command Packet Format

User Manual

Issue:

Date:

Ref.:

3.5

UoD_SpW-10X_

7th January 2015

UserManual

	Table 7-12 Read-Modify-Write Command Packet Fields	
Packet Field	Description	Bytes
Config Port	The configuration port address field routes the packet to the configuration	1
Address	port of the router. The configuration port address is always present when	
	configuring the SpaceWire Router.	
Destination	The destination logical address is not used in the SpaceWire Router. The	1
Logical	SpaceWire router accepts packets which have the default destination logical	
Address	address of 254h (FEh).	
Protocol	The RMAP protocol identifier is 01h.	1
Identifier		
Command	The command byte indicates a read-modify-write command. The Source path	1
Byte	address length fields are set to the number of source path addresses	
	required as defined in section 7.6.9.	
Destination	The destination key identifier must match the contents of the destination key	1
Key	register, see section 9.5.10.	
Source	The source path address field is used to add source path addresses to the	0,4,8,16
Path	head of the reply packet. The expected number of source path addresses is	
Address	specified in the command byte. See section 7.6.9 for source path address	
	decoding.	
Source	The source logical address should be set to the logical address of the node	1
Logical	which sent the command.	
Address		
Transaction	The transaction identifier identifies the command packet and reply packet	2
Identifier	with a unique number.	
Extended	The extended read address is not used in the SpaceWire router and shall	1
RMW	always be set to zero.	
Address		
RMW	The read-modify-write address identifies the SpaceWire router register	4
Address	address to modify. Valid RMW addresses are defined in section 9.	
Data +	The data length of the read-modify-write command is 8, 4 bytes for data and	3

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

Mask	4 bytes for the mask to modify a 32-bit register.	
Length		
Header	The header CRC used to detect errors in the header part of the command	1
CRC	packet.	
Data and	The data and mask values to write to the SpaceWire router. The data is	8
Mask	written dependent on the mask as shown in Figure 7-8.	
Data and	The data and mask CRC used to detect errors in the data part of the	1
Mask CRC	command packet.	

A Read-Modify-Write command modifies the bits of a SpaceWire router register dependent on the contents of the register (Register Data), the command data (Command Data) and the command mask value (Mask) as follows:

Register Value = (Mask AND Command Data) OR (NOT Mask AND Register Data)

An example is shown below, the highlighted bits are set or reset by the command.

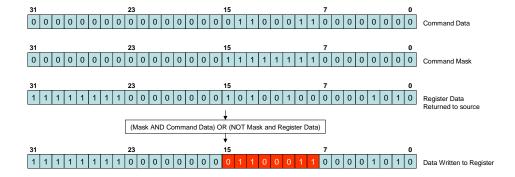


Figure 7-8 Read-Modify-Write example operation

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

In Figure 7-9 the format of the reply to a Read-Modify-Write command is illustrated. The first byte received by the SpaceWire router configuration logic is the port address followed by the destination logical address. Fields which are depicted in bold text are expected values. Fields which are shaded are optional. Note that the reply is always sent out of the same port as the command was received on. The Source Path Address should not include the output port of the router being commanded as the reply will be automatically sent out of the same port that the command arrived on. See section 7.6.8.

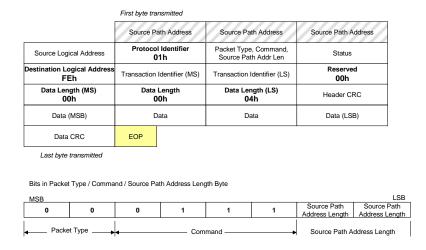


Figure 7-9 Read-Modify-Write Reply Packet Format

Table 7-13 Read-Modify-Write Reply Packet Fields				
Field	Description			
Source Path Address	Optional source path addresses specified in the command packet. If no source path addresses are specified then the first byte will be the source logical address.			
Source Logical Address	The source logical address specified in the command packet. If source path addresses are not used then the source logical address is the address of the return packet.	1		
Protocol Identifier	The RMAP protocol identifier value 01h.	1		
Command Byte Read-Modify-Write reply command byte. The packet type bits in the command byte indicate this packet is a response packet.		1		
Status The command status is returned in this field. The command status can be command successful or an RMAP error code as defined in section 7.6.6.				
Destination	The destination logical address is set to the default value FEh as the	1		

SpaceWire Router

User Manual

3.5 Issue:

Ref.:

7th January 2015 Date:

UoD_SpW-10X_ **UserManual**

logical address	SpaceWire router does not have a logical address.			
Transaction	saction The transaction identifier identifies the command packet and reply packet			
Identifier	with a unique number. The transaction identifier in the reply packet is			
	copied from the command packet and returned in this field, so that the			
	command and the corresponding reply have the same transaction			
	identifier value.			
Data Length	The data length field is set to 4 bytes as 4 bytes are returned in the	3		
	Read-Modify-Write command.			
Header CRC	The header CRC used to detect errors in the header part of the	1		
	command packet. See section 7.6.7 for CRC generation.			
Data	The data read from the SpaceWire router registers before the modify	4		
	operation is performed.			
Data CRC	The data CRC used to detect errors in the data part of the reply packet.	1		
	See section 7.6.7 for CRC generation.			

7.6.5 Write Command

The write command characteristics of the SpaceWire router are defined in Table 7-14.

Table 7-14 Write Command Characteristics						
Action	Supported/ Not Supported	Maximum number of bytes	Non-aligned access accepted			
8-bit write	NS	-	-			
16-bit write	NS	-	-			
32-bit write	S	4	No			
64-bit write	NS	-	-			
Word or byte address	32-bit aligned	I				
Accepted Logical Addresses	0xFE					
Accepted destination keys	0x20 at power on					
Accepted address ranges	0x00 0000 0000 – 0x00 0000 0109					
Incrementing address	No					

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

The RMAP write single address, with data verify and acknowledgement command is supported in the SpaceWire router. The RMAP write command is used to write a 32 bit value into one of the SpaceWire router registers.

In Figure 7-10 the first byte received by the SpaceWire router configuration logic is the port address followed by the destination logical address. Fields which are depicted in bold text are expected values. Fields which are shaded are optional.

			Config Port Address 00h
Destination Logical Address FEh	Protocol Identifier 01h	Packet Type, Command, Source Path Addr Len	Destination Key
Source Path Address	Source Path Address	Source Path Address	Source Path Address
Source Logical Address	Transaction Identifier (MS)	Transaction Identifier (LS)	Extended Write Address 00h
Write Address (MS) 00h	Write Address 00h	Write Address	Write Address (LS)
Data Length (MS) 00h	Data Length 00h	Data Length (LS) 04h	Header CRC
Data (MSB)	Data	Data	Data (LSB)
Data CRC	ЕОР	•	

Figure 7-10 Write Single Address Command Packet

Table 7-15 Write Single Address Command Packet Fields				
Field	Description	Bytes		
Config Port	The configuration port address field routes the packet to the configuration	1		
Address	port of the router. The configuration port address is always present when configuring the SpaceWire Router.			
Destination	The destination logical address is not used in the SpaceWire Router. The	1		
Logical	SpaceWire router accepts packets which have the default destination logical			
Address	address of 254h (FEh).			
Protocol	The RMAP protocol identifier is 01h.	1		
Identifier				

Issue: **3.5**

Ref.:

100dC. **0.0**

User Manual

Date: 7th January 2015

UoD_SpW-10X_

UserManual

Command	The command byte indicates a write single address, with verification and	1
Byte	acknowledgement packet. The Source path address length fields are set to	
	the number of source path addresses required as defined in section 7.6.9.	
Destination	The destination key identifier must match the contents of the destination key	1
Key	register, see section 9.5.10.	
Source	The source path address field is used to add source path addresses to the	0,4,8,12
Path	head of the reply packet. The expected number of source path addresses is	
Address	specified in the command byte. See section 7.6.9 for source path address	
	decoding.	
Source	The source logical address should be set to the logical address of the node	1
Logical	which sent the command.	
Address		
Transaction	The transaction identifier identifies the command packet and reply packet	2
Identifier	with a unique number.	
Extended	The extended write address is not used in the SpaceWire router and is	1
Write	always expected to be zero.	
Address		
Write	The write address identifies the register to write the RMAP data. The valid	4
Address	write addresses are defined in section 9.	
Data	The data length of a write single address command is expected to be 4 bytes,	3
Length	to write to a 32 bit register location	
Header	The header CRC is the eight bit CRC code used to detect errors in the	1
CRC	command packet. The CRC code is checked before the command is	
	executed	
Data	The 32 bit data value to write to the SpaceWire router register.	4
Data CRC	The data CRC used to detect errors in the data part of the command packet.	1

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

In Figure 7-11 the format of the reply to a write command is illustrated. The first byte sent by the SpaceWire router configuration logic is the port address followed by the destination logical address. Fields which are depicted in bold text are expected values. Fields which are shaded are optional. Note that the reply is always sent out of the same port as the command was received on. The Source Path Address should not include the output port of the router being commanded as the reply will be automatically sent out of the same port that the command arrived on. See section 7.6.8.

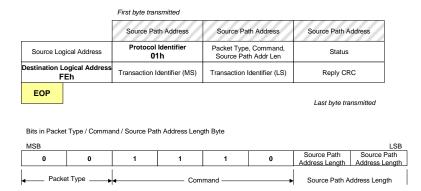


Figure 7-11 Write Single Address Reply Packet

	Table 7-16 Write Single Address Reply Packet Fields			
Field	Description	Bytes		
Source	Optional source path addresses specified in the command packet. If no source	0-12		
Path	path addresses are specified then the first byte will be the source logical			
Address	address.			
Source	The source logical address specified in the command packet. If source path	1		
Logical	addresses are not used then the source logical address is the address of the			
Address	return packet.			
Protocol	The RMAP protocol identifier value 01h.	1		
Identifier				
Command	Write single address reply command byte. The packet type bits in the command	1		
Byte	byte indicate this packet is a reply packet.			
Status	The command status is returned in this field. The command status can be	1		
	command successful or an RMAP error code as defined in section 7.6.6.			
Destination	The destination logical address is set to the default value FEh as the	1		
logical	SpaceWire router does not have a logical address.			

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

address		
Transaction	The transaction identifier identifies the command packet and reply packet with a	2
Identifier	unique number. The transaction identifier in the reply packet is copied from the	
	command packet and returned in this field, so that the command and the	
	corresponding reply have the same transaction identifier value.	
Header	The header CRC used to detect errors in the header part of the command	1
CRC	packet. See section 7.6.7 for CRC generation.	

7.6.6 Command Error Response

A summary of the error conditions and the action taken is given in Table 7-17. The error conditions are recorded in the configuration port status register.

Table 7-17 Configuration Port Errors Summary				
Register Bits	Description	Reply Packet	Returned As	Returned RMAP Status Code
Invalid Header CRC	The header CRC was invalid therefore the header is corrupted	No	No Reply Packet.	-
Unsupported Protocol Error	The protocol byte is not the RMAP protocol identifier	No	No Reply Packet.	-
Source Logical Address Error	The source logical address is invalid (outside the range 20h-FFh)	No	No Reply Packet.	-
Source Path Address Sequence Error	The source path address sequence is invalid as specified in section 7.6.9	No	No Reply Packet.	-
Unused RMAP command or packet type	The command code is an unused command code or the packet type is invalid.	Yes	Unused RMAP command or packet type	2
Invalid Destination Key	The destination key in the command packet is invalid.	Yes	Invalid Destination Key	3
Invalid Data CRC	The Data CRC is invalid therefore the data part of the	Yes	Invalid Data CRC	4

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

	packet is corrupted			
Early EOP	The command packet was terminated early with an EOP. A reply packet is sent if the early EOP error occurs on the data part of the packet	Yes	Early EOP	5
Cargo too Large	The expected amount of SpaceWire cargo has been received without receiving an EOP marker	Yes	Cargo too large	6
Early EEP	The command packet was terminated early with an EEP. A reply packet is sent if the early EEP error occurs on the data part of the packet	Yes	Early EEP	7
Verify Buffer Overrun Error	The data length field is invalid when performing a verified write command. The valid length is 4 bytes of data.	Yes	Verify Buffer Overrun	9
Command not implemented	A command code was received which is not supported by the SpaceWire router. Supported command codes are listed in F1-18.	Yes	RMAP Command not implemented or not authorised	10
Invalid Data Length	The data length field is invalid. A data length error is recorded when: 1. The data length is not a multiple of 4. 2. The data length is zero 3. The data length is outside the range 4- 1064 when performing an incrementing read 4. The data length is not 4 in a verified write	Yes	RMAP Command not implemented or not authorised (ote 1: a Verify Buffer Overrun error shall be returned when the data length is not 4 in a verified write command. Note 2: a Read Modify Write Data Length error shall be returned when the data length is not 8.	10

User Manual

Ref.: UoD SpW-10X

UserManual

Issue: 3.5

7th January 2015 Date:

	command. 5. The data length is not 8 in a read modify write command.			
Invalid Register Address	The address field is addressing an unknown register for a read command or a read only register in a write command.	Yes	RMAP Command not implemented or not authorised	10
Read Modify Write Data Length Error	The read modify write data length is not 8	Yes	RMW Data Length Error	11
Invalid Destination Logical Address	The destination logical address is invalid. The destination logical address is expected to be the default 254 value	Yes	Invalid Destination Logical Address	12

7.6.7 Command Packet Cyclic Redundancy Check

The header and data part of an RMAP packet are protected from errors by the use of an 8 bit CRC code. The header and data CRC is formed using the CRC-8 code used in ATM (Asynchronous Transfer Mechanism). CRC-8 has the polynomial: $X^8 + X^2 + X^1 + 1$ with a starting value of 00h.

Command packets received by the SpaceWire router which have an invalid header CRC are discarded and the Invalid Header CRC bit is set in the configuration port register.

7.6.8 Local Source Path Address

The configuration reply packet shall be routed out of the router port the packet arrived on. For example, if SpaceWire port 1 passed a configuration command to the configuration port then the reply packet is returned to port 1.

7.6.9 Source Path Address Field

The RMAP command field "source path address length" indicates the number of source path addresses which are expected in the packet. Up to 12 source path addresses can be accepted by the router configuration port. The source path addresses shall be decoded by the SpaceWire router as follows.

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

- Leading zero source path address bytes are not returned in the RMAP reply packet.
- If the source path address contains only zero bytes the Source Path Address Sequence error is reported, see section 7.6.6.
- After the first non zero byte in the packet any following zeros shall be treated as an error. A source path address sequence is reported, see section 7.6.6.

The table below gives some examples of how to set the source path address length and packet address fields for the required path addresses

Table 7-18 Source Path Address Reference Table				
Source Path Address	RMAP Source Path Address fields	Reply Path Address		
Length	(First→Last Transmitted)	(First→Last Reply)		
0	None	None		
1	[00 00 00 20]	20		
1	[00 02 08 09]	02 08 09		
1	[01 02 03 04]	01 02 03 04		
2	[00 00 00 00] [00 00 00 02]	02		
2	[00 00 00 00] [01 02 03 02]	01 02 03 02		
2	[00 00 12 01] [02 B2 03 05]	12 01 02 B2 03 05		
2	[00 32 01 02] [07 02 05 08]	32 01 02 07 02 05 08		
1	[00 00 00 00]	Invalid		
2	[00 00 00 00] [00 00 00 00]	Invalid		
1	[00 02 00 01]	Invalid		
1	[00 A3 00 00]	Invalid		
2	[00 02 03 00] [01 00 00 00]	Invalid		
2	[00 00 00 02] [00 00 01 00]	Invalid		
2	[00 00 00 00] [02 03 00 01]	Invalid		

Figure 7-12 and Figure 7-13 illustrate how source path addresses are returned in relation to the RMAP packet description.

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

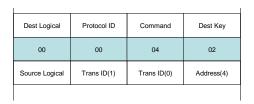


Figure 7-12 Source Path Address field decoding

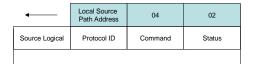


Figure 7-13 Source Path Addresses in Reply Packet

7.6.10 Command Packet Fill Bytes

The Configuration port accepts packets which are addressed to port 0. In the RMAP command the next byte after the destination address 0 is the destination logical address byte (which in the router is expected to be the default 254 value). The format is shown in Figure 7-14.

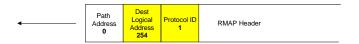


Figure 7-14 Normal Configuration Packet Header Structure

To allow source nodes which have a 16, 24 or 32 bit access port then the configuration port accepts up to three null bytes at the start of the packet. The null bytes must be zero otherwise they will be treated as the destination logical address and an invalid destination logical address shall be recorded if the byte is not 254. The header with fill bytes is shown in the Figure 7-15.

Figure 7-15 Fill Bytes Configuration Header Structure

Note that the command packet fill bytes feature is specific to the SpW-10X router and is not part of the RMAP standard.

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

8. CONTROL LOGIC AND OPERATIONAL MODES

In this section the SpaceWire router control logic and operational modes are defined. The router control logic determines how the SpaceWire link ports operate, how received packets are routed to their destination and how the timeout mechanism detects packet blockages in the router.

8.1 SPACEWIRE LINK CONTROL

Each of the eight SpaceWire links has an associated SpaceWire control register. The register records status information from each link including link error information, link state and run status (see section 9.4.3).

The SpaceWire link control bits determine how the SpaceWire link operates. The link control bits are Auto-start (default), Link-Start, Link-Disable and Deactivate. The SpaceWire link data rate divider can also be set in the link control register.

The following paragraphs define each of the link control functions

8.1.1 Default operating mode

The default operating mode is Auto-Start. This is the mode setting for each link after power on or reset.

8.1.2 Auto-Start

In auto-start mode the SpaceWire port will remain inactive until a connection attempt is made by the SpaceWire device at the other end of the SpaceWire link. The port will then start-up and make the connection

The Auto-Start mode in conjunction with the automatic Link-Start and disable modes can help reduce power consumption by only activating SpaceWire links when packet data is transferred. See section 0.

8.1.3 Link-Start

The link-start control bit commands the SpaceWire port to try to make a connection with a SpaceWire device at the other end of the link. Assuming a SpaceWire device is connected to the other end of the link the SpaceWire port will move to state Run. Data transfer can take place when the link is started and the Link state is Run.

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

8.1.4 Link-Disable

The SpaceWire port can be disabled therefore rendering the link unusable. When a SpaceWire link which is running is disabled it will disconnect from the far end and refuse connection attempts by the far end of the link. Caution should be used when using this command for a stand alone router as disabling all the links will leave the router unusable, except through a reset operation.

WARNING

If the link that is being used to configure the router is disabled then it will not be possible to configure the router, unless there is another not disabled connection that can be used.

8.1.5 Automatic deactivate driver mode

The SpaceWire port deactivate bit can be set to cause the data and strobe outputs for the link to be deactivated when the port is inactive. The deactivate mode takes effect dependent on the state of the Auto-start and the Link-Disabled control bits in the SpaceWire port control register (see section 9.4.3) and on the Enable Start on Request bit in the router control register (see section 9.5.3).

When Auto-start is enabled and the deactivate bit is set then the data and strobe LVDS drivers are deactivated until the interface receives a connection attempt by an external SpaceWire device. The drivers are then enabled until the external device disconnects the link or the SpaceWire link control bit setup is changed.

When Start on Request is enabled and the deactivate bit is set the LVDS drivers are deactivated until a request is made from within the router to send data out of the SpaceWire port with deactivated output drivers i.e. a packet arriving at another port is addressed to be routed out of the SpaceWire port with deactivated outputs. The drivers are enabled and the SpaceWire port will attempt to make a connection with the other end of the SpaceWire link.

When Link-disable is asserted and the deactivate bit is set then the data and strobe LVDS drivers are always deactivated as the link is not in use.

The figure below shows the effect of the deactivate bit when the link setting is Auto-start only.

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

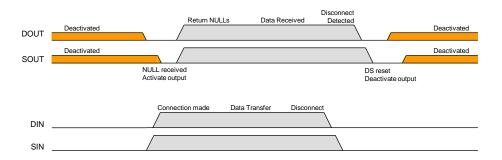


Figure 8-1 Deactivate driver operating mode

Note the DOUT deactivate driver/disable is performed one CLK cycle before the SOUT deactivate, avoiding any simultaneous transitions on Data or Strobe.

When the LVDS drivers are deactivated the equivalent circuit of these outputs is a shown in Figure 8-2.

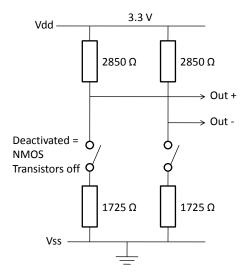


Figure 8-2 Deactivated LDVS driver output

When external bias resistors are being used (see section 5.2.2) and a deactivated LVDS output is connected to a powered LVDS input with external bias resistors the equivalent circuit is as shown in Figure 8-3.

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

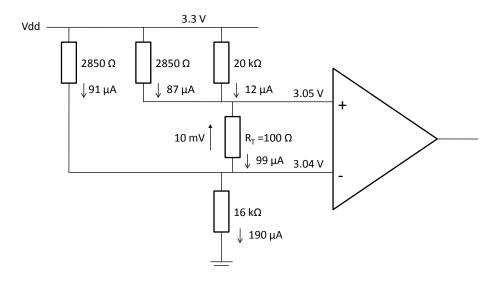


Figure 8-3 Deactivated LDVS driver output connected to external bias network on LVDS input

Current can now flow from the 3.3 volt supply to ground. When the bias resistors for 10mV noise margin are used, the total current flowing out of the LVDS outputs is around 200 μA as illustrated in Figure 8-3

WARNING

The deactivate mode (see also section 9.4.3) does not tri-state the LVDS outputs. The LVDS outputs are cold-sparing and when disabled both outputs in an LVDS differential pair are pulled up to 3.3V and have an impedance of the order of 1 kohm. Since they are differential outputs and are both are at the same voltage no current will flow. If, however, external noise bias resistors are being used then a small current (around 200 μ A, 0.7 mW power) can flow. This is substantially less than the normal operating current of LVDS outputs and hence saves power.

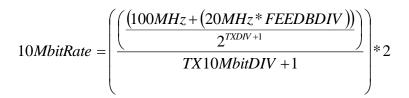
8.1.6 Setting the SpaceWire port transmit data rate

The SpaceWire port transmit data rate is dependent on the input signal FEEDBDIV (See section 5.1), the PLL output clock divider value TXDIV (See section 9.5.9) and the data rate divider value TXRATE in each SpaceWire link control register (See section 9.4.3). The resultant data rate is determined by the function.

$$DataRate = \left(\frac{\left(\frac{(100MHz + (20MHz * FEEDBDIV))}{2^{TXDIV + 1}}\right)}{TXRATE + 1}\right) * 2$$

The output of the PLL is also used to provide the 10 Mbits/s transmit clock used during SpaceWire link initialisation.

SpaceWire Router


User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

To provide a SpaceWire signal with a nominal 50/50 duty cycle, TXRATE and TX10MbitDIV should be even integers.

Not all values of FEEDBDIV, TXDIV and TXRATE give valid clock signals. Table 8-1shows the recommended values to use to achieve a range of SpaceWire transmit data rates.

Initialisation **TX10MBITDIV TXRATE** FEEDBDIV **Data Rate TXDIV** 0 1 2 3 4 5 6 7 8 9 10 Data Duty Rate Cycle [1:1] [1:1] [3:5] [1:1] [5:7] [7:9] [1:1] [9:11] [1:1] [1:3] [1:1] 5 19 200.0 100.0 66.67 50.0 40.0 33.33 28.57 25.0 22.22 20.0 18.18 10.000 [19:21] 4 0 17 180.0 90.0 60.0 45.0 36.0 30.0 25.71 22.5 20.0 18.0 16.36 10.000 [17:19] 3 0 15 160.0 80.0 53.33 40.0 32.0 26.67 22.86 20.0 17.78 16.0 14.55 10.000 [15:17] 140.0 70.0 46.67 35.0 28.0 23.33 20.0 17.5 15.56 14.0 12.73 10.000 [13:15] 2 0 13 120.0 60.0 40.0 30.0 24.0 20.0 17.14 15.0 13.33 12.0 10.91 10.000 [11:13] 1 0 11 25.0 20.0 16.67 14.29 12.5 0 0 9 100.0 50.0 33.33 11.11 10.0 9.09 10.000 [9:11] 9 100.0 33.33 25.0 20.0 16.67 14.29 12.5 11.11 10.0 9.09 10.000 [9:11] 5 1 50.0 1 90.0 45.0 30.0 22.5 18.0 15.0 12.86 11.25 10.0 9.0 8.18 10.000 4 8 [1:1]16.0 13.33 7.27 10.000 3 1 7 80.0 40.0 26.67 20.0 11.43 10.0 8.89 8.0 [7:9] 23.33 14.0 11.67 7.78 1 70.0 35.0 17.5 10.0 8.75 7.0 6.36 10.000 [1:1]2 6 60.0 30.0 20.0 15.0 12.0 10.0 8.57 6.67 6.0 5.45 10.000 1 1 5 7.5 [5:7] 5.56 4.55 1 4 50.0 25.0 16.67 12.5 10.0 8.33 7.14 6.25 5.0 10.000 [1:1] 0 5 2 50.0 25.0 16.67 12.5 10.0 8.33 7.14 6.25 5.56 5.0 4.55 10.000 [1:1] 2 4 45.0 22.5 15.0 11.25 9.0 7.5 6.43 5.63 5.0 4.5 4.09 9.000 4 [1:1] 3 2 3 40.0 20.0 13.33 10.0 8.0 6.67 5.71 5.0 4.44 4.0 3.64 10.000 [3:5] 2 2 2 35.0 17.5 11.67 8.75 7.0 5.83 5.0 4.38 3.89 3.5 3.18 11.667 [1:1] 1 2 2 30.0 15.0 10.0 7.5 6.0 5.0 4.29 3.75 3.33 3.0 2.73 10.000 [1:1] 25.0 12.5 8.33 6.25 5.0 4.17 3.57 3.13 2.78 2.5 2.27 8.333 0 2 2 [1:1]

Table 8-1 Setting SpaceWire Transmit Data Rate

In Table 8-1 the values with a white background are the values that should be used. The values which are shaded red should not be used.

The first three columns give settings for the FEEDBDIV pins on the SpW-10X device, the TXDIV field in the transmit clock register (see section 9.5.9) and the TX10MbitDIV field also in the transmit clock register.

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

The columns header TXRATE give the SpaceWire transmit data rate obtained for various settings of the TXRATE field in a SpaceWire port control register. The duty cycle of the SpaceWire data rate clock is given in the row immediately underneath the TXRATE values. If the duty cycle is not 1:1 then one bit period will be shorter than the next, as for the 10 Mbits/s data rate. Again permitting a maximum 10% variation in the bit periods allows a worst case duty cycle of 9:11. The valid transmit data rate values which have corresponding valid 10Mbits/s data rate values have a white background in the table. The TXRATE divider is actually a 7-bit field so there are many more possible columns under TXRATE. All of these TXRATE columns would give valid transmit data rates. The values for these additional columns can be calculated using the formulae given above.

The Initialisation Data Rate columns of the table give the frequency of the 10 Mbits/s clock used during initialisation and the duty cycle of adjacent bit periods.. The data rate must be in the range 9-11 Mbits/s. The actual 10 Mbits/s data rate is produced from a 5 MHz clock signal using double data rate outputs to save power. The duty cycle column gives the duty cycle of the 5 MHz start up data/strobe clock. If this is not 1:1 then one data bit period will be shorter than the next data bit period. This can reduce skew tolerance and hence the maximum operating speed of the SpaceWire ports. Taking a limit of 10% of the bit period allows the use of 10Mbit/s clocks with a duty cycle of 9:11 as the worst case. The corresponding setting for the TX10MbitDIV field in the transmit clock register (see section 9.5.9) is given in the third column. Only the rows with valid Initialisation data rate and duty cycle should be used.

The following steps should be followed to set a particular transmit data rate using values from Table 8-1:

- Select the required SpaceWire transmit data rate from Table 8-1.Only values with a white background in the table should be used. Values with a red/shaded background should not be used.
- 2. Set the FEEDBDIV pins on the SpW-10X device to the corresponding value in Table 8-1.
- 3. Set the TXDIV and TX10MbitDIV fields in the transmit clock control register (see section 9.5.9) using values from Table 8-1. Normally this would be done once after reset.
- 4. Set the required transmit data-rate of each link individually using the Transmit Rate (TXRATE) field of the SpaceWire port control registers (see 9.4.3). The values to use for these fields should be taken from Table 8-1 corresponding to one of the white background entries. If the transmit data rate of a SpaceWire port is to be changed frequently it should be done using the TXRATE divider.

Note that the SpW-10X device will not allow a TXDIV and TXRATE to be set to give a transmit data rate below 2 Mbits/s.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

8.2 GLOBAL SPACEWIRE LINK CONTROL

The following modes are global to all SpaceWire links. The modes can be set in the SpaceWire router control register (see section 9.5.3).

8.2.1 Start on request mode

The Start on Request mode is enabled by setting the CFG_START_ON_REQ bit in the router control register. The input signal POR_START_ON_REQ_N determines the power on or reset state of the CFG_START_ON_REQ bit.

When a SpaceWire packet is received which is to be routed out of a SpaceWire port that is not running it would normally be discarded. If the Start on Request mode is enabled instead of discarding the packet the SpaceWire port will attempt to make a connection with the other end of the link. If a connection can be made then the packet is forwarded on towards its destination. This is illustrated in Figure 8-4. This mode allows the SpaceWire ports to be started automatically when there is data to send. This can be used together with output deactivate to save power.

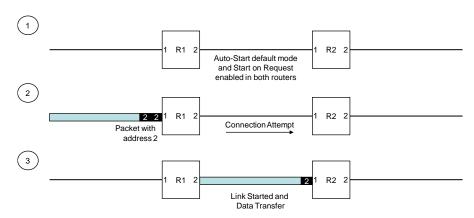


Figure 8-4 Start on Request mode

8.2.2 Disable on Silence mode

The Disable on Silence mode is enabled by setting the CFG_DISABLE_ON_SILENCE bit in the router control register. The input signal POR_DISABLE_ON_SILENCE_N determines the power on or reset state of the CFG_DISABLE_ON_SILENCE bit.

Figure 8-5 illustrates operation in the Disable on Silence mode.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

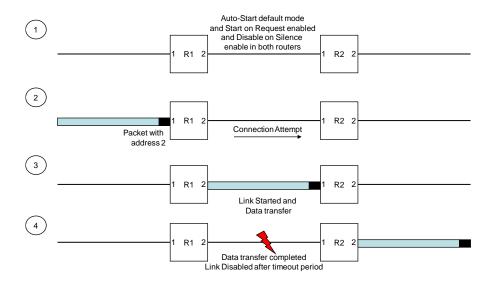


Figure 8-5 Disable on Silence mode

The SpaceWire router Disable on Silence mode is used to disable a SpaceWire link when it no longer has any data to transfer. The Disable on Silence mode is enabled only when the router timeouts are enabled. The SpaceWire port is disabled if no data or end of packet character has been transmitted for the timeout period set in the router control register.

The SpaceWire router will only disable a SpaceWire port when the SpaceWire router is the source of the data transfer. If an external device starts the SpaceWire link or sends packet data to the router through the link then the link will not be disabled.

8.3 CONTROL LOGIC AND ROUTING

This section describes the operation of the SpaceWire routing logic and how packets are handled for different modes of operation of the router. The following control bits in the router control register affect the router operating mode: Timeout Enable, Enable Disable on Silence, Enable Start on Request and Enable self-addressing.

8.3.1 Packet address error

When a packet with an invalid address, see section 7.4, is received the packet is discarded by the router. The router is ready to receive the next packet as soon as the invalid address packet has been spilt.

8.3.2 Arbitration

Arbitration is performed by the SpaceWire router when two or more packets are to be routed through the same destination port. The router chooses the next packet to be routed to a particular output port

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

dependent on the previous input port which had access to that output port. The next input port to transfer data to an output port is the next highest port number (modulo number of ports) that has data to send. Thus the input port which previously had access to the output port will be selected last by the router control logic. For example, if input port 2 is transferring data to output port 1 and input ports 5 and 7 are waiting to transfer data to port 1, then port 5 will selected next.

Packets which have high priority are always selected before low priority packets in the router. If two or more packets of the same priority level are attempting to use the same destination port then the packets are arbitrated in a fair manner.

Note that router configuration packets, both commands and replies, are treated the same as any other packet as far as arbitration is concerned. The arbitration scheme is equally applicable to all types of packets with no exceptions. When sending long packets, arbitration can cause substantial delays in transferring information.

The following sub-sections illustrate the various scenarios where arbitration is necessary.

8.3.2.1 Arbitration of packets with matching priority (1)

In the Figure 8-6 an example of arbitrating between packets with the same priority is illustrated. Only router ports 1-5 are shown for clarity.

At stage one input ports 1 and 3 have packets to be routed to output port 5. The previous input port to use output port 5 was input port 3 therefore the next input port to be selected by output port 5 will be input port 1 (assuming input ports 6, 7, 8, 9, 10 and 0 are not requesting to use output port 5).

At stage two the router selects the packet arriving at input port 1 and the packet is routed through output port 5. Input port 3 waits until all of the packet from input port 1 has been transferred.

At stage three the complete packet has been transferred from input port 1. Now input port 3 is able to transfer its packet to output port 5.

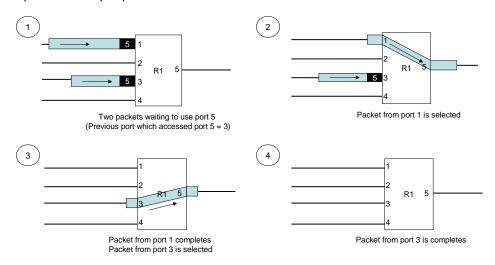


Figure 8-6 Arbitration of two packets with matching priority.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

8.3.2.2 Arbitration of packets with matching priority (2)

In the Figure 8-7 another example of arbitrating between packets with the same priority is illustrated. Again only router ports 1-5 are shown for clarity.

At stage one input ports 1 and 3 have packets to be routed to output port 5. The previous input port to use output port 5 was input port 3 therefore the next input port to be selected by output port 5 will be input port 1 (assuming input ports 6, 7, 8, 9, 10 and 0 are not requesting to use the port).

At stage two the router selects the packet at input port 1 and a packet is routed to output port 5. Input port 3 waits until the complete packet has been transferred. While the packet from input port 1 is being transferred to output port 5 another packet arrives at input port 2 to be routed to output port 5.

At stage three the packet from input port 1 has been forwarded and the packet from input port 2 is selected by the router to be routed through output port 5. Input port two is selected before input port 3 as it is the next input port to be considered by the routing control logic after input port 1.

At stage four p the complete packet has been transferred from input port 2. Now input port 3 is able to transfer its packet to output port 5.

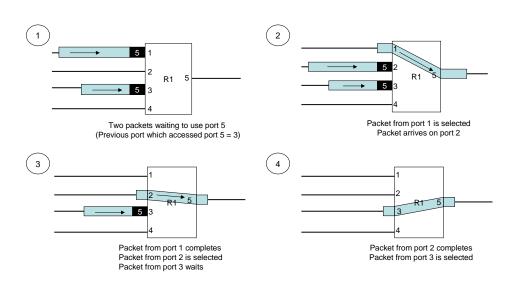


Figure 8-7 Arbitration of three packets with matching priority

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

8.3.2.3 Arbitration of packets with different priority (1)

In the Figure 8-8 arbitration of packets with different priority is illustrated. Only router ports 1-5 are shown for clarity.

At stage one input ports 1 and 3 have packets with logical addresses 80 and 52 respectively, which are both to be routed to output port 5. Logical address 80 is high priority and 52 low priority.

At stage two the previous input port selected by output port 5 was input port 2 but since input port 1 has a packet waiting with logical address 80 which is high priority, input port 1 will be selected first and the packet with logical address 80 transferred to output port 5.

At stage three the high priority packet with logical address from input port 1 has been transferred and the remaining low priority packet from input port 3 is selected by the router to be transferred to output port 5.

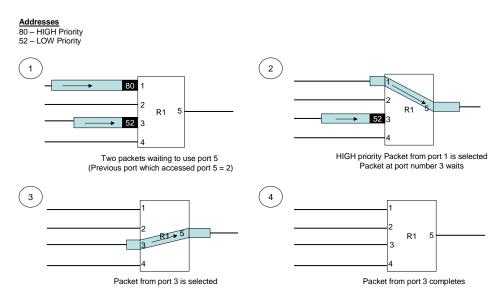


Figure 8-8 Arbitration of two packets with different priority (1)

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

8.3.2.4 Arbitration of packets with different priority (2)

In Figure 8-8 another example of arbitration of packets with different priority is illustrated. Only router ports 1-5 are shown for clarity.

At stage one input ports 1 and 3 have packets with logical addresses 80 and 52 respectively, which are both to be routed to output port 5. Logical address 80 is high priority and 52 low priority. Input port 4 has just finished transferring a packet to output port 5.

At stage two the previous port selected by output port 5 was input port 4 therefore the high priority packet waiting at input port 1 which has logical address 80 is selected and its packet transferred to output port5. In the meantime a packet with high priority logical address 80 arrives at input port 4.

At stage three the packet from input port 1 has been forwarded and the packet with HIGH priority at input port 4 is selected by the routing control logic as the next packet to be routed to output port 5. In the meantime a packet with low priority logical address 52 arrives at input port 4.

At stage number four the high priority packet from input port 4 has been forwarded and the routing control logic arbitrates again for access to output port 5. There are no high priority packets waiting to use output port 5 so the low priority packets that are waiting are considered. The previous low priority packet that was routed through output port 5 was from input port 1, therefore the next packet selected by the routing control logic is the one from input port 3.

At stage number five the packet from input port 3 has completed and the low priority packet waiting at input port 1 gets its chance to access output port 5 and is forwarded.

Note that low priority packets will not be routed until there are no more high priority packets waiting to be routed to the same output port. Therefore, in the situation when there is a high volume of high priority traffic coming from multiple ports, a low priority packet could never get the chance to be routed. This low priority packet would never timeout even when timeout is enabled, thus blocking the link indefinitely. If the tail of this packet goes through another SpW-10X router, this other router will timeout and spill the tail of the router.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

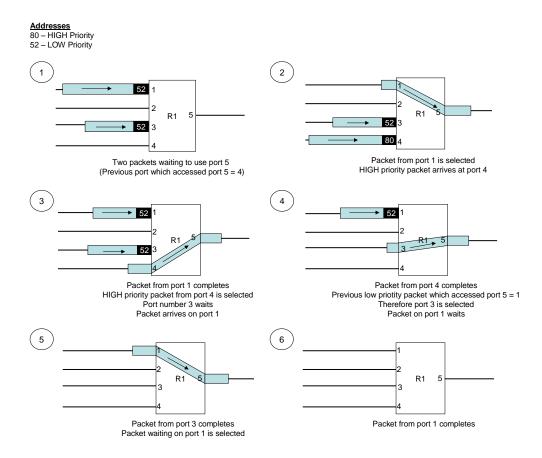


Figure 8-9 Arbitration of two packets with different priority (2)

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

8.3.3 Group Adaptive Routing

The SpaceWire router routing table can be set up to support group adaptive routing of packets. Setting the routing table contents is described in section 9.3.

In group adaptive routing a set of output ports can be assigned to a logical address. When a packet arrives with the logical address the routing table is checked for the set of output ports which the packet can use. The routing control logic then checks the possible router output ports to determine if any of them are free and ready to use. As soon as one of the possible output ports associated with the logical address of the packet is free and ready to use then the packet is routed through that output port. If all the set of output ports which the logical address packet can use are free then the router chooses the lowest numerical output port number to route the packet.

Arbitration is performed on group adaptive routing packets as defined in section 8.3.2.

The following sub-section consider various situations that can occur during group adaptive routing.

8.3.3.1 Normal Group adaptive routing

In normal group adaptive routing the lowest numerical output port in the group that is ready to use is used to transfer the packet. This is illustrated in Figure 8-10.

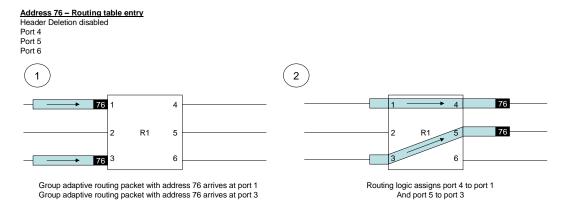


Figure 8-10 Normal group adaptive routing

8.3.3.2 Group adaptive routing when busy

The situation when some of the output ports in group are busy is illustrated in Figure 8-11. Logical address 76 has group adaptive routing set up so that packets with that address can use output ports 4, 5 or 6. In Figure 8-11 output ports 4 and 5 are busy, and port 6 is not being used. When a packet with logical address 76 arrives at input port 1 it is routed immediately to output port 6.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

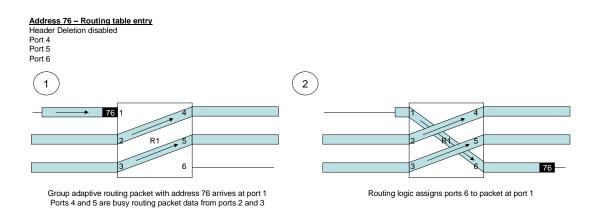


Figure 8-11 Group adaptive routing when other ports busy

8.3.3.3 Group adaptive routing when ports not ready

A similar arrangement to that of section 8.3.3.2 is shown in Figure 8-12. In this scenario, two of the output ports which address 76 can use are not ready for use (i.e. the links are not running). The packet is routed to output port 6 since it is running and not being used to route another packet.

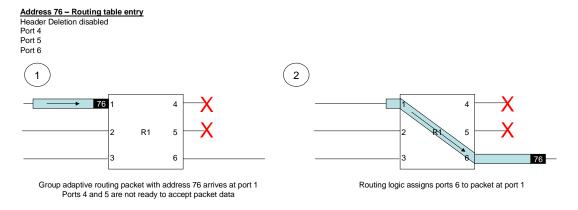


Figure 8-12 Group adaptive routing when ports not ready

Note: if the Start on Request mode is enabled, the output ports in the group that are not ready will attempt to make a connection. The packet will be routed to the output port in the group that is ready first.

8.3.4 Loop-back with Self-Addressing

The Enable Self-Addressing bit in the router control register determines if the router is to support loop-back connections. Loop-back connections can be useful for debugging or ping operations where a packet is "bounced" of the router and returned to the source. If the Enable Self-Addressing bit is clear

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

Date: 7th January 2015

then a packet that that is addressed to go out of the same port that it arrived on will be discarded and a packet address error recorded.

Command reply packets which are returned through the same port they arrived on are not affected by the value of the Enable Self-Addressing bit.

Figure 8-13 shows the Enable Self-Addressing mode when enabled and when disabled.

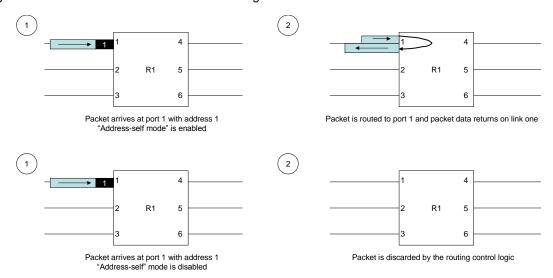


Figure 8-13 Packet Self-Addressing mode

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

8.3.5 Packet Blocking

The Time-Out Enable bit (bit 0) of the router control register enables the watchdog timers on the ports. When this bit is set and the watchdog timers are enabled the router is in "Watchdog Timer" mode. When it is clear and the watchdog timers are disable then the router is in the "Blocking Allowed" mode.

In Blocking Allowed mode packets wait indefinitely on other packets to complete. An exception to this is when an output port that a packet is to be routed to is a SpaceWire port and that port is not started. In this case the packet waits as long as the timeout period and is then discarded if the output port has not started. If group adaptive routing is being used and at least one of the destination ports is running then the packet will wait indefinitely for that output port to become free or another one in the group to start.

In Watchdog Timer mode watchdog timers on the ports are used to clear packets from the network if they become blocked, either while being routed or while waiting on a port which is not granted to any other port. The watchdog timers are restarted every time a data character is transferred. They are stopped after an EOP and started again on the first data character of a packet. In this way the time to transfer a complete packet is not checked but instead the watchdog timers check if a packet has blocked (i.e. no data transfers).

A blocked packet is spilt by terminating the packet at the router output port with an EEP and spilling the remainder of the packet to be transmitted up to and including the EOP at the router input port. If the router output port is blocked (full) and cannot accept data then the EEP is added after the port is unblocked.

WARNING

Blocking Allowed mode is not recommended and should be used with caution.

When Blocking Allowed mode is used (Watchdog timers disabled) then it is important that provision is made for a network manager to detect blocking situations and to reset the nodes or routers causing the problem.

The various ways in which an input port can become blocked and the resulting actions taken by the router are considered in the following sub-sections:

8.3.5.1 Blocked destination

In a blocked destination scenario data cannot be transmitted to the destination port because there is no more transmit credit (no more FCTs received) in a SpaceWire port or an external port output FIFO has become full. Since the destination node is blocked the packet data is left strung out across the SpaceWire network from the packet source to the blockage. In this situation the tail of the packet is distributed across multiple routers and other network paths can become blocked waiting on the original blocked packet to complete.

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

In blocking allowed mode the network path is blocked until the destination node starts to accept data again. Packets waiting to use the network path will wait indefinitely.

In watchdog timer mode the router will timeout and the network path will be cleared so other packets can use the path.

Blocking Allowed Mode

What happens when Blocking Allowed mode is being used and a destination node becomes blocked is illustrated in Figure 8-14 to Figure 8-16. In this example two routing switches, R1 and R2, are connected to form a network and only SpaceWire ports 1 to 6 are shown for clarity.

a) A packet arrives at port 3 of routing switch R1 destined for port 4 and then port 5 of R2 (as shown by the path address 4, 5 at the head of the packet.

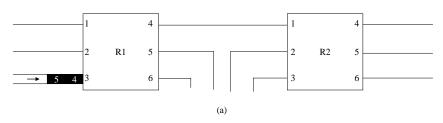


Figure 8-14 Destination Node Blocked (a)

b) The packet is routed towards its destination but during packet transfer the destination stalls and does not accept any more data. The network path is blocked and the packet waiting at R1 port 2 is also blocked

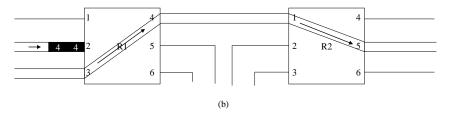


Figure 8-15 Destination Node Blocked (b)

c) The path between routing switch R1 port 4 and routing switch R2 port 1 is now blocked. While the first packet is routed another packet arrives at port 2 on router R1 with destination port 4 on router R1 and destination port 4 on router R2. The packet must wait as the ports are currently busy and can only be routed if the downstream node starts receiving data again.

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

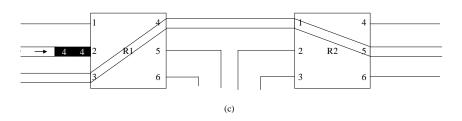


Figure 8-16 Destination Node Blocked (c)

Watchdog timer mode

What happens when the routers are in Watchdog Timer mode and a destination becomes blocked is illustrated in Figure 8-17to Figure 8-20. Only SpaceWire ports 1 to 6 are shown for clarity.

a) A packet arrives at port 3 of routing switch R1 destined for port 4 and then port 5 of R2

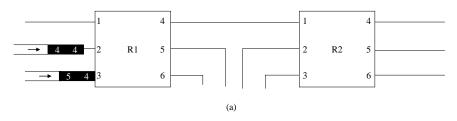


Figure 8-17 Destination Node Blocked: Watchdog Mode (a)

b) The packet is routed towards its destination but during packet transfer the destination stalls and does not accept further data. The network path is blocked and the packet waiting at R1 port 2 is also blocked

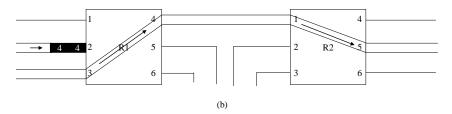


Figure 8-18 Destination Node Blocked: Watchdog Mode (b)

c) At routing switches R1 and R2 the watchdog timers detect the packet has blocked for the specified timeout period. The packet is then discarded by the routers by spilling the data at the input port and appending an EEP to the data at the output ports. Once the packet has been removed from the network an EEP is ready to be appended to routing switch R2 port 5 when buffer space is available and the network path between routing switch R1 port 4 and routing switch R2 port 1 is available.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

Date: 7th January 2015

Figure 8-19 Destination Node Blocked: Watchdog Mode (c)

d) The packet waiting at routing switch R1 port 2 is routed and the network blockage is cleared. Routing switch R2 port 5 still has data waiting to be sent followed by the end of packet, therefore packets routed to port 5 will again cause a blockage which will be cleared again in the same manner until the fault is detected by a higher level protocol.

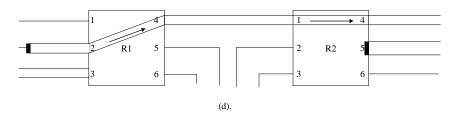


Figure 8-20 Destination Node Blocked: Watchdog Mode (d)

8.3.5.2 Stalled source

A source of a SpaceWire packet can stall for some reason and stop sending data part way through sending a packet. A router will see this situation as an input port which has stalled, no longer sending data part way through sending a packet although the SpaceWire link is still running. This situation can occur due to an error in the network or in the node that was providing data.

In blocking allowed mode the network path will be blocked until the source node supplies the end of packet. Other packets waiting to use the network path will wait indefinitely.

In watchdog timer mode the routers will timeout and the network path will be cleared so other packets can use the path.

Blocking Allowed

The sequence of events when a source is stalled and Blocking Allowed mode is being used is illustrated in Figure 8-21 to Figure 8-24.

a) A packet arrives at routing switch port 3 with destination address 4, 5 which will route to routing switch R2 port 5. Another packet arrives which is destined for routing switch R2 port 4.

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

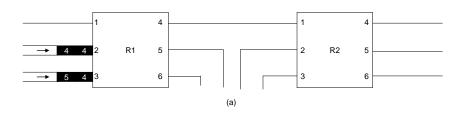


Figure 8-21 Source Node Stalled (a)

b) The packet from routing switch R1 port 3 is routed towards its destination but during packet transfer the source node stalls and does not supply any further data or the end of packet.

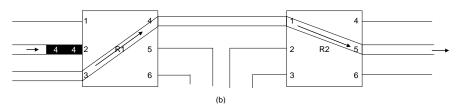


Figure 8-22 Source Node Stalled (b)

c) The packet is blocked and the packet waiting at routing switch R1 port 2 cannot be routed.

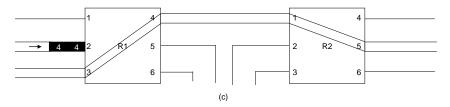


Figure 8-23 Source Node Stalled (c)

d) After an undetermined time the source node supplies the remaining data and end of packet and the packet waiting at R1-2 can be routed.

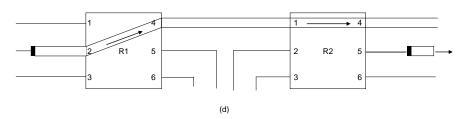


Figure 8-24 Source Node Stalled (d)

Watchdog Timer Mode

What happens when a source stalls and Watchdog Timer mode is being used is illustrated in Figure 8-25 to Figure 8-28:

a) A packet arrives at routing switch port 3 with destination address 4, 5 which will route to routing switch R2 port 5. Another packet arrives which is destined for routing switch R2 port 4.

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

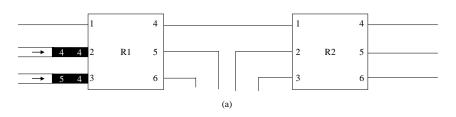


Figure 8-25 Source Node Stalled: Watchdog Mode (a)

b) The packet from routing switch R1 port 3 is routed towards its destination but during packet transfer the source node stalls and does not supply any more data or the end of packet.

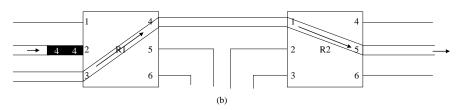


Figure 8-26 Source Node Stalled: Watchdog Mode (b)

c) The packet is blocked and the packet waiting at routing switch R1 port 2 cannot be routed. The watchdog timers in routing switches R1 and R2 detect the packet has become blocked and spills data from the input port and appends an error end of packet to the output port. This causes the network path from routing switch R1 port 4 to routing switch R2 port 1 to be cleared and the next packet can be routed.

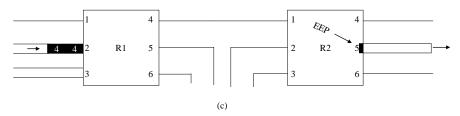


Figure 8-27 Source Node Stalled: Watchdog Mode (c)

d) The packet waiting at R1 port 2 can now be routed.

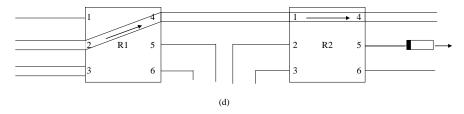


Figure 8-28 Source Node Stalled: Watchdog Mode (d)

User Manual

Ref.: UoD_SpW-10X_ UserManual

Issue: **3.5**

Date: 7th January 2015

8.3.5.3 Waiting for an output port

When a packet arrives at an input port of the SpW-10X router is has to wait to be forwarded to an output port. How long the packet waits will depend on whether the router is in Blocking Allowed or Watchdog Timer mode and on what the output ports are doing. Various situations are considered below:

In Blocking Allowed mode packets will wait indefinitely to be granted access to an output port. There is one exception to this: if the destination port is a SpaceWire port and the port is not started the packet will only wait as long as the timeout period and then the router will spill the packet. If group adaptive routing is being used and at least one of the output ports in the group is running then the packet will wait indefinitely until the running port is ready, even if one or more of the other ports are not started.

In Watchdog Timer mode there are several possible cases which are considered below.

Output port not running: If a packet arrives at an input port of the SpW-10X router and the output port that it is to be routed to is not running, the router will wait for the output port to start for the watchdog timeout period and will then spill the packet if the link has not started. If Start on Request has been enabled the router will wait for the watchdog timer timeout interval for the output port to start. The packet will be routed to the output port as soon as it starts and a connection is made. If the port does not start before the end of the timeout interval then the waiting packet will be spilt.\

Output port running and not busy: If a packet arrives at an input port on the SpW-10X router and the output port that it is to be router to is running but not currently sending a packet, then the newly arrived packet will be routed immediately.

Output port running and busy: If a packet arrives at an input port on the SpW-10X router and the output port that it is to be router to is running and currently sending a packet the newly arrived packet will <u>wait indefinitely</u> for the output port to finish sending is current packet. The waiting packet will then be sent. This approach is taken because it is clear that the output port is operational and not blocked, so the newly arrived packet will wait for the current packet to complete transfer.

Output port in a group, not running: A packet arrives at an input port of the SpW-10 router and the packet has a logical address addressing a group of possible output ports. If all of the ports in the group are not running, the router will wait for an output port to start for the watchdog timeout period and will then spill the packet if one of the links has not started. If Start on Request is enabled then the router will try to start all the ports in the group. The packet will be router to whichever port starts first. If none of the ports starts before the timeout interval has expired the packet will be spilt.

Output port in a group with one port running and not busy: If a packet arrives at an input port with a group logical address and one of the output ports in the group is running and not currently busy sending a packet, the newly arrived packet will be routed to that output port immediately.

Output port in a group with one port busy: If a packet arrives with a group logical address and one of the output ports in the group is busy sending a packet and the other output ports in the group are not running, the SpW-10X will wait indefinitely to send the packet, whether or not Start on Request is enabled. When the busy output port finished sending its packet the waiting packet will be sent.

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

WARNING

Packets can timeout and be spilled in a SpaceWire network without the destination receiving any notification of this. Packets with errors (e.g. parity error) can arrive at a destination terminated by an EEP. In a very special case it is also possible to receive an error free packet terminated by an EEP. It is important that the destination node is able to handle these cases.

User Manual

Ref.: **UoD_SpW-10X_**

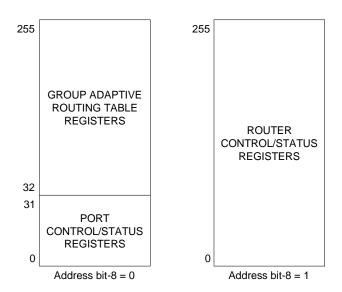
UserManual

Issue: **3.5**

Date: 7th January 2015

9. REGISTER DEFINITIONS

This section describes the internal configuration registers of the SpW-10X Router.


The following subsections contain register bit description tables which hold the following information:

- The bit numbers of each field
- A descriptive name for each field
- The reset value for each field
- · A description of what the each field in the register is used for
- An indication of whether the field is readable and/or writeable by a configuration command.

The internal register size is 32 bits unless otherwise specified in the register description. There are 263 registers in the configuration port addresses. Registers that are shorter than 32-bits or that have unused fields will return zero in all the unused bit positions when read. The unused bit positions are ignored during writing but should in any case be set to zero.

9.1 INTERNAL MEMORY MAP

The memory map for the SpaceWire Router is shown in Figure 9-1.

Figure 9-1 Router Internal Memory Map

The Group Adaptive Routing (GAR) registers map SpaceWire logical addresses 32-255 to the physical ports – SpaceWire ports or External ports. The link control/status registers are used to configure the ports and router functions and to report status information. The router control/status

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

registers allow the router management control and status information to be accessed by a network manager using configuration commands.

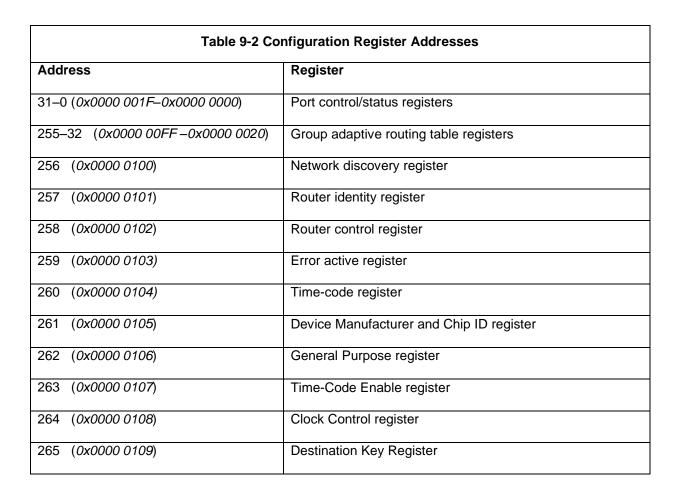
Table 9-1 provides an overview of each of the different types of register within the configuration port. Each register type is then described in detail in the following subsections.

Table 9-1 Types of Register within Configuration Port				
Register Name	Description	Address		
Group Adaptive	Allows the setting of group adaptive routing logical	32-255		
Routing Table	addresses by assigning the output ports which should be	(0x20 – 0xFF)		
Registers	accessed when a packet is received with logical address.			
Port Control/Status	Controls the Configuration, SpaceWire and External	0 – 31		
Registers	Ports. Provides the status of the ports.	(0x00 – 0x1F)		
Router Control/Status	Controls the overall operation of the router. Reports the	256-265		
Registers	router status.	(0x100 – 0x109)		

9.2 REGISTER ADDRESSES SUMMARY

Table 9-2 lists all the registers in the configuration memory space.

SpaceWire Router


User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

9.3 GROUP ADAPTIVE ROUTING TABLE REGISTERS

The Group Adaptive Routing (GAR) table is accessed through configuration memory addresses 32-255 (0x0000 0020-0x0000 00FF).

The fields in the GAR registers are illustrated in Figure 9-2.

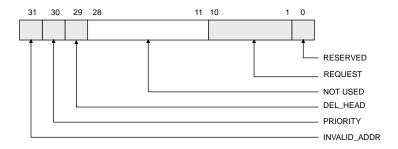


Figure 9-2 GAR Register Fields

The GAR table holds the routing table information that maps logical addresses to one or more port addresses. There is one entry (register) in the GAR table for each possible logical address. The

User Manual

Ref.: **UoD_SpW-10X_**

UserManual 3.5

Issue:

Date: 7th January 2015

configuration memory address range of the GAR table is 32-255 (0x0000 0020 – 0x0000 00FF). The configuration memory address corresponds to the logical address; hence the GAR table entry at address 39 corresponds to logical address 39.

The logical address to port mapping is held in the REQUEST field. Each bit in this field represents a physical output port; thus up to 28 possible output ports can be specified using the GAR register, although only 10 ports (plus the configuration port) are provided in the SpW-10X. The configuration port is port number 0, the SpaceWire ports are port numbers 1 to 8 and the External ports are ports 9 and 10. When a bit is set in the REQUEST field packets may be routed to the corresponding output ports. The port number corresponds to the bit position in the GAR register. For example, if configuration memory address 39 has bit 2 set then a packet with logical address 39 may be routed out of port 2. If bits 2 and 4 are both set then the packet may be routed out of either port 2 or 4. Port 0, the configuration port, is a special port which can only be accessed using address 0 so this bit position in the GAR table registers is reserved and will always be set to zero.

The DEL_HEAD bit, when set, causes the leading byte (header) of a packer to be deleted.

The PRIORITY bit determines the priority of the logical address when packets waiting at two input ports wish to use the same output port (1 = high priority, 0 = low priority).

The INVALID_ADDR bit is set to indicate that the corresponding logical address is not valid.

Table 9-3 describes each field in the GAR register.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

Table 9-3 GAR Table Register Description Address Range: 32-255 (0x0000 0020 - 0x0000 00FF) Bits Description Read/Write Name Reset Value 0 **RESERVED** 'O' Reserved bit - always set to zero. 10:1 REQUEST The request bits determine which output ports R/W Undefined the logical address will arbitrate for. When bit after power 1 is set then SpaceWire port 1 will be on. requested. When bit 2 is set then SpaceWire Unaltered port 2 will be accessed and so on. by reset. By setting more than one bit group adaptive routing can be used, allowing the input packet to arbitrate for more than one output port. If a write is performed and bits 10:1 are set to zero then the INVALID_ADDR bit will be set and all other bits will be set to zero Note: The configuration port (port 0) is not accessible through logical addresses. NOT USED 28:11 DEL_HEAD Undefined 29 Delete header: when set the leading header R/W after power byte of the input packet will be removed on. before it is transferred to the output port. Unaltered by reset. 30 PRIORITY Undefined When a packet has a logical address with an R/W entry in the priority filed of this register set, the after power on. packet will be granted access to a particular output port in preference to packets with

priority bit set to zero.

register.

When the Invalid Address bit is set it indicates that the corresponding logical address is invalid. In this case, any packets arriving at the router with an invalid address are spilt and an address error is reported in the port status

Unaltered

by reset.

31

INVALID ADDR

R/W

SpW-10X SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

WARNING

Care must be taken when setting a the routing tables to avoid a possible infinite loop. For example if there is a SpaceWire link made between two ports of a single router and a logical address routes a packet out of one of these ports then that packet will arrive back at the router, and be routed back out of the port again. Depending on the size of the packet it may block because it cannot get access to the output port the second time around as the tail of the packet is still being fed to the output port. In this case the blockage will cause a timeout (when watchdog timer mode set – see section 8.3.5) and the packet will be spilt. If the packet is a small packet it could continually circle around the loop. A SpaceWire network architecture and configuration should be checked for possible loops for all logical addresses being used. Unused logical addresses should NOT be configured in the SpW-10X routing tables so that a packet arriving at a router with an invalid (unused) logical address will be spilt immediately.

9.4 PORT CONTROL/STATUS REGISTERS

The port control/status registers address range is 0 – 31 (0x0000 0000 – 0x0000 001F)

The port control/status registers provide the means to configure and control the ports of the router and for reading the status of each port. There is a port control/status register for each SpaceWire port, each External port and for the configuration port. The address in configuration memory space of a port control/status register reflects the physical address of the port. For example, the register for port 0, the configuration port, is at address 0, and the register for a SpaceWire port number 3 is at address 3. Each port control/status register is a 32-bit register.

The fields within the port control/status register depend on the type of port that it is attached to. All port control/status registers have fields for port type and current port connection. These generic fields are described first followed by the specific fields for the configuration port, SpaceWire ports and External ports.

Port control/status register bits 31:24 are generic to all ports. Register bits 23:0 are specific to the type of port to which the register is attached.

9.4.1 Generic port control/status register fields.

The configuration port control/status fields are described in Table 9-4.

Table 9-4 Configuration Port Control/Status Register Fields

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

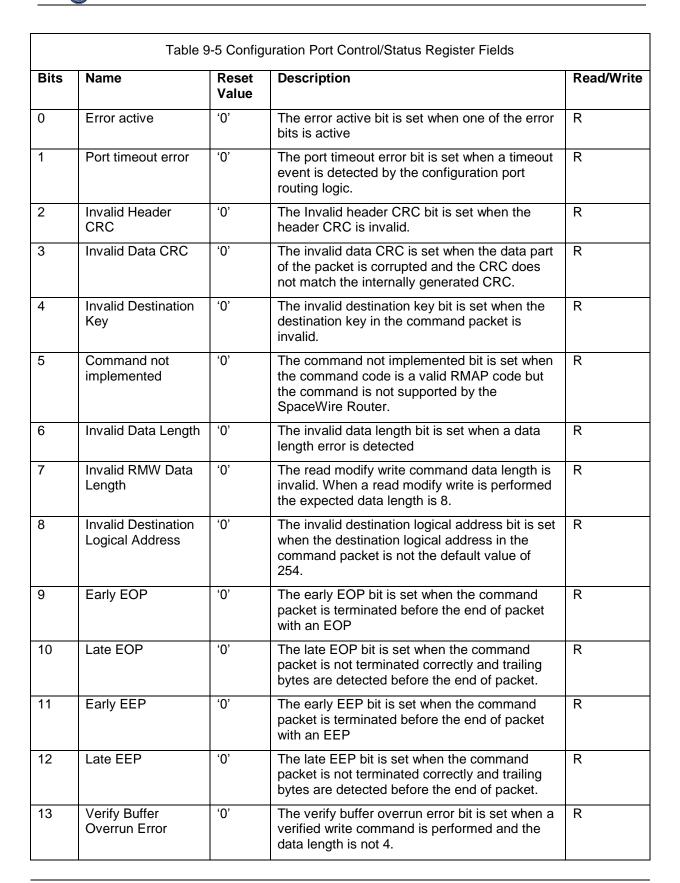
Date: 7th January 2015

Bits	Name	Reset Value	Description	Read/Write
28:24	Current port connection	All bits set to one.	The current port connection bits indicate the input port which this output port is currently connected to.	R
			Port number 31 (bits 28:24 set to 11111) means that there is no port currently connected to the input port. This is the reset condition.	
31:29	Port Type	All bits set to zero.	Indicates the port type. Possible port types are listed below: "000" – Configuration port. "001" – SpaceWire port.	R
			"010" – External port.	

9.4.2 Configuration port control/status register fields.

The configuration port control/status fields specific to the configuration port are described in Table 9-5. Any errors occurring in the configuration port are reported via status bits in this register and the configuration command that caused the error is replied to with a NACK. Error status bits are cleared by writing to the Error Active register, see section 9.5.4.

SpaceWire Router


User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

Date: 7th January 2015

14	Invalid Register Address	,0,	The invalid register address bit is set when an unknown register address is given in the command packet or a write is attempted to a read only register	R
15	Unsupported protocol error	,0,	The unsupported protocol error bit is set when a command packet is received with a protocol identifier which is not the RMAP protocol identifier of 01h.	
16	Source logical address error	'0'	The source logical address error bit is set when an invalid source logical address is received.	R
17	Not used	'0'	This bit in the register is not used.	R
18	Cargo too large	'0'	The RMAP command packet is too large	R
19	Unused RMAP command or packet type	'0'	The command code is an unused command code or the packet type is invalid.	R
23:20	Not Used	-	-	-

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

9.4.3 SpaceWire port control/status register bits.

The port control/status fields specific to SpaceWire ports are shown in Figure 9-3 and Table 9-6.

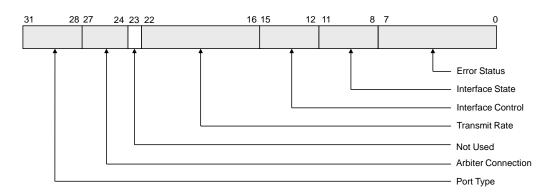


Figure 9-3 SpaceWire Port Control/Status Register Fields

Note: Error status bits are cleared by writing to the Error Active register, see section 9.5.4.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

Bits	Name	Reset Value	Description	Read/Write
0	Error active	·0'	The error active bit is set when one of the error bits are set.	R
1	Packet address error	,0,	The packet address error bit is set when a packet is received with an incorrect address.	R
2	Output port timeout error	,0,	The output timeout error bit set when the output port has become blocked for a period of time.	R
3	Disconnect error	,0,	The disconnect error bit is set when a disconnect error occurs on the SpaceWire link	R
4	Parity error	,0,	The parity error bit is set when a parity error occurs on the SpaceWire link	R
5	Escape error	,0,	The escape error bit is set when an escape error occurs on the SpaceWire link	R
6	Credit error	,0,	The credit error bit is set when a credit error occurs on the SpaceWire link	R
7	Character sequence error	,0,	The character sequence error bit is set when a character sequence error occurs on the SpaceWire link	R
10:8	Interface state	"000"	The interface state bits indicate the state of the interface state machine in the SpaceWire link.	R
			"000" = Error Reset	
			"001" = Error Wait	
			"010" = Ready	
			"011" = Started	
			"100" = Connecting	
			"101" = Run	
11	Running	,0,	The running bit is set when the SpaceWire interface state machine is in the Run state.	R
12	AutoStart	'1'	When set the SpaceWire link will autostart as defined in the SpaceWire standard [AD1]: the	R/W

SpaceWire Router

Issue: **3.5**

Ref.:

User Manual

Date: 7th January 2015

UoD_SpW-10X_

UserManual

			other end of the link tries to make a connection and will then	
			automatically start.	
13	Start	,0,	When set then the SpaceWire link will initiate start-up as defined in the SpaceWire standard [AD1]: the SpaceWire port will try to make a connection with the other end of the link.	R/W
14	Disable	,0,	When set then the SpaceWire link will be disabled as defined in the SpaceWire standard [AD1]: the SpaceWire port will not start and will not respond to any attempt to make a connection by the other end of the link.	R/W
15	Deactivate	,0,	When set the DOUT and SOUT serial SpaceWire signals will be deactivated dependent on the state of the SpaceWire link interface. The DOUT and SOUT deactivate output state mappings are listed below:	R/W
			ErrorReset → Deactivate	
			ErrorWait → Deactivate	
			Ready → Deactivate	
			Started → Enabled	
			Connecting → Enabled	
			Run → Enabled	
			Note: DOUT is deactivated one system clock cycle before SOUT to ensure simultaneous edges due to output port deactivation do not occur.	
22:16	Transmitter data signalling	Bits 18 to 16 are set according to the	Allows the SpaceWire link data signalling rate to be set.	R/W
	rate (TXRATE)	POR_TX_RATE(2:0) pins. Bits 22:18 are set to zero.	See section 8.1.6 for details on how to set the TXRATE bits.	
			Note: bits 22:16 must not be set to all ones. Bits 22:16 must not be set to give a transmit rate of less than 2 Mbits/s.	
23	Not Used	-	-	-

SpaceWire Router User Manual

UserManual

Ref.:

Issue: 3.5

7th January 2015 Date:

UoD_SpW-10X_

9.4.4 External port control/status register bits.

The port control/status fields specific to the External port are described in Table 9-7.

	Table 9-7 External Port Control/Status Fields					
Bits	Name	Reset Value	Description	Read/Write		
0	Error Active	'0'	This bit is set to one when any of the error bits are set.	R		
1	Packet Address Error	'0'	The packet address error bit is set when a packet is received with an incorrect address. A packet address error is also generated when an empty packet is input to the external port.	R		
2	Output port timeout error	·0'	The output timeout error bit is set when the output port has become blocked for a period of time.	R		
3	Input Buffer Empty	'0'	The external port input buffer is empty. Note: The input buffer writes data to the SpaceWire router.	R		
4	Input Buffer Full	'0'	The external port input buffer is full.	R		
5	Output Buffer Empty	'0'	The external output port buffer is empty. Note: The output buffer writes data to the external device connected to the external port.	R		
6	Output Buffer Full	'0'	The external output port buffer is full.	R		
23:5	Not used	-	-	-		

Note: The Error status bits are cleared by writing to the Error Active register, see section 9.5.4.

9.5 ROUTER CONTROL/STATUS REGISTERS

The router control/status registers are described below.

9.5.1 Network Discovery Register

The network discovery register address is 256 (0x0000 0100).

The network discovery register allows a network manager to determine the layout of the network by reading the contents of the register. Its fields are shown in Figure 9-4 and described in Table 9-8.

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

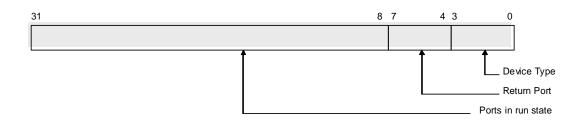


Figure 9-4 Network Discovery Register Fields

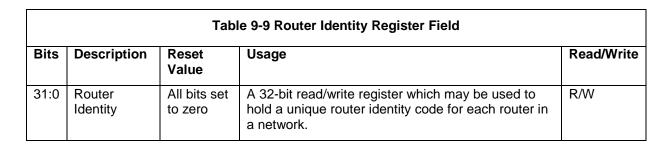
Bits	Description	Reset Value	Usage	Read/Write
		value		
3:0	Device Type	"0001"	The device type field indicates the type of device which is associated with this network discovery register. At present there is only one device type defined, the Router, along with the unknown device type.	R
			"0000" - Unknown Device	
			"0001" – Router	
7:4	Return Port	All bits set to zero	Indicates the input port number which accessed this network discovery register.	R
31:8	Ports in Run state	All bits set to	Indicates the SpaceWire ports which are in the run state. Bit 8 corresponds to SpaceWire port 1.	R
		zero	The external ports are the highest numbered port and the corresponding register bits are set to one. In this way a network manager can determine the number of ports and the active ports in one register read.	

9.5.2 Router Identity Register

The router identity register address is 257 (0x0000 0101).

The router identity register allows a network manager to assign a 32 bit ID to a SpaceWire router device by writing to this register. It may also be used for other purposes. The router identity register is described in Table 9-9.

SpaceWire Router

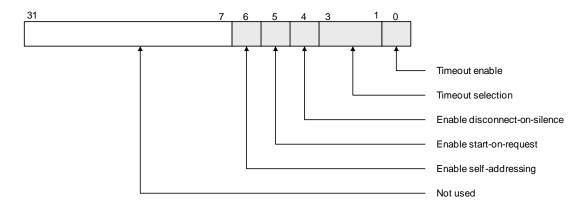

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015


9.5.3 Router Control Register

The router control register address is 258 (0x0000 0102).

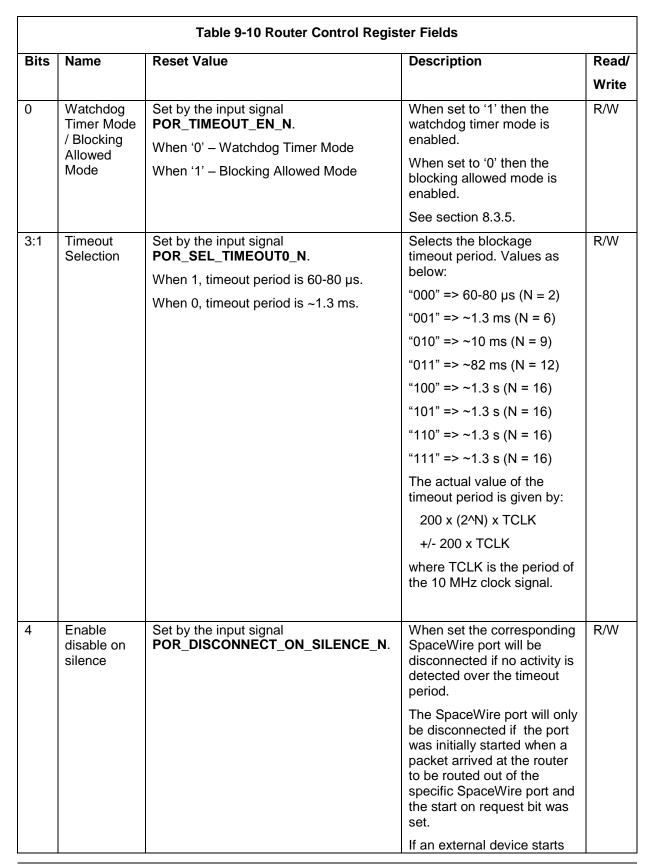
The router control register sets various control bits in the SpaceWire router. Router functions which can be controlled are:

- Request an output port to initiate start-up when an input packet addresses that output port but it is not ready to receive data.
- Disconnect a SpaceWire port when no activity is detected on the port for the timeout period duration.
- Enable output port timeouts which request the output port to flush when a packet becomes blocked for a timeout period.
- Enable the a router ports to address themselves i.e. provide a loop-back capability.

The router control register fields are shown in Figure 9-5 and described in Table 9-10.

Figure 9-5 Router Control Register Fields

SpaceWire Router


User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

SpaceWire Router

User Manual

Ref.:

Issue: **3.5**

7th January 2015 Date:

UserManual

UoD_SpW-10X_

			the link using autostart or the link is started by configuration command then the port will not be disconnected on silence. Events which cause the disconnect on silence timeout to be reset are Input port data read. Output port data write.	
5	Enable start on request	Set by the input signal POR_START_ON_REQ_N.	When set the arbiter will request the SpaceWire output port to start-up if the router receives a packet destined for the output port. Note: if the output port link disable bit is set then the link will not start.	R/W
6	Enable Self Addressing	Set by the input signal POR_ADDR_SELF_N	When set input ports are permitted to address themselves. If this bit is not set and a packet is to be routed through the same port then an address error is reported and the packet is discarded. When this bit is not set and a group adaptive routing packet is received (a packet which can be routed through two or more ports, dependent on the group adaptive routing table contents) which can be routed through the port it arrived on then the packet is routed through one of the other ports and not the port on which the packet arrived on. An address error is not reported.	R/W
31:7	Not Used	All bits set to zero	-	R

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: 3.5

Date: 7th January 2015

WARNING

The default timeout intervals of 60-80 µs or 1.3 ms are short. It may be necessary to increase the timeout interval by a configuration command writing to the router control register. When initially prototyping a SpaceWire system it is advisable to set the timeout interval to 1.3 s and then decrease it to an appropriate value once basic system operation has been established.

9.5.4 Error active Register

The error active register address is 259 (0x0000 0103).

The error active register indicates the Error Active bit of the each of the port control/status registers. By reading from this register a network manager can determine which ports currently have errors. This register is also used to clear the error bits of the port control/status registers. To do this a write command is sent to the error active register with bits set for those errors that are to be cleared.

The error active register fields are shown in

Figure 9-6 and described in Table 9-11.

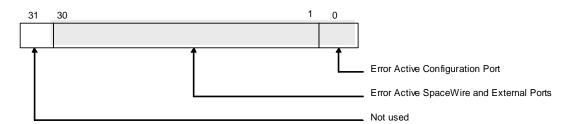


Figure 9-6 Error Active Register Fields

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

		Table 9-1	11 Error Active Register Fields	
Bits	Name	Reset Value	Description	Read/Write
0	Configuration Port Error Active	'0'	Indicates that the Error Active bit in the configuration port is asserted.	R/W
			A write to this register with bit 0 set will clear all the error flags in the configuration port control/status register.	
10:1	SpaceWire and External Port Error Active	All bits set to zero	Indicates that the Error Active bit in the corresponding number SpaceWire or External port is asserted.	R/W
			A write to this register with one or more of these bits set will clear all the error flags in the corresponding SpaceWire and External port control/status registers.	
			When writing to this register with all bits set all error flags in all port control/status registers are cleared.	
			Note: only bits 10:1 are used in the SpW-10X router.	
31:11	Not used	All bits set to zero	Not used because there are a maximum of 30 SpaceWire / External ports supported by the router design.	R

9.5.5 Time-Code Register

The time-code register address is 260 (0x0000 0104).

The time-code register contains the current value of the internal time-code register. Its fields are shown in Figure 9-7 and described in Table 9-12.

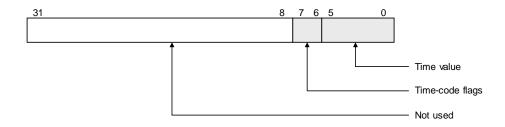


Figure 9-7 Time-Code Register Fields

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

Table 9-12 Time-Code Register Fields						
Bits	Name	Reset Value	Description	Read/Write		
5:0	Time Value	All bits set to zero	6-bit time-code value	R		
7:6	Time-Code Flags	"00"	Two time-code flags	R		
31:8	Not used	All bits set to zero		R		

9.5.6 Device Manufacturer and Chip ID Register

The device manufacturer and chip ID register address is 261 (0x0000 0105).

This register contains three eight-bit fields which hold a device manufacturer identity, chip identity and version number. The fields of the device manufacturer and chip ID register are shown in Figure 9-8 and described in Table 9-13.

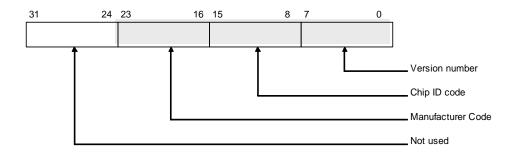


Figure 9-8 Device Manufacturer and Chip ID Register Fields

Table 9-13 Device Manufacturer and Chip ID Register Fields					
Bits	Name	Reset Value	Description	Read/Write	
7:0	Version Number	Version Number of chip design	Version number of the chip design	R	
15:8	Chip ID Code	Chip type	Identity code for the SpaceWire chip from the particular manufacturer	R	
23:16	Manufacturer Code	Manufacturer identity code	Manufacturer identity code "00000000" = Unknown Manufacturer "00000001" = University of Dundee	R	
31:24	Not used	All bits set to zero		R	

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

9.5.7 General Purpose Register

The general purpose register address is 262 (0x0000 0106).

The general purpose register contains 32-bits and may be set by a configuration write command to a user defined value as required. It may also be read with a configuration read command. The general purpose register has no effect on the operation of the router.

The least-significant 8-bits of the general purpose register are available on the multiplexed status pins, see section 6.3.

9.5.8 Time-Code Enable Register

The time-code enable register address is 263 (0x0000 0107).

The time-code enable register enables the passing of time-codes out of individual ports on the router. Bits 1 to 8 of the time-code enable register are used to enable time-code distribution through SpaceWire ports 1 to 8 respectively. If one of these bits is set to 1 then the corresponding SpaceWire port is enabled for time-code distribution and will send out a time-code when one is received by the router. For example, if bit-1 in the enable register is set to 1, time-codes are passed to SpaceWire port 1, whereas if bit-1 is set to 0, time-codes are not passed to SpaceWire port 1.

Bit-9 of the time-code enable register controls time-code distribution to the external time-code interface in a similar manner. Note that there is only one external time-code interface although there are two External ports.

The fields of the time-code enable register are shown in Figure 9-9 and described in Table 9-14.

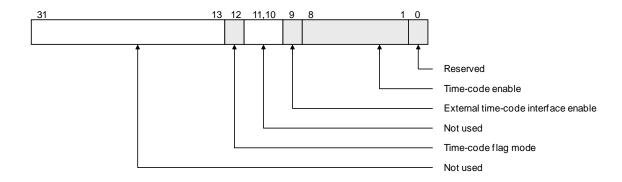
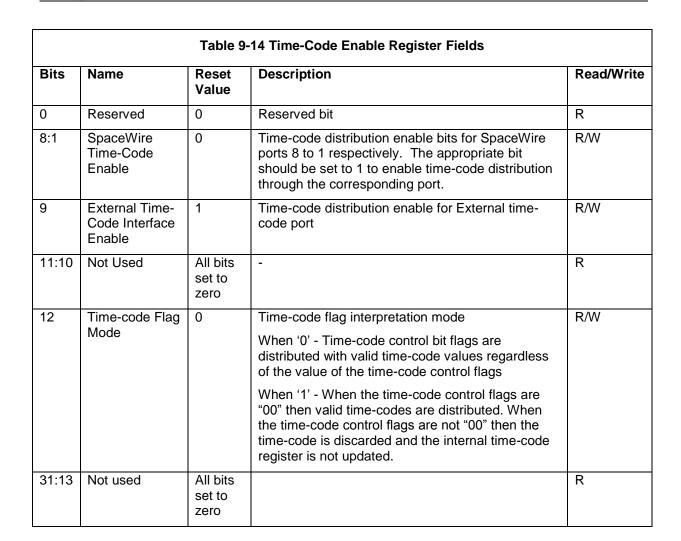


Figure 9-9 Time-Code Enable Register Fields

SpaceWire Router


User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

Date: 7th January 2015

9.5.9 Transmit Clock Control Register

The transmit clock control register address is 264 (0x0000 0108).

The transmit clock control register is shown in Figure 9-10. Bits 1 to 0 are used to determine the output divide ratio (TXDIV) for the transmit clock internal PLL. Bits 15 to 8 are used to stop the transmitter clocks of SpaceWire interfaces that are not being used to save power i.e. only clock of the SpaceWire ports that are going to be used should be enabled. Bits 20 to 16 are used to set the default 10Mbits/s transmit data rate (TX10MbitDIV).

Note: The transmit clock should not be disabled when an output port is sending data or when the interface is in the run state. The port control/status registers can be used to determine if an output port is currently connected to an input port and therefore transferring data.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: 3.5

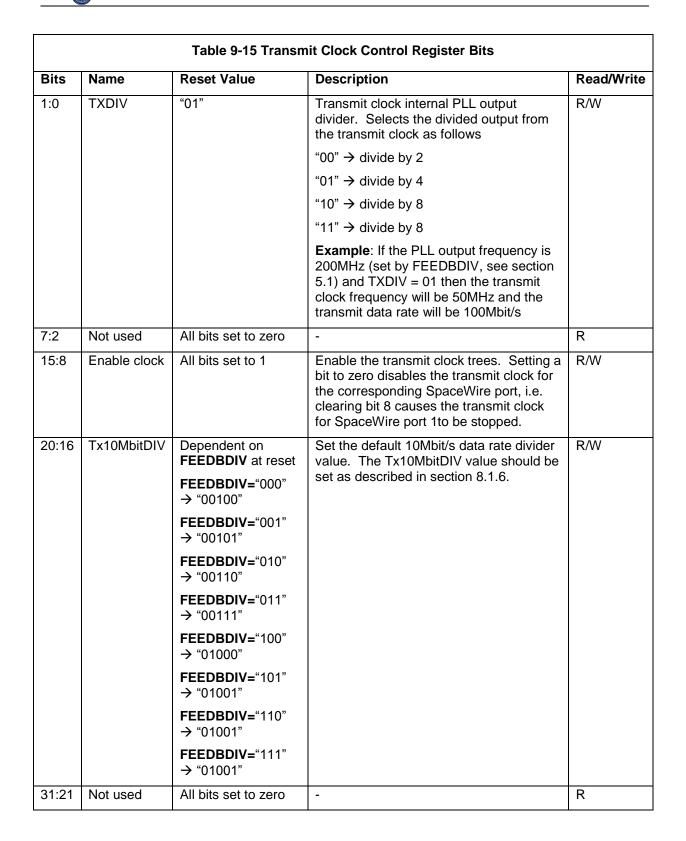
Date: 7th January 2015

WARNING

If a SpaceWire port that is being used to configure a router has its transmit clock turned off then it will not be possible to configure the router using that port. Unless there is another connection with an active clock and which is not disabled that can be used to perform configuration the router will have to be reset before it can be configured again.

Figure 9-10 Transmit clock control register

SpaceWire Router


User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

9.5.10 Destination Key Register

The Destination Key register address is 265 (0x0000 0109).

The destination key register fields are listed in the table below.

	Table 9-16 Destination Key Register					
Bits	Name	Reset Value	Description	Read/Write		
7:0	DESTKEY	20h	The destination key is checked when a security key is required for RMAP configuration packets to access the router registers.	R/W		
31:8	Not used	All bits set to zero	-			

9.5.11 Unused Registers and Register Bits

If an unused register address is referenced in a configuration command then the command will not be acted upon and a NACK will be sent in the reply to the command.

All unused bits in valid configuration registers will return '0' when read.

9.5.12 Empty packets

An empty packet received at the configuration port is discarded by the configuration port and no reply packet is sent. An empty packet has no address or cargo bytes and consists only of an EOP.

9.6 WRITING TO A READ-ONLY REGISTER

If a write command is sent with a register address that corresponds to a register whose entire contents is read only, then an appropriate error will be generated. See section 9.4.2.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

10. SWITCHING CHARACTERISTICS

10.1 CLOCK AND RESET TIMING PARAMETERS

The global clock and asynchronous reset timing parameters are listed below.

Table 10-1 Clock and reset timing parameters						
Description	Symbol	Value	Units			
Clock period minimum value	T _{CL}	31.7	ns, min			
Clock period maximum value	Тсн	35	ns, max			
Clock minimum pulse width	T _{ACLK}	5	ns, min			
Clock input jitter	TCJITTER	+/- 2	ns, max			
PLL lock time after reset	T _{PLLLOCK}	20	μs, max			
Reset minimum pulse width	Tarst	5	ns, min			
Reset end till operational	T _{RST2OP}	20	ns, max			

10.2 SERIAL SIGNALS TIMING PARAMETERS

The data strobe minimum consecutive edge separation timing parameter is defined as shown in the figure below.

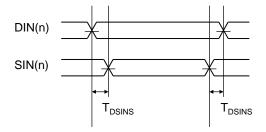


Figure 10-1 DS minimum consecutive edge separation

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: 3.5

Date: 7th January 2015

The serial signal timing parameters are defined in the table below.

Table 10-2 Serial signal timing parameters				
Description	Symbol	Value	Units	
DS maximum input bit rate	T _{DS}	200+2%	Mbits/s, max	
DS minimum consecutive edge separation	T _{DSINS}	3	ns, min	
Minimum edge separation between 2 consecutive edges	T _{DSINS2}	7.5	ns, min	
Data Strobe output skew & jitter (incl. LVDS driver)	Tososkewjit	1.2	ns, max	

10.3 EXTERNAL PORT TIMING PARAMETERS

The external port input timing parameters can be viewed below

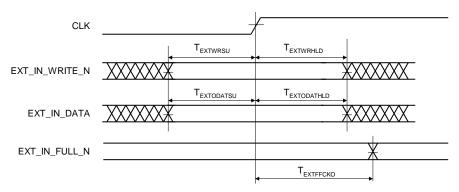


Figure 10-2 External port input FIFO timing parameters

The external port input timing parameters can be viewed below

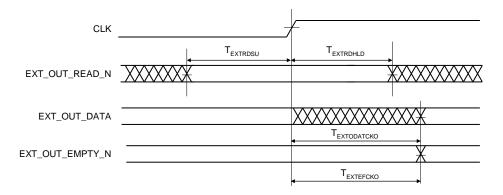


Figure 10-3 External port output FIFO timing parameters

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

Table 10-3 External port timing parameters				
Description	Symbol	Value	Units	
Write enable setup time to CLK rising edge	T _{EXTWRSU}	5	ns, min	
Write enable hold time after CLK rising edge	T _{EXTWRHLD}	5	ns, min	
Write data setup time to CLK rising edge	TEXTIDATSU	5	ns, min	
Write data hold time after CLK rising edge	TEXTIDATHLD	5	ns, min	
CLK rising edge to full flag output	T _{EXTFFCKO}	5	ns, min	
CLK rising edge to full flag output	T _{EXTFFCKO}	18	ns, max	
Read enable setup time to CLK rising edge	T _{EXTRDSU}	5	ns, min	
Read enable hold time after CLK rising edge	TEXTRDHLD	5	ns, min	
CLK rising edge to read data output	Техторатско	5	ns, min	
CLK rising edge to read data output	Техторатско	18	ns, max	
CLK rising edge to empty flag output	T _{EXTEFCKO}	5	ns, min	
CLK rising edge to empty flag output	Техтегско	18	ns, max	

10.4 TIME-CODE INTERFACE TIMING PARAMETERS

The following diagrams define the timing parameters for the time-code input and output

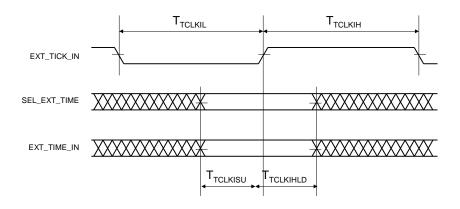


Figure 10-4 Time-Code Input Interface

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

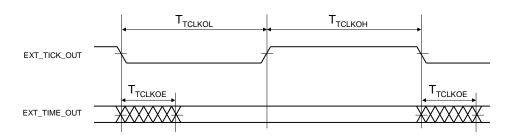


Figure 10-5 Time-Code Output Interface

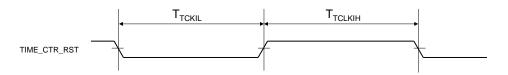


Figure 10-6 Time-code TIME_CTR_RST interface

The Time-code timing parameters are shown below.

Table 10-4 Time-code interface timing parameters			
Description	Symbol	Value	Units
Tick-in and time reset low time	T _{TCLKIL}	1 CLK	min
		period	
		+ 5 ns	
Tick-in and time reset high time	T _{TCLKIH}	1 CLK	min
		period	
		+ 5 ns	
Select external time and Time-code in set-up time	T _{TCLKISU}	5	ns, max
Select external time and Time-code in hold time	T _{TCLKIHLD}	5	ns, max
Tick-out low time	T _{TCLKOL}	3 CLK	Min to
		periods	max
		± 5 ns	
Tick-out high time	T _{TCLKOH}	4 CLK	min
		periods	
		± 5 ns	
Time-code output valid delay time relative to falling edge of EXTTICKOUT	T _{TCLKOE}	± 5	ns

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

10.5 ERROR/STATUS INTERFACE TIMING PARAMETERS

The timing parameters for the status multiplexer port are show below.

Table 10-5 Status Multiplexer timing parameters				
Description	Symbol	Value Units		Units
		Min	Max	
Status address change to status output change	Тѕтмих	3	20	ns
CLK rising edge to status output	Тськотмих	5	25	ns

SpW-10X SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

10.6 LATENCY AND JITTER

The timing parameters for the data and time-code latency and the time-code jitter are derived from the receive clock, transmit clock and system clock period. The worst case number of clock cycles required is used in each equation.

In the SpaceWire router the system clock is a known frequency and the transmitter and receiver frequency are derived from the input and output bit rates. The clock frequencies are defined as follows.

Note: All figures are worst case. Due to the uncertainty of synchronisation between clock domains the measured time may be less than indicated.

In the following sections the clock periods are defined and the latency and jitter timing parameter definitions are detailed.

10.6.1 Clock Periods

System Clock Period

T_{SYSPERIOD} = 33.333 ns (Clock Frequency = 30 MHz)

Transmit Clock Period

T_{TXPERIOD} = Transmit bit rate period * 2 (Where Transmit bit rate period is the output bit rate selected by the user configuration)

Receive Clock Period

T_{RXPERIOD} = Receive bit rate period * 2 (Where Receive bit rate period is the period of the input bit rate)

10.6.2 Switching Latency

Switching latency is the time it takes the router to connect a waiting input port to an output port that has just finished sending a packet. It includes any time for group adaptive routing and arbitration of two or more input ports competing for the same output port.

Switching latency for the router is defined as follows

 $T_{SWITCH} = 4 \times T_{SYSPERIOD}$

10.6.3 Router Latency

Router latency is the time taken for a character in a packet to pass through the router assuming that the packet has already been switched to an output port and that there is no blocking of the output port. Router latency for the SpaceWire router is defined for port to port data transfer operations as follows:

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

SpaceWire port to SpaceWire port

Last bit of data into receiver to last bit of data out of transmitter (Worst case where transmitter is sending a time-code and FCT character before data)

$$T_{SSDATA} = (5 \times T_{RXPERIOD}) + (8 \times T_{SYSPERIOD}) + (23 \times T_{TXPERIOD})$$

SpaceWire port to External port

Last bit of data into receiver to external port not empty flag

$$T_{SEDATA} = (5 \times T_{RXPERIOD}) + (8 \times T_{SYSPERIOD})$$

External port to SpaceWire port

External port write enable to last bit of data out of transmitter (Worst case where transmitter is sending a time-code and FCT character before data)

$$T_{ESDATA} = (4 \times T_{SYSPERIOD}) + (23 \times T_{TXPERIOD})$$

External port to External port

External port write enable to external port not empty flag.

$$T_{EEDATA} = (5 \times T_{SYSPERIOD})$$

10.6.4 Time-code Latency

The maximum time taken to propagate a time code through a routing switch

SpaceWire port to SpaceWire port

Last bit of time-code into receiver to last bit of time-code out of transmitter (worst case where transmitter has started sending a before time-code data character)

$$T_{SSTC} = (5 \times T_{RXPERIOD}) + (6 \times T_{SYSPERIOD}) + (16 \times T_{TXPERIOD})$$

SpaceWire port to External port

Last bit of time-code into receiver to external port EXT_TICK_OUT rising edge

$$T_{SETC} = (5 \times T_{RXPERIOD}) + (8 \times T_{SYSPERIOD})$$

External port to SpaceWire port

EXT_TICK_IN rising edge to last bit of time-code out of transmitter (worst case where transmitter has started sending a before time-code data character)

$$T_{ESTC} = (6 \times T_{SYSPERIOD}) + (16 \times T_{TXPERIOD})$$

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

10.6.5 Time-code Jitter

The variation in time to propagate a time-code through a routing switch.

Time-code jitter occurs in the synchronisation handshaking circuits and the transmitter where the maximum delay time the time-code has to wait to be transmitted is one data character. The jitter is measured as

$$T_{TCJIT} = (2 \times T_{SYSPERIOD}) + (5 \times T_{TXPERIOD})$$

10.6.6 200M bits/s Input and Output Bit Rate Example

The following table defines the latency and jitter measurements when the transmit bit rate and receive bit rate are 200M bits/s.

Table 10-6 SpaceWire Router Latency and Jitter Measurements (Bit rate = 200Mbits/s			
Description	Symbol	Value	Units
Switching Latency	Тѕѡітсн	133.3	ns, max
Router Latency – SpaceWire to SpaceWire port	T _{SSDATA}	546.6	ns, max
Router Latency – SpaceWire to External port	TSEDATA	316.6	ns, max
Router Latency – External to SpaceWire port	Tesdata	363.3	ns, max
Router Latency – External to External port	T _{EEDATA}	166.6	ns, max
Time-code Latency – SpaceWire to SpaceWire port	T _{SSTC}	409.3	ns, max
Time-code Latency – SpaceWire to External port	T _{SETC}	316.6	ns, max
Time-code Latency – External to SpaceWire port	T _{ESTC}	359.9	ns, max
Time-code Jitter	Ттслт	116.6	ns, max

^[1] Note all figures are worst case

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

Date: 7th January 2015

11. ELECTRICAL CHARACTERISTICS

The electrical characteristics for the SpaceWire router are defined in this section

11.1 DC CHARACTERISTICS

The operating conditions are listed in Table 11-1. For a detailed list of the operating conditions see [AD3].

Table 11-1 Operating Conditions				
Symbol	Description	Value	Units	
V _{DD}	Supply voltage	3.0 to 3.6	V	
TA	Ambient temperature	-55 to +125	°C	
Pst	Static power (CLK input is static, after reset)	1 max	W	
Poff	Total OFF power (static and dynamic): Reset active power consumption (CLK input with 30 MHz signal, RSTN active)	1.6 max	W	
Pop ⁽³⁾	Total operational power with all interfaces active	2.4 max at 10 Mb/s ⁽²⁾	W	
	including external ports. ⁽¹⁾	3.0 max at 100 Mb/s ⁽²⁾	W	
		3.7 max at 200 Mb/s	W	

(1) If a SpW IF is not active (clock and LVDS drivers switched off) assume a reduction of P_{OP} by: $(P_{OP} - P_{OFF}) \times 0.1 + 0.06$;

Example: 2 SpW interfaces deactivated at 200 Mb/s:

Operational power = $3.7 - ((3.7 - 1.6) \times 0.1 + 0.06) \times 2 = 3.16 \text{ W max}$

- (2) For the data rates < 200 Mb/s the setting for the lowest power consumption (i.e. lowest PLL and Tx clock frequency) is assumed.
- (3) The actual data flow has a negligible influence on the power consumption (i.e. very little difference if NULLs or SpW packets are transferred).

All power figures in Table 11-1 are for maximum conditions, which means 3.6 V for the supply voltage. If the supply voltage is lower the power consumption sinks as well. The reduction fits to the power consumption with a resistive load. I.e. at 3.0 V the power consumption is 69.4% of the power consumption at 3.6V.

The lowest power consumption at a certain data rate is achieved if the PLL is set to the lowest possible frequency (setting of FEEDBDIV inputs) and the SpW Tx clock to the lowest possible frequency (setting of TXDIV in register) for that SpW data rate.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

11.2 ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are listed in Table 11-2. For a detailed list of the maximum conditions see [AD3].

Table 11-2 Absolute Maximum Ratings			
Symbol	Description	Value	Units
V _{DD}	Supply voltage range	-0.5 to +4.0	V
VIN	Input voltage range	-0.5 to V _{DD} +0.5	V
I _{IN}	Input pin current		
	Signal pin	-10 to +10	mA
	Power pin	-60 to +60	mA
	Lead temperature (soldering 10 sec)	+300	°C
Ts	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	175	°C

11.3 RELIABILITY INFORMATION

The information required for reliability analysis of the SpW-10X device has been collated and is presented in Table 11-3.

Table 11-3 Reliabilty Information		
Parameter	Value	
Technology	CMOS 0.35 µm gate array	
Complexity	371k Atmel MH1RT sites (approximately 285k gates)	
Temperature	Application dependent	
Package	QFP196 with 25 mil pin spacing	
Environment	Application dependent	
Learning factor	Established Atmel ASIC technology (MH1RT) for several years	

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: 3.5

Date: 7th January 2015

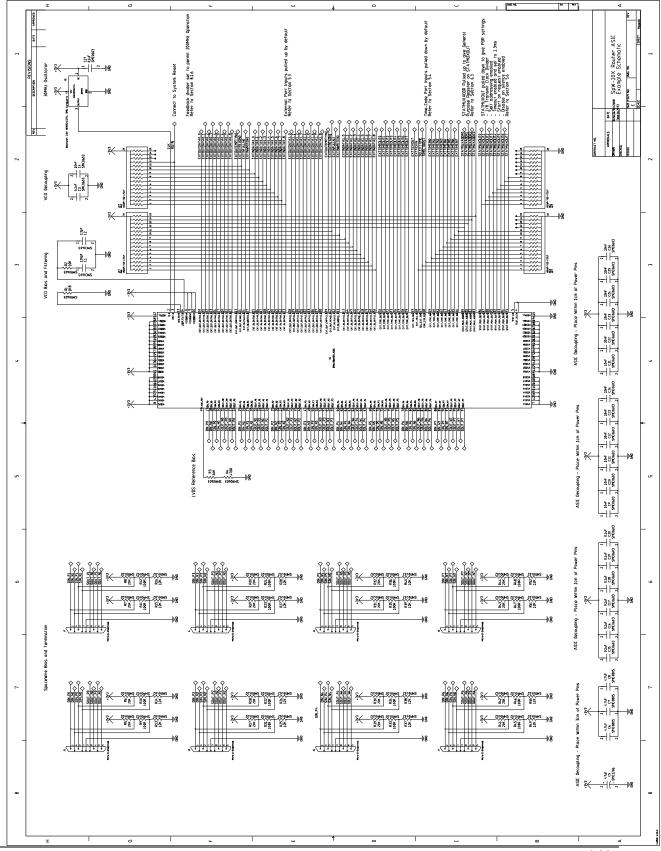
12. APPLICATION GUIDELINES

In this section an example circuit diagram is provided and PCB and design guidelines presented.;

12.1 EXAMPLE CIRCUIT DIAGRAM

A schematic showing how the SpW-10X device should be connected is provided on the following page. This is a complete schematic for a stand-alone router except for the 3.3V power supply and reset signal.

SpaceWire Router


User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

SpaceWire Router

Issue: **User Manual**

Ref.:

Date: 7th January 2015

3.5

UoD SpW-10X UserManual

12.2 PCB DESIGN AND LAYOUT GUIDELINES

PCB design and layout guide lines are provided in this section.

12.2.1 CLK

- 1. Series termination should be used on the CLK signal.
- 2. Stubs on the CLK signal shall not be used.
- 3. Guard tracks shall be provided around the CLK signal trace connected to the ground plane approximately every 1 cm.

12.2.2 RST N

Guard tracks shall be provided around the RST N signal trace connected to the ground plane approximately every 1 cm.

12.2.3 Chip Test Signals

The two chip test signals TestIOEn and TestEn shall both be tied directly to the ground plane.

12.2.4 Power and Decoupling

- 1. Each power pin shall be decoupled to ground using a 100 nF decoupling capacitor.
- 2. The 100 nF decoupling capacitors shall be fitted close to the each power pin with the other end of the capacitor connected to the ground plane.
- 3. In addition to the 100 nF decoupling capacitors four 1 µF decoupling capacitors shall be fitted close to the SpW-10X device.

12.2.5 Ground

- 1. A solid ground plane shall be used.
- 2. The ground pins of the SpW-10X shall be directly connected to the ground plane using vias close to the SpW-10X ground pins.

12.2.6 SpaceWire

The following recommendations apply to all the SpaceWire signals from the SpW-10X device (see also section 5.2):

1. LVDS receiver termination resistor shall be as close as possible to the receiver inputs.

SpW-10X SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

2. LVDS fail safe resistors need not be adjacent to the termination resistor. Their location is not critical but the stub lengths to the termination resistors should be less than 20 mm.

- 3. LVDS tracks shall be 100 ohm differential impedance.
- 4. Skew between the plus and minus sides of the LVDS differential pair shall be avoided and shall be less than +/- 1 mm.
- 5. Data and strobe track lengths shall be matched to +/- 2.5 mm to keep skew to a minimum.
- 6. There is no need to match input and output track lengths.
- 7. Vias shall only be used at the SpaceWire connector and close to the SpW-10X device (within 5 mm).

12.2.7 External Ports

The following recommendations apply to the External FIFO port signals from the SpW-10X device:

- 1. When the External FIFO ports are used, series termination resistors (33 ohm) should be used on each output if the tracks on the outputs are more than 4 cm in length.
- 2. The series termination resistors should be placed as close as possible to the output pins of the SpW-10X device.
- 3. Series termination resistors are also recommended on the devices driving the External FIFO port inputs if the tracks connected to the inputs are more than 4 cm in length.
- 4. The pull up/down resistor recommendations provided in section 5.3 should be followed.

12.2.8 Time-code Interface

The following recommendations apply to the Time-code signals from the SpW-10X device:

- 1. When the time-code interface is used, series termination resistors (33 ohm) should be fitted to each output if the tracks on the outputs are more than 4 cm in length.
- 2. The series termination resistors should be placed as close as possible to the output pins of the SpW-10X device.
- 3. Series termination resistors are also recommended on the devices driving the time-code inputs if the tracks connected to these inputs are more than 4 cm in length.
- 4. The pull up/down resistor recommendations provided in section 5.4 should be followed.

12.2.9 Status / Power On Configuration Interface

The pull up/down resistor recommendations provided in section 5.6 should be followed for power on configuration.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

12.2.10 PLL

See Figure 12-1 the internal wiring of PLL block to better understand the external board recommended layout. The Voltage drop between PLL loop filter (LF) and the PVCOBIAS pads will be converted into a current (Ivco) which will determine the VCO frequency. It is critical to avoid any disturbance of that voltage drop at this will translate directly to jitter in the VCO frequency.

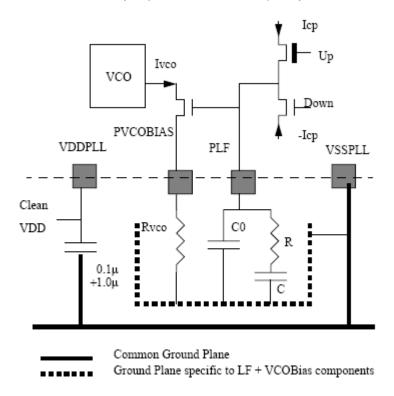


Figure 12-1 PLL Layout Recommendations

The following layout recommendations apply to the PLL circuitry.

- 1. To minimize voltage parasitic through ground the loop filter and VCO bias components will have a separate ground plane underneath all PLL pins and components.
- 2. This PLL ground plane shall be connected at one point to the PLLVSS pad.
- 3. To minimize other electromagnetic crosstalk effects, SMD components should be used and placed as close as possible to the corresponding pads.
- 4. The PLL has been designed to exhibit low sensitivity to power supply variation. VDDPLL can be externally connected to the core array power supply but the cleaner that power supply the better the PLL performances is in terms of jitter. Separate 100 nF and 1 μF decoupling capacitors shall be provided for VDDPLL.

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

13. ANOMALIES AND WARNINGS

In this section a list of anomalies and warnings is provided:

13.1 ANOMALIES

The following anomalies are present in the prototype SpW-10X router device:

- 1. Simultaneous transitions on data and strobe can occur during reset and power up. This may be a problem when operating with legacy IEEE-1355 devices but is not a problem when operating with SpaceWire compliant devices. See section 13.3for further details on this anomaly.
- 2. When a parity error in a data character the following characters may be received before the link disconnects.

13.2 WARNINGS

Various warnings appear in boxes throughout this document. They are all gathered in this section for convenience.

WARNING

Simultaneous data/strobe transitions can occur during reset and power up. This is not a problem when connected to SpaceWire compliant devices but is a problem when connected to IEEE-1355 devices.

WARNING

Since LVDS is based on a current loop it should not matter what the supply voltage is to an LVDS device connected to the SpW-10X router. However, there is a potential problem when connecting to devices with power supplies greater than 3.3 V, which is the supply voltage of the SpW-10X device. It should be emphasised that during normal operation there is no problem, but if the LVDS device connected to the SpW-10X device can fail in such a way as to put a higher voltage than 3.3 V on to the pins of the SpW-10X device then this can cause a problem. The simplest way to overcome this potential problem is to ensure that the LVDS devices driving the SpW-10X device are all powered by 3.3V.

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

Date: 7th January 2015

WARNING

The deactivate mode (see also section 9.4.3) does not tri-state the LVDS outputs. The LVDS outputs are cold-sparing and when disabled both outputs in an LVDS differential pair are pulled up to 3.3V and have an impedance of the order of 1 kohm. Since they are differential outputs and are both are at the same voltage no current will flow. If, however, external noise bias resistors are being used then a small current (around 200 μ A, 0.7 mW power) can flow. This is substantially less than the normal operating current of LVDS outputs and hence saves power.

WARNING

In most onboard applications it is recommended to have Stat_mux_out(4) pulled low by default in order to enable the watchdog timers on reset.

WARNING

When the watchdog timers are not enabled the SpaceWire and external ports can block indefinitely if, for example, a source stops sending data in the middle of a packet. If watchdog timers are not enabled then it must be possible for a network manager to detect blocking situations and to reset the router or node creating the problem.

WARNING

If the link that is being used to configure the router is disabled then it will not be possible to configure the router, unless there is another not disabled connection that can be used.

WARNING

Blocking Allowed mode is not recommended and should be used with caution.

When Blocking Allowed mode is used (Watchdog timers disabled) then it is important that provision is made for a network manager to detect blocking situations and to reset the nodes or routers causing the problem.

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

WARNING

Packets can timeout and be spilled in a SpaceWire network without the destination receiving any notification of this. Packets with errors (e.g. parity error) can arrive at a destination terminated by an EEP. In a very special case it is also possible to receive an error free packet terminated by an EEP. It is important that the destination node is able to handle these cases.

WARNING

Care must be taken when setting a the routing tables to avoid a possible infinite loop. For example if there is a SpaceWire link made between two ports of a single router and a logical address routes a packet out of one of these ports then that packet will arrive back at the router, and be routed back out of the port again. Depending on the size of the packet it may block because it cannot get access to the output port the second time around as the tail of the packet is still being fed to the output port. In this case the blockage will cause a timeout (when watchdog timer mode set – see section 8.3.5) and the packet will be spilt. If the packet is a small packet it could continually circle around the loop. A SpaceWire network architecture and configuration should be checked for possible loops for all logical addresses being used. Unused logical addresses should NOT be configured in the SpW-10X routing tables so that a packet arriving at a router with an invalid (unused) logical address will be spilt immediately.

WARNING

If a SpaceWire port that is being used to configure a router has its transmit clock turned off then it will not be possible to configure the router using that port. Unless there is another connection with an active clock and which is not disabled that can be used to perform configuration the router will have to be reset before it can be configured again.

13.3 RESET ANOMALY

This section describes the reset anomaly and suggests appropriate workarounds.

13.3.1 Data Strobe Reset Waveform

If a SpaceWire link is running when the SpW-10X device is reset, part of a NULL pattern is present on the serial data/strobe outputs of the running link when reset is released, see Figure 13-1. Data and strobe outputs hold their previous values until reset is applied as seen in Figure 13-2. When reset is

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

set a glitch may occur on data and strobe, see Figure 13-3. A simultaneous transition or glitch on data and strobe may occur when reset is released, Figure 13-4.

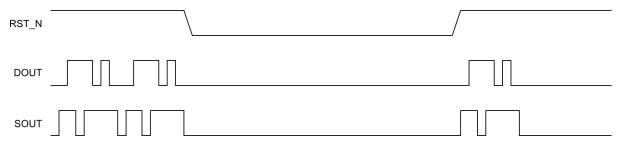


Figure 13-1 Reset Waveform

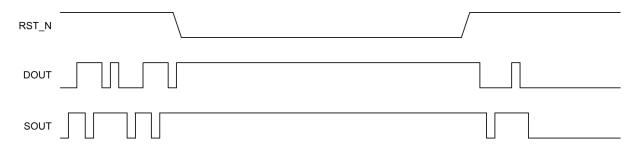


Figure 13-2 Reset Waveform with Data and Strobe Both High

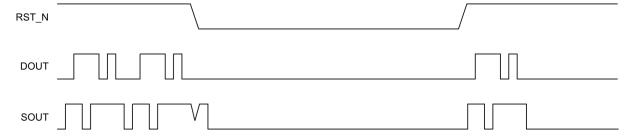


Figure 13-3 Glitches on Data or Strobe during Reset

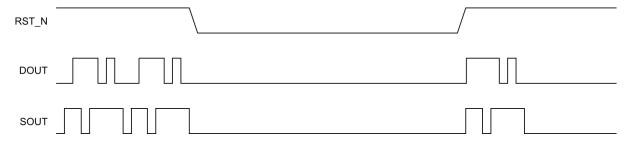


Figure 13-4 Simultaneous Transition of Data and Strobe during Reset

SpaceWire Router

User Manual

Ref.: UoD_SpW-10X_

UserManual

Issue: **3.5**

Date: 7th January 2015

13.3.2 Data Strobe Disable Waveform

If a SpaceWire link is disabled, either by configuration command or a disconnect, parity, escape or credit error, the final bit of strobe will be extended to a 100 ns period pulse. No simultaneous transitions or glitches can occur during a disable operation. This operation is as expected. The reset anomaly has no effect on link disconnect operation.

The output waveforms during link disconnect are shown in Figure 13-5.

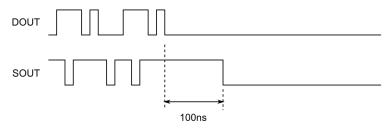


Figure 13-5 Link Disconnect Waveforms

13.3.3 Reset Anomaly Workarounds

The reset anomaly will not cause any problem when operating with any SpaceWire compliant device [AD1].

When operating with IEEE-1355 devices like the old SMCS332 and SMCS116 devices it is recommended that the old devices are replaced by the new SpaceWire compliant SMCS332SpW and SMCS116SpW devices, which are or shortly will be available from Atmel.

If operation with legacy units which use IEEE-1355 devices is necessary and these devices cannot be replaced by the new SpaceWire compliant parts, then the following reset sequence is recommended:

- 1. Assert the reset for the SpW-10X device.
- 2. Assert the reset for any IEEE-1355 devices attached to the SpW-10X device.
- 3. Release the reset of the SpW-10X device.
- 4. Wait for at least 10 µs.
- 5. Release the reset of the IEEE-1355 devices.

Alternatively when only a reset of the SpW-10 is required and an attached IEEE-1355 device is not to be reset at the same time, then the following reset sequence is recommended:

- 1. Send configuration commands to the SpW-10X device to disable the ports attached to IEEE-1355 devices.
- 2. Once all these ports have been disabled, wait for at least 10 μs .
- 3. Assert the reset for the SpW-10X device.
- 4. Release the reset of the SpW-10X device.

SpaceWire Router

User Manual

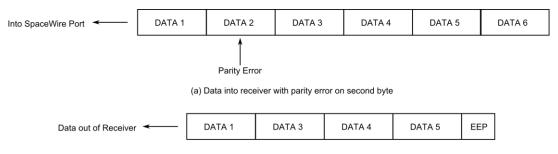
Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

13.4 PARITY ERROR ANOMALY


13.4.1 Parity Error Action

A parity error on the SpaceWire link causes the link to be disconnected by the SpaceWire router. If a packet is being received the packet is discarded and an error end of packet (EEP) is appended to the end of the packet.

13.4.2 Parity Error Anomaly

The SpaceWire CODEC in the SpW-10X router detects a parity error and then resets the link but it takes 167ns to reset the link after the parity error has been detected. During this time any data characters, EOPs or EEPs received after the parity error will be placed in the receive FIFO. These characters following the parity error are not removed from the receive buffer when the link is reset.

An example of this anomaly is shown in Figure 13-6.

(b) Data with parity error is discarded. Some trailing data characters are added to buffer

Figure 13-6 Data after parity error anomaly

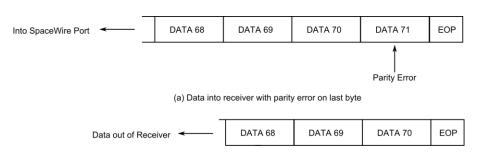
The number of characters added to the buffer depends on the input bit-rate: higher input bit rates result in more received characters being appended to the buffer after the parity error. The maximum time to reset the receiver after detecting the parity error is 167 ns. Therefore if no data characters are input for 167 ns after the parity error no extra data characters are inserted to the receive buffer.

If the input link rate is below 24 Mbit/s the anomaly will not occur as the smallest data character, end of packet marker which is 4 bits long cannot be decoded within 167 ns. Above 24 Mbit/s the number of characters inserted in the buffer depends on the type of character, end of packet or normal data, and the input bit rate. For example: at 100 Mbit/s a maximum of one received data character can be added, 100 ns per data character.

If the parity error occurs on the last byte of the packet before the end of packet and the bit rate is above 24 Mbit/s the error is not recorded by an error end of packet. The receive buffer detects the last data character written to the buffer is an end of packet and therefore does not insert an error end of packet to terminate the packet.

The operation is shown in Figure 13-7.

SpaceWire Router


User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: 3.5

Date: 7th January 2015

(b) Data with parity error is discarded. End of packet is added to buffer and no EEP is inserted

Figure 13-7 No error end of packet inserted after parity error

13.4.3 Parity Error Workaround

There is no specific workaround for this anomaly as a similar situation can occur in any case when an error on a link does not cause an immediate parity error but one is produced in a subsequence character. To avoid this causing a problem with a SpaceWire application it is important to include additional integrity checks in critical SpaceWire packets. This approach should also be used to mitigate the effects of the Parity Error anomaly.

User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

14. TECHNICAL SUPPORT

Technical support for the SpW-10X Router is provided by STAR-Dundee Ltd. A range of SpW-10X evaluation boards is available along with other test equipment, cables etc. See www.star-dundee.com for details.

Technical support is provided by STAR-Dundee. All requests for support should be submitted to the Atmel support hotline:

Email: assp-applab.hotline@nto.atmel.com

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

Date: 7th January 2015

15. DOCUMENT CHANGES

15.1 ISSUE 3.4 TO ISSUE 3.5

Section	Ref	Change
5	Table 5-2	SOUTMinus(4) pin location is pin 52 as indicated in section 4.
9	Table 9-10	Correction to the POR_SEL_TIMEOUT_N pin polarity when reset is applied. 0 maps to 1.3 milliseconds and 1 maps to 60-100 microseconds.
10	Table 10-1	TBC notes removed from clock and reset timing parameters.
		Preliminary notice removed from footer.

15.2 ISSUE 3.3 TO ISSUE 3.4

Section	Ref	Change
13.1		Parity error anomaly added to the list of anomalies.
13.4		Details of parity error anomaly added.
		Update after characterisation tests of the SpW-10X prototypes:
6.4		Corrected STATMUXOUT input valid time after reset
10.1		Clock and Reset switching characteristics added
10.2		DS skew parameter changed to total Tx skew & jitter
10.3		External port timing added
10.4		Time code interface timing completed / corrected
10.5		Error / Status interface timing added
11.1		Power consumption parameters updated

15.3 ISSUE 3.2 TO ISSUE 3.3

Section	Ref	Change
1.2	Table 1-2	RD3 changed to more appropriate reference document that
		includes information on LVDS.
8.1.5	Figure 8-3	Bias resistor value corrected to 20k ohms.
9.3	Table 9-3	The reset values of the GAR bits are undefined after power on
		and unchanged after reset except the Invalid Address bit which
		is 1 after power on or reset.
12.2.6	Point 1	Editorial change to text.

User Manual

Ref.: UoD_SpW-10X_ UserManual

Issue: **3.5**

Date: 7th January 2015

12.2.6	Point 5	Editorial change to text.
14		Correction made to support email address.

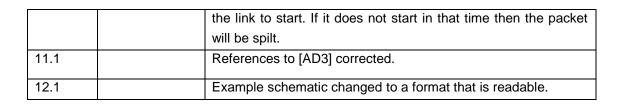
15.4 ISSUE 3.1 TO ISSUE 3.2

Section	Ref	Change
1.2	Table 1-2	RD3 added "Atmel MH1RT Cold Sparing I/O Buffers".
3	Figure 3.1	Text in diagram change from "non-blocking crossbar switch" to
		"crossbar switch".
3.5		Explanation of "non-blocking" nature of crossbar switch added.
5.1.2		Sentence added explaining that LVDS inputs and output are
		cold sparing and giving reference to RD3.
5.7.4		VCO bias resistor value corrected (Section 5.7.4).
8.1.5		Tri-state mode changed to deactivate mode. Calculation of
		deactivated power consumption added.
9.4.3	Table 9-6	Tri-state mode changed to deactivated mode.
9.5.8		Description for 'time-code flag mode bit' added.
11.1	Table 11-1	Power information updated.
11.3		Section added on reliability information
13.1		Reference to further details on anomaly 1 in section 13.3
		added.
		Anomaly 2 (tri-state mode) removed. The text throughout the
		document related to tri-state mode has been corrected to
		deactivated mode. A warning that the deactivated mode is not
		true tri-state has been added.
13.3		Section added to give more details on reset anomaly.

15.5 ISSUE 3.0 TO ISSUE 3.1

Section	Ref	Change
5.6		Second warning clarified.
7.6.10		Note added explaining that command packet fill bytes is a
		feature of the SpW-10X and not of RMAP.
8.1.6		Warning on setting data rate to less than 2 Mbits/s deleted.
13.2		The SpW-10X device will not allow a TXDIV and TXRATE to be
		set to give a transmit data rate below 2 Mbits/s.
8.3.2.4		Note added to further explain blocking of low priority packets by
		high priority ones.
8.3.5.3		Corrections made. When output port not running or in a group
		and not running, the router will waits for the timeout period for

SpaceWire Router


User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

15.6 ISSUE 2.5 TO ISSUE 3.0

Section	Ref	Change
Entire document		Major edit providing clarifications and additional application
		details throughout document. Section added on Application Guidelines giving example circuit diagram and PCB layout guidelines.
		Section added on anomalies and warnings. Section added on Technical Support.

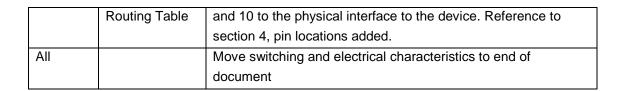
15.7 ISSUE 2.4 TO ISSUE 2.5

Section	Ref	Change
		Update document revision and redistribute
11.1		Change VCC to V _{DD} .
11.2		Remove VCC

15.8 ISSUE 2.3 TO ISSUE 2.4

Section	Ref	Change
Title		Change from data sheet to user manual
Title		Add Atmel part number as a reference
3.2	External Ports	Add depth of external port FIFOs.
5.2	SpaceWire	Rename data strobe IOs so the naming is consistent in the
	Signals	document. Note pin names should map to pin names in the
		data-sheet therefore use Plus/Minus notation
5.7	Power,	Additional information on power pins and PLL power supply
	Ground, PLL	circuitry.
	and LVDS	
	Signals	
10.3	Group Adaptive	Add mapping of SpaceWire Ports 1 to 8 and External ports 9

SpaceWire Router


User Manual

Ref.: **UoD_SpW-10X_**

UserManual

Issue: **3.5**

Date: 7th January 2015

15.9 ISSUE 2.2 TO ISSUE 2.3

Section	Ref	Change
		SpaceWire pins are ordered 0 to 7
		Missing figures updated

15.10 ISSUE 2.1 TO ISSUE 2.2

Section	Ref	Change
4		ASIC pin locations

15.11 ISSUE 2.0 TO ISSUE 2.1

Section	Ref	Change

15.12 ISSUE 1.7 TO ISSUE 2.0

Section	Ref	Change
All		Final updates and editorial corrections before release

15.13 ISSUE 1.6 TO ISSUE 1.7

Section	Ref	Change
All		Corrections added following validation

15.14 ISSUE 1.5 TO ISSUE 1.6

Section	Ref	Change
8		RMAP section added

15.15 ISSUE 1.4 TO ISSUE 1.5

Section	Ref	Change
All		Footer changed to indicate preliminary and a note added on the
		front page to indicate that section 8.6 is subject to change

SpaceWire Router

User Manual

Ref.: **UoD_SpW-10X**_

UserManual

Issue: **3.5**

Date: 7th January 2015

15.16 ISSUE 1.3 TO ISSUE 1.4

Section	Ref	Change
7		Latency and jitter specifications added

15.17 ISSUE 1.2 TO ISSUE 1.3

Section	Ref	Change
8		Section on fill bytes added
10		Registers updated to 3.3 specification document

15.18 ISSUE 1.1 TO ISSUE 1.2

Section	Ref	Change
6.3, 6.4, 6.5	Table 6-3,	FPGA timing data added
	Table 6-4,	
	Table 6-5	

15.19 ISSUE 1.0 TO ISSUE 1.1

Section	Ref	Change
5.1	Table 5-1	FEEDBDIV PLL clock settings section added
5.5	Table 5-5	STAT_MUX_OUT changed to multi function pin
5.6	Table 5-6	Power on reset signals mapped to STAT_MUX_OUT pins
8.1.6		Setting the data rate takes account of FEEDBDIV and transmit
		clock control register setting TXDIV
8.3.5		Packet blocking correction does not cause disconnection of links.